
Received 25 July 2023, accepted 5 September 2023, date of publication 8 September 2023, date of current version 15 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3313186

Optimized Refactoring Mechanisms to Improve
Quality Characteristics in Object-Oriented
Systems
ABDULLAH ALMOGAHED 1, HAIRULNIZAM MAHDIN 1, MAZNI OMAR 2,
NUR HARYANI ZAKARIA 2, GHULAM MUHAMMAD 3, (Senior Member, IEEE),
AND ZULFIQAR ALI4, (Member, IEEE)
1Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Johor 86400, Malaysia
2School of Computing, Universiti Utara Malaysia, Sintok 06010, Malaysia
3Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
4School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ Colchester, U.K.

Corresponding authors: Hairulnizam Mahdin (hairuln@uthm.edu.my) and Abdullah Almogahed (abdullahm@uthm.edu.my)

The authors acknowledge the Researchers Supporting Project number (RSP2023R34), King Saud University, Riyadh, Saudi Arabia.

ABSTRACT Refactoring has emerged as a predominant approach to augmenting software product quality.
However, empirical evidence suggests that not all dimensions of software quality experience unending
enhancements through refactoring. Current scholarly explorations reveal significant variances in the impacts
of diverse refactoring methods, with potential adverse effects and contradictions surfacing concerning
software quality. Consequently, such disparities render the advantages of refactoring contentious, culmi-
nating in challenges for software developers in the selection of optimal refactoring methods to ameliorate
software quality. Existing literature lacks an in-depth exploration of the reasons behind the contrasting
impacts of refactoring methods on quality enhancement or the development of refined protocols for
employing these techniques. Therefore, this research aims to explore, identify, and fine-tune the utilization
mechanisms of refactoring methods, empowering software developers to make informed choices for the
enhancement of object-oriented systems’ quality attributes. Ten commonly employed refactoring methods
were singled out for this investigation, each executed independently across five case studies varying
in scale (small, medium, and large). The Quality Model for Object-Oriented Design (QMOOD) was
employed as the evaluation tool to ascertain the influence of refactoring techniques on quality attributes.
The research outcomes denote that the multifarious impacts of refactoring methods on quality attributes
are attributed to distinct usage mechanisms of the techniques. These insights assist software practitioners
in discerning the optimal utilization of refactoring methods to ameliorate software quality, taking their
mechanisms into account. Moreover, these outcomes furnish industry experts with prescriptive guidelines for
employing refactoring methods to elevate the quality of object-oriented systems, predicated on the suitable
mechanism.

INDEX TERMS Refactoring, refactoring methods, refactoring mechanisms, software metrics, software
quality, software maintenance.

I. INTRODUCTION
Changes to the software systems’ codes and related doc-
umentation are always the results of an issue or the need

The associate editor coordinating the review of this manuscript and

approving it for publication was Hailong Sun .

for enhancement [1], [2]. As a result, software maintenance
is now an essential part of the creation and operation of
software systems [3], [4], as well as a required task for every
software application [5]. The maintenance cycle is made up
of critical actions that are intended to ensure the dependability
of modern software systems [6]. The incremental changes

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 99143

https://orcid.org/0000-0001-5408-1529
https://orcid.org/0000-0002-2275-0094
https://orcid.org/0000-0003-1816-2940
https://orcid.org/0000-0001-5971-1307
https://orcid.org/0000-0002-9781-3969
https://orcid.org/0000-0001-7654-5574


A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

were intended to improve certain features, correct any design
flaws, or address any other issues [2], [6]. The complexity
of such software maintenance tasks grows in proportion to
the system’s size and number of responsibilities [6]. Indeed,
approximately 80% of the overall expenses in software
development can be attributed to maintenance and evolu-
tion endeavors, as indicated by previous research [2], [7],
[8], [9]. Additionally, it has been established that software
professionals often allocate about 60% of their time and
resources to comprehending the software they are responsible
for maintaining and supporting [9], [10]. Unstructured coding
poses significant challenges and is acknowledged as a pri-
mary cause of maintenance issues, leading to a substantial
escalation in maintenance expenses [2], [11]. The impact
of inadequate system design is staggering, with estimations
suggesting a cost exceeding USD 150 billion annually in the
United States alone and surpassing USD 500 billion on a
global scale [12].

