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ABSTRACT Membraneless micro redox flow batteries are a promising technology that can improve
traditional redox flow batteries performance. However, a precise modeling and control of the microfluidic
dynamics is a complex task for which only open loop control strategies can be found in the literature.
In this work, a strategy for the adaptive modeling of the microfluidic dynamics of a membraneless micro
redox flow battery is presented. The model is based on proposed equations whose constant parameters are
identified using grey-box modeling techniques. Intrinsic limitations of applying these equations to the real
system (stochasticity of the microfluidic system, non-considered variables, non-linearities) are overcome by
adapting the model through the addition of correction factors calculated in real time. In the proposed use
case, an extended Kalman filter is used to estimate the factors. Also, the model with real-time adaption is
proven to be suitable for control design using a model-based control technique such as incremental state
optimal control. The modeling and the controller adequacy are validated in simulation and real experiments.
Model adequacy to real system is demonstrated through fitness measurements of the deviation from it, which
show prominent values under various conditions. It also allows a model-based control design that improves
microfluidic response, with zero steady state error and fast and non-overshooting action, which is expected
to result in higher battery efficiency and reactant conversion ratio.

INDEX TERMS Adaptive model, extended Kalman filter, grey box model identification, incremental state
model, microfluidics, redox flow battery.

I. INTRODUCTION
Redox Flow Batteries (RFB) are a technology that has been
available for the last decades [1], [2], and which has experi-
enced a recent growth due to its suitability to be used with
renewable intermittent energy sources such as photovoltaic
solar or wind. This technology offers a long cycle life and
low degradation, providing an energy storage structure with
power decoupled from energy [3], [4]. It is estimated that the
total installed capacity of RFB is 1100 MWh by 2021 [5] and
it is expected to grow together with energy demand because
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of the role of energy storage in grid stabilization, power
availability, and reliability [6].
The progress in microfabrication and microfluidics

fields has allowed to prototype redox reaction cells for
liquid electrolytes at the microscale [7], [8], such as
in [9], [10], [11], [12], and [13]. Microfluidics offers
prospects to raise the efficiency and rate of electrochemical
energy conversion through enhanced mass transport and
flexible cell design [8]. They also remove the separation
membrane to reduce costs and to optimize the battery per-
formance as they decrease internal electrical resistance. This
lack of membrane is possible because the flow rates of the
two electrolytes preserve a laminar regime and make contact
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in a controlled interphase, so that the advective mixing of the
two species is minimized [14], [15].

Previous works on micro redox cells use syringe pumps
in an open control loop, where syringe plunger displacement
speed is fixed for the calculated desired flow. This is the only
flow pumping control, introducing pulsations and flow errors
that increase reactant crossover and self-discharge. These
systems do not define a dynamic flow model of the aggregate
cell and microfluidic system, they only fix the flow at the
inlets of the cell, considering that cell manufacturing does not
introduce much disturbance [16], and not considering varia-
tions in the fluid properties during operation.Most of them do
not recirculate the electrolytes to the tanks either, only a few
examples [12] and [13], use syringe pumps at the outlets with-
drawing at a fixed open loop speed for collecting electrolytes
for later runs [17]. This approach cannot guarantee the opti-
mal position of the interphase between electrolytes, causing
more reactant crossover and higher self-discharge. This has
limited the practical use of this technology, as leads to lower
columbic efficiencies (<40%) and lower reactant conversion
(<20%) [7]. These losses have been minimized partially
by changing cell designs [18], [19] but not by improving
flow control or using more suitable pumping systems. All
described complexities cause that charge-discharge operation
with electrolyte recirculation has not been demonstrated to
date [7]. Beyond these problems of lack of feedback and
control for the interphase position, limited recirculation and
lower efficiencies, it is true that the referenced works benefit
from the simplicity of setup and operation of an open-loop
setup with syringe pumps.

In [20] a model for microfluidic cells with flow-through
porous is presented, but although briefly describing flow dis-
tribution inside the cell due to electrodes porosity, it focuses
on electrochemical design simulation. In [21] reinforcement
learning algorithms are applied to two co-flowing laminar
streams at the inlets of a simple general microchannel with
computer vision feedback. The first attempt for microfluidic
reactors of fluidic modelling has been done in [22], where
the influence of the fluid dynamics configuration on the
proposed equivalent electrical model has been studied. This
work demonstrated the importance of fluidic control for a
good electrochemical performance, but it does not tackle the
dynamic fluidic modelling and control itself. However, for
conventional redox flow batteries the flow rate influence has
been modeled in several works, such as in [23] using a hybrid
convolutional neural network. Also, these models of regular
RFB have been used for optimization techniques of the flow
rate operation [24], and its control strategy design [25].
In this work, the dynamic microfluidic model is tack-

led, so that system response is known and interphase in
the cell can be guaranteed by precisely controlling flow
rates at the inlets and outlets of the cell. Consequently,
self-discharge and electrolytes crossover are minimized,
improving efficiency and making recirculation possible,
as the model from [22] studying fluid dynamics influence

on electrochemical response indicates. The dynamic fluidic
model reflects the microfluidic response of the flow rates
to actions of the active elements of the system (pumps and
valves) measured with sensors for feedback (flowmeters),
and it is used for designing the closed-loop control. The
base for the numeric description of the model is theoreti-
cal fundamentals of microfluidics in conductions that have
been largely discussed [26], [27], adapted with experimen-
tal knowledge of the system behavior as an elaboration of
a network of microfluidic channels [28]. These relations
are written in heuristic equations. The parameters of the
equations are identified using classical grey-box modeling
methods [29]. Particularly, regression using Gauss-Newton
algorithm has been widely applied and used for nonlinear
regression [30], [31]. Other methodologies, such as genetic
algorithms and neuronal networks have also been used for
these tasks and have been specifically used for the identifica-
tion of the parameters of conventional RFB [32].

The proposed model is extended with some correction
factors that are adjusted in real time to deal with stochasticity
and changes in system properties. This is an inherent prob-
lem of microfluidic systems because of bubbles or variable
wettability [21], [33], that is more evident in this system
due to variability in actuators response and electrolyte prop-
erties. The Extended Kalman Filter (EKF) is a well-known
algorithm for parameter estimation in nonlinear systems [34],
and in this work it is applied for the estimation of these fac-
tors. It has been widely used for model parameters estimation
in a variety of applications, from tumor growth modeling [35]
to lithium-ion batteries surface temperature estimation [36] or
electrical circuit models of vanadium RFB [37]. Hance, it is a
proven option for real time adaption of the correction factors,
and EKF is used novelly for this micro membraneless batter-
ies and this dimension of microfluidic dynamics. A derivative
free alternative as the Unscented Kalman Filter has also been
extensively used [38], which allows to avoid Jacobian matrix
calculation at the cost of losing computational efficiency and
stability [39].

Linearized models can be used in several control design
techniques. The most common design is the Linear Quadratic
Regulator (LQR), that does not guarantee zero steady-state
error in real applications with disturbances or modeling
errors [40], [41], [42]. Optimal control based on incremen-
tal state model is one of the existing control strategies that
cancels this steady-state error. Incremental state control uses
function cost optimization as LQR, but it modifies and aug-
ments the state-space system matrices. Applying the calcu-
lated feedback gains to this control structure is similar to
introducing an integral action [43], [44].

The main contributions of this work are presenting for
the first time a microfluidic dynamic model for micro mem-
braneless redox flow batteries, for a system able to recircu-
late electrolytes, proposing dynamic equations that describe
general behavior of the micro-fluid dynamics and identify-
ing the specific parameters for the systems using grey-box
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techniques. It also proposes correction factors to be added to
the proposed general equations to correct the system model
due to microfluidic stochasticity and a methodology for real
time adaptation of the correction factors. This model is val-
idated experimentally, and it is demonstrated that the model
can be used for system closed loop control, with the proposed
incremental state optimal control.

This paper is organized as follows. Section II details
membraneless micro redox flow batteries, and the cell and
complete system of the battery used in this work. Section III
introduces the methodology for obtaining the microfluidic
model, from the proposed equations and the grey-box model
identification of parameters, to how correction factors are
added. Section IV explains how the model is used in this
use case, with the EKF algorithm for the correction factors
estimation and regulation with the incremental state-space
optimal control. Results of model identification, real-time
estimation of the factors for correction and control applied
to the simulation model and to the real system are discussed
in Section V. Finally, conclusions are detailed in Section VI.