Luckily, the refactoring process has the potential to signif-
icantly reduce the cost of system maintenance and evolution-
ary operations [7], [13], [14]. Refactoring is regarded as one
of the most important techniques for maintaining and evolv-
ing software [15], [16], and it has evolved into an essential
component of software development practices, particularly
given the dynamic nature of user and information technology
(IT) requirements [10]. Refactoring serves as a methodol-
ogy for enhancing the design quality of software systems.
It achieves this by restructuring the internal setup of software
applications, without affecting their operational functionality.
According to Fowler et al. [17], [18], there exist 68 distinct
refactoring methods that have been categorized into six dif-
ferent groups. According to the refactoring definition, it is
closely related to software quality characteristics [5]. Earlier
empirical studies in this context investigated how refactor-
ing methods affected several software quality characteris-
tics [16], [19]. The related studies, in particular, investigated
whether either refactoring method improved both external
and internal quality characteristics. Several studies produced
contradictory results, according to an analysis of the relevant
literature, such as:

• Refactoring methods improve software quality [20],
[21], [22], [23], [24].

• Refactoring methods harm software quality [25], [26].
• Refactoring methods do not affect software quality [27],
[28], [29].

• Refactoring methods have a mixed impact on software
quality [30], [31], [32].

Several studies have discovered that different refactoring
methods have varying and distinct effects on software qual-
ity characteristics. As a result, scientists disagree about the
impact of refactoringmethods on external and internal quality
characteristics. Although some studies have shown that refac-
toring methods improve software quality, others argue that
this is not always the case [13], [33]. To put it another way,
the evidence for the benefits of refactoring is conflicting [34].

Therefore, software developers encounter difficulties in iden-
tifying the most suitable refactoring technique that could
effectively address design flaws and enhance specific quality
attributes of the software [35], [36], [37], [38], [39], [40].

Refactoring enhances the quality of the software by mak-
ing the code more maintainable, readable, and efficient.
It involves tasks such as removing code duplications, renam-
ing ambiguous variables and functions, and applying appro-
priate design patterns. These changes reduce complexity,
make it easier to understand the code, and result in improved
performance and an overall enhancement of the software’s
quality. However, there are some reasons why software qual-
ity may not be improved through refactoring. These may
include different scenarios and mechanisms for applying
refactoring methods, different effects of refactoring methods,
fundamental design flaws, insufficient or unclear require-
ments, and a lack of resources such as time and budget.

In the literature, there has been no research or analysis
of the factors that produce the varying effects of refactoring
methods on software quality characteristics. As a result, this
study used experiments to look at and evaluate how the
factor of mechanisms affects the use of refactoring meth-
ods. The goal was to figure out how this factor affects the
different effects that refactoring methods have on quality
characteristics.

The rest of this paper is organized as follows: Section II
discusses related works, while Section III describes
the methodology. Section IV goes over the results.
Section V examines the threats to validity. Section VI
presents the conclusions and outlines the future research
objectives.

II. RELATED WORK
Researchers have identified various factors that could be
involved in the varying impacts of refactoring methods on
quality characteristics. These factors have been discussed
below:

A. REFACTORING TOOLS
The usage of the current refactoring tools, according to
Kim et al. [34], [41], may lead to wrongly refactored code
portions since they are error-prone. As a result, using these
tools might occasionally harm the level of code quality [33].
As an example, a study [42] found that when they utilized the
Miner tool to apply the Move Method refactoring method,
the complexity of the software system rose. In other words,
the Move Method has increased the system’s complexity.
Contrarily, Chavez, et al. [43] applied the Move Method
using the JDeodorant tool and found that it did not affect
complexity. This means that refactoring methods may have
a different impact on quality characteristics depending on the
tools used to apply them.

B. SOFTWARE SIZE
The number of classes in an object-oriented software sys-
tem determines its size. In the refactoring research studies,

99144 VOLUME 11, 2023



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

various system sizes (large, medium, and small) have been
utilized. As a result of this, using refactoring methods on
software systems of various sizes may have various effects
on quality characteristics. The usage of software applications
of varying sizes, according to Kaur and Singh [13], maybe
one of the causes of contradictory or diverging conclusions
concerning the impact of refactoring on the quality of soft-
ware. To classify refactoring methods according to certain
software quality characteristics, studies [35], [44] exclusively
utilized the refactoring methods for small software systems
at the level of classes. As a consequence, they suggested
that the usage of the small-size system may be an issue
when examining how refactoring methods affect the system
level [31], [35], [44], [45]. Refactoring methods were utilized
at the class level by Kumari and Saha [46], who highlighted
that outcomes may vary when used at the system level.