II. MEMBRANELESS MICRO REDOX FLOW BATTERIES
The typical structure of a RFB consists of two liquid elec-
trolytes (vanadium is the most common active species [4])
contained in two independent tanks. These electrolytes are
pumped through a fluidic system into the electrochemical
reactor that consists of several cells separated in two halves,
each one receiving one of the electrolytes and each one with
one electrode. Cells are separated by an ion-exchange mem-
brane, that maintains electrolytes physically separated but
ionically connected. After reacting, electrolytes are pumped
back into their respective tanks, storing chemical energy.
The amount of energy stored is proportional to the tank
capacity, and the power is proportional to the electrode active
area, the number of cells in each reactor, and the number
of reactors [7]. Therefore, power is decoupled from energy.
Also, they offer long cycle life and low degradation. This
makes them suitable for intermittent operation energy storage
applications, even when they have lower power and energy
densities than other technologies such as Li-Ion batteries.
A deeper analysis and evaluation of the status and perspective
of RFB technology, components, designs, integration, perfor-
mance and cost is offered in the review referenced in [7].
Micro redox flow cells are a more recent concept that uses

progress in microfluidics and microfabrication to develop
a cost-effective and rapid fabrication solution [10]. These
designs can eliminate the separation membrane by working
on a controlled laminar regime of the two colliding elec-
trolytes within the cell. The separation membrane, aside
from introducing resistive losses, can represent 20-40%
of the total cost of a 300kWh RFB [16]. These batter-
ies can be scaled-up putting together multiple cells in a
stack, but their targeted applications are of less power
than conventional ones, as when number of cells increase
distribution of reactants among the stacked cell becomes
challenging [8]. However, they increase surface-to-volume

FIGURE 1. System scheme, with reaction cell, tanks, pumps connected to
the inlets of the cell, valves at the outlets, and flowmeters and arrows
indicating the negative and positive electrolyte flows (Q1 to Q4).

FIGURE 2. Reaction cell schemes with electrolytes interphase (diffusion
is not represented). (Left) Optimal position of the interphase. (Right)
Malfunction with bad position of the interphase and electrolytes mixing.

ratio because of miniaturization and have on-chip integration
capability [12].

In this work, the reactor consists of a single micro cell for
redox reactions that charge/discharge the electrolytes, based
on the one proposed in [17]. The system architecture of the
full battery is shown in Fig. 1.
The system architecture includes the active elements to

pump and regulate the electrolytes, aside from the reactor cell,
which is also schematically represented in Fig. 2.

Pumps are located at the inlets of the cell, pumping each
of the electrolytes from its respective tank in a regulated flow
rate. Pumps are based on micro piezoelectric actuators that
deflect a membrane in two chambers and create a differential
pressure that impulses the liquid. Using these pumps, instead
of syringe ones as in the state of the art, introduces complexity
in their control, but provides flexibility to adapt pumping
actions faster, and reduces pulsation. Nevertheless, to fully
control the cell interphase and maximize battery efficiency,
the flows at the outlets also need to be controlled, so one
valve is placed in each of them to regulate the pressure drop.
The valves consist of a membrane in contact with the liquid
channel that deflects when an air pressure is applied at the
other side of the membrane. This air pressure is regulated by
varying the power of a micro air compressor. The flows (Q1
to Q4) are measured with microfluidic flowmeters in each of
the inlets and outlets. The full system setup and reaction cell
are shown in Fig. 3.
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FIGURE 3. Detail of the electrochemical cell and full experimental setup.

III. PROPOSED ADAPTIVE MODEL
The model needs system variables to be selected. The inputs
are defined as the voltages of the pumps and the differential
voltage of the valves, and the outputs as the inlets flows
and the difference between the outlet flows, as shown in
(1). The reason for defining the system variables as differ-
ences is trivial for the output: the input flows must be the
same as the output ones, then knowing only three of them
the fourth is also known. The reason for choosing the third
input as the differential voltage of the valves is to introduce
an additional constraint: at least one of the valves must be
always completely opened. This constraint makes the system
compatible determinate (3 variables and 3 equations). The
solution of the system also becomes the one that requires
least actuator power, as the valves generate the minimum
additional pressure drop.

U =

 Pump1Voltage
Pump2Voltage

Valve1Power − Valve2Power

Y =

 Q1
Q2

Q3 − Q4


(1)

The system has some intrinsic problems that make its oper-
ation complex, as is common in stable flow microfluidic
applications [21], [33]. Bubbles or variable wettability in
the surfaces and in the internal porous media of the cell
modify the pressure drop across the fluidic channels. Fur-
thermore, micro actuators do not have a repeatable response,
for example, pumps do not impulse always the same flow at
the same operation conditions (applied voltage) and ambient
conditions (same electrolyte, room temperature and humidity,
etc.). The reason for this is that they have internal passive
valves in the chambers that fluctuate their micro internal
position and response. Besides, the valves membranes have
strong inertias and deflection hysteresis. Together with these
stochastic conditions, the dynamics also present a nonlin-
ear behavior. Finally, external conditions of the system can
change the dynamic response of the actuators and the liquids,
mainly the change in temperature or the state of charge of the
electrolytes.

A. PROPOSED DYNAMIC EQUATIONS
In order to describe the behavior of the dynamic of the flu-
ids within the system three discrete equations are proposed.
These discrete equations are based on theoretical analysis

TABLE 1. Parameters of proposed equations.

of microfluidics dynamics principles. These expressions are
consistent with momentum and mass conservation principles
as stated in continuity andNavier-Stokes equations [26], [27].
In microfluidics, the gravitational force terms are neglected,
so for incompressible and isothermal fluids, the momentum
equations are reduced to Stokes equation [8]. The proposed
expressions consider the relation between flow, viscosity
inertia, pressure drop in the conduction and external pumping
work for incompressible viscous fluids in laminar regime,
without considering changes in density or temperature. The
system is composed with a set of microfluidic ducts, so the
influence of each on the others is related with heuristics and
based on experimental observations. Dynamic equations are
proposed simplifying the relations:

Q1 (k + 1) = Q1 (k) a1 + U1 (k) kV1 − U2 (k) kP2
− |U3(k)| kP3 − cP1

Q2 (k + 1) = Q2 (k) a2 + U2 (k) kV2 − U1 (k) kP1
− |U3(k)| kP3 − cP2

(Q3 − Q4) (k + 1) = (Q3 − Q4) (k) a3 + U3 (k) kV3
+ (Q1 (k) −Q2 (k)) cQ3 + cP3 (2)

The equations shown in (2) represent the discrete evolution
of the three variables defined as outputs of the system. The
defined parameters in the equations are described in Table 1.

The equations that describe the flow at the inlets (Q1 and
Q2) are symmetrical, and depend on the terms:
1) Inertia of the fluid at the same inlet, which is repre-

sented by Qi(k)ai, where the flow at instant k+1 is
proportional to the flow at the previous instant k in the
same inlet multiplied by the inertia factor ai, that must
be positive and less than 1 as friction slows down flow
(ratio between viscous force and inertia).

2) Pump action at the same inlet, represented by Ui(k)kVi,
where flow at k+1 is proportional to pump voltage at
instant k multiplied by gain factor kVi, that must be
positive as pump action tends to increase flow.

3) Pump pressure generated by pumping the other inlet,
represented by −Uj(k)kPj, where flow decrease at
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instant k+1 is proportional to voltage of the pump at
the other inlet at instant k multiplied by a gain factor
kPj, that must be positive as this pump action tends to
decrease flow.

4) Pressure drop from valves action, − |U3(k)| kP3, where
the flow decrease at instant k+1 is proportional to
the absolute value of input 3 (difference in the power
of the valves) at instant k multiplied by a gain factor
kP3. The valve action being a negative absolute value
is because moving away from zero (both valves fully
opened) will increase pressure drop, and inlet flows
will be reduced. kP3 must have a positive value to be
consistent with this.

5) Constant pressure drop of the cell inlet, represented by
−cPi, where flow is decreased by a constant factor. This
term must be positive, and it is not valid when flow is
close to zero, as it represents a constant pressure drop
at higher flows (the typical working range for the cell).

The equation for output 3 (Q3 − Q4) has the terms:

1) Inertia of the fluids at the outlets, represented by
(Q3 − Q4) (k) a3, where the difference in outlet flows
at instant k+1 is proportional to the difference at pre-
vious instant k multiplied by the inertia factor a3. This
factor must have a value around 1, as the difference in
flows at the outlets tend to stay similar when no other
term interacts.

2) Valves action, represented byU3 (k) kV3, where flow at
instant k+1 is proportional to pump voltage at instant
k multiplied by gain factor kV3. This gain parameter
must be negative as valve action in one inlet tends to
decrease flow at this inlet by closing and narrowing
fluid conduit, and therefore increase it at the other
outlet.

3) Inlet to outlet inertia, (Q1 (k) − Q2 (k)) cQ3, where dif-
ference of outlet flows at instant k+1 is proportional to
flow difference at the inlets at the previous instant k
multiplied by the inertia factor cQ3. The cell structure
favors that the negative electrolyte at the inlet tends
to flow through the negative outlet, and the same for
the positive side. Consequently, cQ3 value should be
positive.

4) Constant pressure drop difference at cell outlets, repre-
sented by cP3, where the difference in flow is modified
by a constant factor. This term can have any value, as it
represents tendency to flow preferably by one of the
outlets due to the constant difference in the pressure
drop. It is not valid when the flow in the inlets is close
to zero, as at this point the difference would also be
zero.