C. MECHANISMS OF APPLYING REFACTORING
TECHNIQUES
The mechanisms of each refactoring method were described
by Fowler et al. [17], [18]. There are various mechanisms for
applying some refactoring methods. For example, depending
on the method access modifier, the Move Field has various
mechanisms for transferring it (i.e., protected, public, and
private). There are various mechanisms for inlining the inline
method, such as inlining the public methods or inlining the
private or protected methods. Al Dallal and Abdin [33] claim
that several techniques are now in use for applying refactoring
mechanisms to specific refactoring methods and that these
techniques may result in various refactored code portions.

Almogahed et al. [40] conducted an experimental study
to investigate different scenarios for using ten refactoring
methods. They found that refactoring methods can be used
in different scenarios, and they presented compelling evi-
dence indicating that the application of a refactoring method
under varying scenarios leads to different outcomes on
quality.

According to Oliveira et al. [47], [48], the mechanisms of
the refactoring method result in various outcomes when used
by integrated development environment (IDE) developers.
Depending on the mechanism used to implement the refactor-
ing method, a study [46] claims that refactoring’s effects on
quality characteristics might differ. As a result, various mech-
anisms of refactoring method application can have varying
impacts on quality characteristics. Nevertheless, there is no
empirical evidence in the literature to prove or disprove that
the mechanisms used to apply refactoring methods have an
effect on quality characteristics.

In light of this, the current research builds upon our pre-
vious study [40] by conducting a comprehensive empirical
investigation to examine and assess in depth the impact of
refactoring method utilization mechanisms on the diverse
effects of refactoring methods on quality attributes. Notably,
this study explores refactoring methods that were not exam-
ined in previous research endeavors.

FIGURE 1. Empirical design.

III. METHODOLOGY
This part describes the approach used to carry out this
research. As seen in Fig. 1, the much more popular refactor-
ing methods were initially picked. Second, five case studies
of various sizes have been collected. Third, the values of
object-oriented measurements have been gathered, and exter-
nal quality characteristics have been computed before and
after the refactoring methods have been applied to the code.
In step four, each refactoring method’s specific effects on
each internal and external quality characteristic were care-
fully examined. In step five, a multi-case analysis was used
to determine how each refactoring method had an overall
effect. The effects of each refactoring method have also been

VOLUME 11, 2023 99145



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

established while accounting for the factor under investiga-
tion. The following subsections contain a detailed discussion
of the steps that made up this experimental design.

A. CHOOSING REFACTORING METHODS
There are 68 unique refactoringmethods that Fowler et al. [17]
have proposed. Depending on the results of an extensive
review of the literature on frequently utilized refactoring
methods carried out by [13] and [33], along with survey
results regarding the popular refactoring methods currently
being used among industry experts conducted by [40], ten
refactoring techniques have been selected for this investi-
gation. Following are brief explanations of each of the ten
refactoring methods that were selected:

1. Add Parameter (AP):When a method requests extra data
from its caller, this technique is applied. Provide a parameter
for an object that may transmit this data.

2. Encapsulate Field (EF): By altering the public fields’
accessibility, this method is applied to restrict data access.
It offers two accessors’ methods and converts the field access
from public to private.

3. Extract Class (EC): This method is used to create a new
class when an existing one is too big and has too many duties,
causing it to perform duties that two classes should perform.
The first class’s relevant methods and fields are carried over
to the new class.

4. Extract Superclass (ESP): When two classes have fields
and methods that are similar, this technique is applied to gen-
erate a superclass and transfer the shared fields and methods
to the superclass.

5. HideMethod (HM): Other classes don’t utilize a method
or only use it within the class hierarchy of the class it belongs
to. This technique is used to protect or make the method
private.

6. Inline Class (IC): A class is not responsible for anything,
and there are no plans to make it so. This technique copies all
of the class’s methods and fields to another class and then
deletes it.