B. GREY BOX MODEL IDENTIFICATION
The parameters for the dynamic equations are first iden-
tified using nonlinear grey-box model identification, using
the Adaptive subspace Gauss-Newton search included in
the identification toolbox of MATLAB. This regression

algorithm is further explained in [30]. The nonlinearity in the
equations is raised by the absolute value term, as indicated
previously in (2).
The identified model is expected to have good similar-

ity with the same data used for identification, but to have
differences when ambient conditions change the system
response, as stochasticity becomes evident, and the model
would become imprecise. Nevertheless, it should maintain
dynamic coherence, as the aim of this grey-box parameter
identification is to have a generalization of the response that
can be proven to have consistency. This behavior is shown in
the results of Section V.

C. FACTORS FOR MODEL CORRECTION
To solve problems of generalization of the model for
all experiments, three correction factors for the actua-
tors (f1, f2, and f3) are introduced modifying previous
parameters.

Pump1 :

{
kV1f1
kP1f1

}
Pump2 :

{
kV2f2
kP2f2

}
Valves :

{
kV3f3
kP3f3

}
(3)

Q1 (k + 1) = Q1 (k) a1 + U1 (k) kV1f1
− U2 (k) kP2f2 − |U3| kP3f3 − cP1

Q2 (k + 1) = Q2 (k) a2 + U2 (k) kV2f2
− U1 (k) kP1f1 − |U3| kP3f3 − cP2

(Q3 − Q4) (k + 1) = (Q3 − Q4) (k) a3 + U3 (k) kV3f3
+ (Q1 (k) −Q2 (k)) cQ3 + cP3 (4)

These factors aim to solve the variability in the response of
actuators, whether caused by stochasticity or external condi-
tions, and to compensate for nonlinearities in the system.

D. STATE-SPACE REPRESENTATION
The system model is described as a state-space system based
on dynamic equations described in (1) and (4) with the correc-
tion factors that will be adjusted in real time. The states are
selected to be the same as the outputs shown in (1). Due to
the nonlinear nature of the equations, the system is described
as two linear state spaces, each one describing half of the
working space, which are continuous for the case where the
action of the valves is equal to zero.

A =

 a1 0 0
0 a2 0
cQ3 −cQ3 a3

C =

 1 0 0
0 1 0
0 0 1


D =

−cP1
−cP2
cP3


if U3< 0 if U3≥ 0

B =

 kV1f1 −kP2f2 kP3f3
−kP1f1 kV2f2 kP3f3

0 0 kV3f3
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B =

−

kV1f1 −kP2f2 −kP3f3
kP1f1 kV2f2 −kP3f3
0 0 kV3f3

 (5)

The state space representation described in (5) is used for
the design of the control structure presented in Section IV-B,
together with the correction factors values updated in real
time as explained in Section IV-A.

IV. USE CASE
The modeling methodology described in Section III is
now implemented with the Extended Kalman Filter chosen
for real-time factor correction estimation, and incremental
state-space optimal control for the model-based regulator
design. indicates the volumes of the system, and the sub-
scripts indicate whether the volume is measured at the inlet or
outlet, and the numbers whether they belong to the negative
or positive side (1 and 2 respectively).

A. EKF FOR FACTOR CORRECTION ESTIMATION
The correction factors for the actuators in the model are
calculated in real time to have an estimation of the system
response that can be used for controller gains adjustment.
The chosen algorithm for this task is the EKF that recursively
approximates the nonlinear set of equations by applying
linearized equations in every iteration. It is chosen because
it generally works well with non-linear systems, with less
computational cost than other more complex algorithms such
as the Unscented Kalman filter, and it is an iterative method
that considers a measurement, model and initial estimation
variances, with no need to store all previous states.

The state of the filter, X (k), is defined as the set of the
correction factors, fi(k), and the process variables defining
its evolution are the values of the actuators and the previous
values of the flows.

X (k) =

 f1 (k)
f2 (k)
f3 (k)

 u (k) =


U1 (k)
U2 (k)
U3 (k)

Q1 (k − 1)
Q2 (k − 1)

(Q3 − Q4) (k − 1)

 (6)

The measurement vector, Z (k), is built with the measurement
of the flows from the sensors in the current instant:

Z (k) =

 Q1 (k)
Q2 (k)

(Q3 − Q4) (k)

 (7)

It is considered that the best estimation of state evolution,
expressed in function f , is that factors have the same value
plus unknown random process noise w. Estimated variables
are noted with superscripted symbol ‘‘−’’. Symbol ‘‘ ˆ ’’ notes
internal auxiliar variables of the filter algorithm.

X̂− (k) = f
(
X̂ (k − 1) , u (k − 1) ,w (k − 1)

)
=

 f1 (k − 1)
f2 (k − 1)
f3 (k − 1)

+ w (k − 1) (8)

For the h function defining measures estimation, equations
of the system from (4) are used, since the prediction of the
measure is that it will follow the proposed model dynamics
plus the measurement noise v.

Ẑ− (k)

= h
(
X̂− (k) , v (k)

)
=

 u4 (k − 1) a1 + u1 (k) kV1X̂
−

1 (k) − u2 (k) kP2X̂
−

2 (k) . . .

u5 (k − 1) a2 + u2 (k) kV2X̂
−

2 (k) − u1 (k) kP1X̂
−

1 (k) . . .

u6 (k − 1) a3 + u3 (k) kV3X̂
−

3 (k) . . .

. . . − |u3| kP3X̂
−

3 (k) − cP1
. . . − |u3| kP3X̂

−

3 (k) − cP2
. . . (u4(k − 1) − u5 (k − 1)) c1 − cP3

+ vk (9)

Jacobian matrices of partial derivatives are calculated as:

A(k)[i,j] =
∂f[i]
∂X [j]

(X̂ (k − 1), u(k − 1), 0) = I (10)

W (k)[i,j] =
∂f[i]
∂w[j]

(X̂ (k − 1), u(k − 1), 0) = I (11)

H (k)[i,j] =
∂h[i]
∂X[j]

(X̂ (k), 0)

=

 kV1u1(k) −kP2u2(k) −kP3 |u3(k)|
−kP1u1(k) kV2u2(k) −kP3 |u3(k)|

0 0 kV3u3(k)


(12)

V (k)[i,j] =
∂h[i]
∂v[j]

(X̂ (k), 0) = I (13)

Then, the steps of the algorithm are detailed. First, the
prediction step, where P− (k) is an a priori estimation of the
covariance of the error between estimated and real state vec-
tors, P (k − 1) is the a posteriori estimation of the covariance
of the error between estimated and real state vectors from
previous instant k−1, and Q(k−1) is the covariance matrix
of process noise w. The equations are:

X̂− (k) = f (X̂− (k − 1) , u(k), 0) (14)

P− (k) = A (k)P (k − 1)AT (k)

+ W (k)Q(k − 1)W T (k) (15)

After obtaining the value of the state in instant k , predicted
from the values in k−1, the correction step is made. In this
step, the calculated gain K (k) is applied to the estimation
from the prediction step to correct the state and R(k) is the
covariance matrix of the measurement noise v. The corrected
state, that is the output of the filter, is calculated in this step:

K (k) = P− (k)HT (k)(H (k)P− (k)HT (k)

+ V (k)R(k)V T (k))−1 (16)

X̂ (k) = X̂−(k) + K (k)(Z (k) − h(X̂−(k), 0)) (17)

P (k) = (I −W (k)H (k))P− (k) (18)

The final step of the filter is updating the values for the next
iteration, where values of instant k become k−1. Values for
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FIGURE 4. Control scheme with incremental state space, with control
gain values coming from the iterative calculation applied to the EKF
estimated model.

Q (k − 1) = I ·0.01 (covariance matrix of process noise) and
K (k) = I (covariance matrix of the measurement noise) are
selected based on prior confidence on process change and
measurements respectively.

B. CONTROLLER DESIGN
The variables to be controlled are the inlet and outlet flows to
optimize the electrochemical cell operation. This proper oper-
ation should guarantee that the interphase of the electrolytes
is centered, and enough active species of the liquid are in
the cell for the electric current demand at the instantaneous
state of charge. Considering this, all cell flows are externally
calculated and given to the controller as reference setpoints.
The controller is expressed in discrete form, with a sample
time Ts of 0.2 s.

The control strategy is an incremental state optimal con-
trol, that uses the state space linear implementations from
Section III-D. The state is expressed in an incremental form as
presented in [43], for adding an integral action that removes
the steady-state error together with the dynamic response of
an LQR optimal control [44]. The controller scheme is shown
in Fig. 4.