7. Inline Method (IM): When the method’s body is simpler
to grasp than that of the method itself, this method is used.
It deletes the method itself and replaces all method calls with
the method’s content.

8. Move Field (MF): This method moves a field from a
primary class to an appropriate class and updates all of its
users when a field is present in one class but frequently
utilized in another.

9. Remove Parameter (RP): When the method body no
longer uses a parameter, this strategy is applied. It eliminates
the extra parameter.

10. Rename Method (MM): When a method’s name does
not give away its purpose, this method is used to change the
name so that it does.

B. SELECTING CASE STUDIES
For the experimental investigation, five case studies of var-
ious sizes (large, medium, and small) and from two distinct

contexts (academic and open source) have been chosen. The
inclusion of projects from academia was motivated by their
restricted extension as well as the ability to examine the
structure and design of the project’s code [49]. The selec-
tion of jHotDraw and jEdit as case studies for this research
was guided by their recurrent usage in refactoring research,
as established by numerous exhaustive literature reviews [5],
[13], [33], [50].

Additionally, the five case studies have been chosen in
small, medium, and large sizes to explore the effects of
refactoring methods on the quality characteristics of software
systems using various case study sizes. The following is a
description of the chosen case studies:

1. Payroll Management System (PMS) [51]: Twelve
classes make up this small software system that three post-
graduate students in the IT department created. The goal of
the application was to offer a simple method for automating
all payroll-related tasks for the employees as well as a fully
complete system to assist with organizational administration.

2. Library Management System (LMS) [52]: LMS is com-
prised of 19 Java classes and is of a small size. Managing and
arranging library activities is possible using the system. LMS
includes MySql database capability, allowing it to keep the
database updated by adding books and maintaining track of
books that were gathered or published.

3. Bank Management System (BMS) [53]: It is a Java-
written, compact computer-based systemwith 34 classes. The
BMS is developed to handle all the essential data needed to
compute monthly account statements for customers. It offers
a variety of services to customers, including meeting every
bank’s procedural needs and boosting bank productivity.

4. jHotDraw [54]: This is a medium-sized open-source
application (250 classes). jHotDraw is a graphical framework
for creating ordered two-dimensional drawings. It provides
a fundamental blueprint for a visual interface designer with
tool palettes, numerous views, user-defined visual represen-
tations, and assistance with storing, loading, and printing
sketches.

5. jEdit [55]: With 1153 classes, it is a large open-source
application that supports Java. jEdit is a Java-based text editor
designed for programmers. The cross-platform text editor
jEdit includes numerous capabilities, including a comprehen-
sive plugin framework, syntax highlighters for 130 languages,
constructed macro languages, and comprehensive encoding
capabilities.

C. SELECTING QUALITY CHARACTERISTICS
To achieve the overall goals of this study, a quality model
that can assess the quality characteristics of object-oriented
applications and the influence of refactoring methods on such
applications is required. The quality models must be capable
of quantifying estimations of external quality characteristics
in addition to measuring internal quality characteristics. As a
consequence, the Quality Model for Object-Oriented Design
(QMOOD) [56], a commonly used model that can evaluate

99146 VOLUME 11, 2023



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

the quality of software design [57], is a better fit for this
study. The QMOOD covering is made feasible by its own six
external quality characteristics as well as 11 internal design
aspects that, taken together, provide a more complete view
of the software’s quality than the earlier quality systems of
measurement for object-oriented design [58]. It has widely
adopted metrics that are meant to measure software design
at the class and system levels [59]. Those measurements
are also very useful in identifying flaws in conventional
as well as continuous software development methods [60].
Additionally, it has the capability of assessing the entire
quality of software systems. Accordingly, all object-oriented
measurements, internal quality characteristics, and external
quality characteristics that are part of the QMOOD were
used for this investigation. Table 1 lists the internal quality
characteristics, as well as the metrics to which they are linked
and how those measurements have been used to assess the
corresponding internal quality characteristics. The following
are the descriptions of the six external attributes included:

1. Reusability: This refers to the extent to which compo-
nents of the system can be assimilated with other components
within a system.

2. Flexibility: It denotes the ease with which system com-
ponents can be modified for usage in contexts other than their
original design intentions.