The general expressions of the converted state space are:

X̃ (k) =

[
Y (k)

1X (k)

]
Ỹ (k) =

[
I 0

] [ Y (k)
1X (k)

]
(19)[

Y (k + 1)
1X (k + 1)

]
=

[
I CA
0 A

] [
Y (k)

1X (k)

]
+

[
CB
B

]
1U (k)

(20)

The control action is defined also as an incremental function
and control gain separated into two partial matrices:

U (k) = U (k − 1) + 1U (k) X̃r (k) =

[
Y (k)
0

]
1U (k) = K (X̃r (k) − X̃ (k)) =

[
Ky Kx

] [ Yr − Y (k)
−1X (k)

]
(21)

where Yr and Xr are reference output and reference state
(which increment part is zero). The feedback gain is cal-
culated with new state matrices that, as in (22), now are

expressed as:

Ã =

[
I CA
0 A

]
=


1 0 0 a1 0 0
0 1 0 0 a2 0
0 0 1 cQ3 −cQ3 a3
0 0 0 a1 0 0
0 0 0 0 a2 0
0 0 0 cQ3 −cQ3 a3


if U3 < 0 if U3 ≥ 0

B̃ =

[
CB
B

]
= B̃ =

[
CB
B

]

=


kV1f1 −kP2f2 kP3f3

−kP1f1 kV2f2 kP3f3
0 0 kV3f3

kV1f1 −kP2f2 kP3f3
−kP1f1 kV2f2 kP3f3

0 0 kV3f3



×


kV1f1 −kP2f2 −kP3f3

−kP1f1 kV2f2 −kP3f3
0 0 kV3f3

kV1f1 −kP2f2 −kP3f3
−kP1f1 kV2f2 −kP3f3

0 0 kV3f3

 (22)

The optimal control for this new dynamic model is cal-
culated to solve with the well-known LQR process, that
minimizes the cost function defined in (23), where Q and R
matrices are defined to weight error versus action in the cost.

J =

∞∑
k=0

((X (k) − Xr )TQ(X (k) − Xr ) + U (k)TRU (k) (23)

Then, the control action K is a gain calculated using P, that
is the solution to discrete algebraic Riccati equation:

U (k) = K (Xr − X (k))|K =

(
R+ B̃TPB̃

)−1
B̃TPÃ (24)

P = ÃTPÃ− (Ã
T
PB̃)(R+ B̃TPB̃)

−1
(B̃TPÃ) (25)

The optimal control gain is calculated using the augmented
matrices described in (21) applied to state-space defined in
Section III-D. Since the state-space representation is adaptive
and changes in real time with the EKF estimation of the
correction factors, the solution of the Riccati equation must
be found at every instant. Consequently, the best approach is
to have an iterative process that converges to the solution. The
iterative equations described in [34] are:

K (k) =

(
R+ B̃T (k)P (k − 1) B̃ (k)

)−1

· B̃T (k)P (k − 1) Ã (k) (26)

P (k) = Q+ KT (k)RK (k)

+ (Ã(k) − B̃(k)K (k))
T
P(k − 1)(Ã(k) − B̃(k)K (k))

(27)

Cost matrices Q and R are adjusted by trial and error in
simulation and real experiments. For iterative calculation,
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TABLE 2. Values of parameters of proposed equations.

state-space system matrices are updated in real time with the
value of the correction factors from the EKF and checking the
sign of U3.

V. RESULTS AND DISCUSSION
In this Section, the results from the grey-box model iden-
tification of the proposed equations are shown for different
experimental data, it is discussed the contribution of the cor-
rection factors, the real-time estimation of the factors using
the EKF is validated, and the incremental control response is
shown in both simulation and real experiments.

A. MODEL IDENTIFICATION RESULTS
The results from applying grey-box model identification
explained in Section III-B are shown in Fig. 5. This figure
shows the response of the equations proposed in (2) (with-
out the correction factors) for the parameter values obtained
(shown in Table 2 ), compared to the same data used for the
identification (with 0,2 s sample time) and to data from a dif-
ferent experiment. It must be noted that the values in Table 2
are coherent with their definition as referred in Section III-A.

The fitness of themodels indicated in Fig. 5 and subsequent
experiments is calculated using the expression:

fit = 100

( ∥∥y− ŷ
∥∥

∥y− mean(y)∥

)
, (28)

The identified model shows good similarity to the data used
for identification, as expected. Also, as shown in the second
experiment, when the conditions change the model is more
imprecise due to stochasticity (change in actuators, wetta-
bility, or air bubbles). There is dynamic coherence between
experiments, therefore the aim of this grey-box model iden-
tification to have a generalization of the response is proven,
and the need of a model adaptation can be concluded.

FIGURE 5. (Up) System output for model with grey box identified
parameters compared to real experimental data for the same experiment
as used for identification. (Down) Comparison with real data for a
different experiment. Fitness measurement is indicated for each dataset.

Factor correction results are also studied. A broad approach
for proving this correction suitability is made by identifying
the value of the factors in a new grey-box identification
regression for the equations presented in (4), using for the
rest of the parameters the values from Table 1 previously
obtained. Then, the response is compared with experimental
data (data from the second experiment of Fig. 5 is used). This
is shown in Fig. 6.