3. Effectiveness: The extent to which the design may be
made to conform to desired behavior and functionality utiliz-
ing object-oriented principles.

4. Extendibility: This represents the straightforwardness
with which fresh demands can be incorporated into the exist-
ing design. To expand the capabilities of system components,
provisions for upgrades must be feasible.

5. Understandability: The features of the software’s design
that make it simple to understand.

6. Functionality: duties allocated for design classes that
may be accessible through the public interface

Table 2 shows the math equations that were used to make
an objective evaluation of the chosen external quality charac-
teristic based on the internal quality measurements.

Before and following the application of the refactoring
methods, QMOOD measurements have been gathered, and
the external quality characteristics and TQI have been com-
puted utilizing mathematical formulae supplied by QMOOD
to assess their influences on the external and internal quality
characteristics. It is possible to assess if a refactoring method
had a positive, negative, or ineffective influence on qual-
ity measurement values by subtracting the pre-refactoring
quality measurement values from the post-refactoring quality
measurement values. The refactoring method has a posi-
tive effect on a quality characteristic if the difference has
a positive value (except for coupling and complexity). The
refactoring method harms the quality characteristic if the
difference has a negative value (except for coupling and com-
plexity). Both the TQI and the external quality characteristics
are unaffected by the refactoring method if the difference is
0. To collect the QMOOD measurements for this study, the

TABLE 1. Metrics to evaluate the relevant internal quality
characteristics [56].

Eclipse Metrics 1.3.8 tool [61] was selected as it is one of
the Java tools that are most regularly used in research fields
and is compatible with the commonly utilized environments,
including Linux and Windows [62].

D. APPLYING REFACTORING METHODS
The effects of the selected refactoring methods on TQI,
external quality characteristics, and internal quality character-
istics have each been individually tested. For each refactoring
method, Fowler provided guidance detailing how to use
it [17], [18]. Refactoring may be carried out either manu-
ally or through the use of tools. Five refactoring methods
(Add Parameter, Encapsulate Field, Hide Method, Remove
Parameter, and Rename Method) have been carried out using
the Eclipse refactoring tool [63]. The usage of refactoring
is continuously being improved via the Eclipse refactoring
tool [5]. One refactoring technique (Extract Class) has been
carried out using the JDeodorant tool [64]. JDeodorant is the
most commonly used refactoring tool [5]. A manual valida-
tion, however, was done to make sure the refactoring methods
were carried out in line with the mechanisms suggested by
Fowler et al. [17], [18]. The rest of the refactoring methods
(Move Field, Inline Method, Extract Superclass, and Inline

VOLUME 11, 2023 99147



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

TABLE 2. Formulas for calculating the external quality characteristics [56].

Class) have been performed manually based on the princi-
ples outlined by Fowler et al. [17], [18] due to the absence
of automated tools. Furthermore, two steps were taken in
precise order to guarantee that the behavior of the system was
preserved following the use of every refactoring method: 1)
executing the code base, and; 2) examining the outputs of the
system.

The system’s source code was automatically built using the
Java compiler in the Eclipse IDE as part of the compilation
process to guarantee that it remains error-free after every
refactoring method was applied. To ensure that the system
still functions as it did before refactoring, the system has
been executed, and its outcomes have been examined using
its interface.

E. MULTI-CASE ANALYSIS USING FIVE CASE STUDIES TO
EXAMINE THE MECHANISMS OF USING REFACTORING
METHODS
An effective approach for determining the underlying mech-
anisms of complex phenomena or systems is multi-case anal-
ysis [65], [66], [67], [68]. This approach allows researchers
to comprehend the theoretical underpinnings of novel events
or phenomena. Examining the mechanisms of how apply-
ing refactoring methods affects the quality of software sys-
tems is the main objective of the multi-case analysis in this
study. Concerning the mechanisms of applying the refactor-
ing methods factor, applying the refactoring methods with
various mechanisms, depending on various explored opportu-
nities, were identified and investigated through multiple case
studies. Concerning the mechanisms of applying the refactor-
ing methods factor, various mechanisms were identified and
investigated through multiple case studies, depending on var-
ious explored opportunities. Different mechanisms for using

refactoring techniques were discovered due to the different
case study designs. The influences of refactoring methods
with various mechanisms on software quality characteris-
tics have been then investigated to ascertain if refactoring
methods with various mechanisms had diverse influences on
quality assurance.