Values of the factors for the example of the figure are: f1 =

1.0216, f2 = 1.0364, and f3 = 1.1471. It is demonstrated that
using a correction in the actuator factors can help to obtain a
more accurate model of the system. These factors are close
to 1 (their initial value), which indicates that small changes
in actuators conditions modify notably the system response.

B. REAL TIME CORRECTION RESULTS
The validation of the real-time estimation strategy is per-
formed through two tests. First, real data is used for

100214 VOLUME 11, 2023



A. B. D. Quirós et al.: Adaptive Microfluidic Modeling of a Membraneless Micro Redox Flow Battery

FIGURE 6. Experimental data compared with models with and without
factor correction calculated in an offline regression. Fitness measurement
is indicated for each dataset.

FIGURE 7. Comparison of real data system response with the model with
online EKF factor correction and the model without factor correction.
Fitness measurement is indicated for each dataset.

FIGURE 8. Random factor values fed to the simulated model of the
system and EKF online estimation of these values. Estimated values are
adjusted precisely to random changes in the factors fed to the model.

simulating the real-time EKF application and how the filtered
response compares to the model without factor correction.

FIGURE 9. (Up) Simulation results of applying the designed control to the
simulated system with step changes in all three flow references. (Down)
Experiment results of applying the designed control to the real system
with step changes in all three flow references.

The responses are represented in Fig. 7, and it is demonstrated
how real-time correction with EKF achieves a very precise
modeling of the response.

For the second test, a simulation model is built with equa-
tions from (4), with factor values changing in real time with
white noise added. The model is excited with a sequence
of inputs similar to the sequences obtained from real data,
and the EKF estimation is applied. The random evolution
of the factors values is compared with the estimated values
from the EKF. The result, shown in Fig. 8, shows that the
estimated values match the evolution of the factors fed to the
model.

C. CONTROLLER RESULTS
The response of the controller is first simulated using the
equations from (4) as the system model. The correction
factors are considered in those equations as inputs with
cumulativewhite noise added to the value to simulate stochas-
ticity and other nonlinearities. The setpoint references of the
desired flows are changed in steps simultaneously in the three
flows to check the dynamic response, as shown in Fig. 9.
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The optimal control with incremental state has a smooth
and fast response. It has practically no overshoot and zero
steady-state error. It also has a fast response for Q1 and Q2
(less than 5 s), and for Q3 −Q4 less than 10 s. Cost matrices
values are Q = I and R = I ·100, the same values that are
used in real experiments.

The experimental setup, presented in Fig. 2, has all the
fluidic system, the electrochemical cell, pumps, valves, flow
sensors, and electronic drivers, connected to the computer
that runs the control algorithms and logs data. The results
using the same setpoint steps as in the simulation are also
shown in Fig. 9.
The control has a good response in real experiments, and

very similar to the simulation. It has no overshoot and zero
steady-state error. For Q1 and Q2 it has a fast and stable
response (around 5 s settling time), and for Q3 − Q4 it is
slightly slower than in simulation, 15 s, but still acceptable.
This slower response can be attributed to the also slower
estimation of the correction factor f3 (as shown in Fig. 7)
which mainly influences this third output, as indicated by the
equations presented in (4).

VI. CONCLUSION
In this paper a model for the microfluidic dynamics of a
redox flow micro battery is presented. It is based on pro-
posed dynamic equations for the system configuration and
instrumentation (pumps, valves, and flowmeters) that allow
the control of the interphase of the electrolytes. The model is
further refined with correction factors that can be estimated in
real time to adapt the model response to the system stochas-
ticity. In this work an extended Kalman filter algorithm is
proposed for estimating those factors. The modeling method-
ology and real implementation are validated with simulations
and real experiments.

The model is also demonstrated to be valid for control
design. For the first time for a micro fluidic membraneless
redox flow battery a real closed-loop control is implemented
based on the obtained model. The control strategy using
optimal control with incremental state is designed for this
specific system, and it is validated both in simulation and
experimentally. This is demonstrated to be a valid control for
the requirements of a micro redox flow battery, maintaining
electrolytes interphase in their optimal positioning and mini-
mizing the mixing losses.

As future work, it is proposed to refine the proposed
equations with more complex relations, and to analyze the
effect of adding more parameters to the filter estimation.
Besides, different controllers can also be designed to deal
with stochasticity and nonlinearities and their performance
can be compared to the one proposed in this work.
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