IV. RESULTS AND DISCUSSION
To examine the various factors that influence how refactoring
methods affect quality characteristics, this paper examined
five case studies. Every one of the 10 refactoringmethodswas
applied separately. In five case studies, this paper conducted
43 experiments: eight in the LMS, six in the BMS, nine in
the PMS, ten in jHotDraw, and ten in jEdit. An experiment
means utilizing a case study to look at how each refactoring
method affects certain quality criteria. The overall number
of refactoring methods utilized in a case study is equal to
the number of experiments conducted in that case study.
Table 3 displays the summary statistics of the TQI, exter-
nal, and internal quality characteristics that were calculated
before using the 10 refactoring methods across the five case
studies. A descriptive analysis of the frequency with which
every refactoring method was utilized in the five case studies
is shown in Table 4. Following the implementation of the
refactoring methods, the metrics and external quality char-
acteristics (including TQI) are represented numerically in
Table 5 and Table 6, respectively. The impacts of refactor-
ing methods on metrics and external quality characteristics
(including TQI) are shown in Tables 7 and 8, respectively.
In Tables 7 and 8, the symbol (↑) indicates that the refac-
toring method enhances the quality attribute (except NOM
and DCC), the symbol (↓) indicates that the refactoring
method degrades the characteristic (except NOM and DCC),
and the symbol (−) indicates that there is no change in
quality.

The factors that have contributed to the several impacts of
refactoring methods on the quality characteristics that were
identified, investigated, and analyzed through experiments
and multi-case analysis over the five case studies are dis-
cussed in the subsection that follows to assess their influence
on the use of refactoring methods on software quality charac-
teristics.

A. MECHANISMS OF APPLYING REFACTORING METHODS
FACTOR
Mechanisms for applying every refactoring method were
suggested by Fowler et al. [17], [18]. Such mechanisms lay
out the procedures that must be followed to use the refactor-
ing methods appropriately. Nevertheless, those mechanisms
run into various internal software system designs, and as
a result, depending on the internal software system design,
those mechanisms may be executed in various ways. The
internal building blocks of a system are classes, functions, and
variables. The number of properties and their kinds, the num-
ber of functions and their forms, and the connection between
them vary from class to class in the inner class design.

99148 VOLUME 11, 2023



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

TABLE 3. Statistics on metrics, quality characteristics, and TQI prior to applying refactoring methods.

TABLE 4. Statistics about refactoring methods utilized across the five case studies.

Additionally, different relationships exist between each class
and the other classes, even within the same system. Every
class differs from the others regarding coupling, composition,
and cohesiveness.

As a result, five refactoring techniques (Move Field,
Encapsulate Field, Inline Method, Inline Class, and Extract
Superclass) encounter different internal class designs; con-
sequently, they have various mechanisms to use (e.g., object
pointers, method declarations, data formats, method kinds,
variable accessibility modifiers, and class relationships).
On the other hand, each of the five refactoring tech-
niques (Add Parameter, Extract Class, HideMethod, Remove
Parameter, and Rename Method) has only one mechanism
to work, no matter how the internal design of the class is
set up. This means that they all have the same effect on the
quality of the software. The various mechanisms for using the
refactoring methods were examined and evaluated. The find-
ings demonstrate that the influence of using these refactoring
methods in various mechanisms on quality characteristics
varies. To put it another way, varying mechanisms for apply-
ing refactoring methods contribute to the different impacts of

refactoring methods on quality characteristics. The following
sections go over the various mechanisms for utilizing related
refactoring techniques.

1) ADD PARAMETER (AP)
The AP intends to provide a parameter for a data-transmitting
object. As a result, the AP has only one mechanism (M1)
throughwhich it can be used. The applicationmechanism is to
add a new parameter to the identifiedmethod in order to trans-
fer the required data. The effect of applying the AP via this
mechanism has been determined. The relationship between
AP and the associated quality characteristics is shown in
Table 9 with the symbols (↑) labeling quality improvement
(except for DCC and NOM), (↓) labeling quality reduction
(except for DCC and NOM), and (−) labeling no changes in
quality characteristics. The total applied indicates the overall
number of times the AP was applied throughout the five case
studies.

The findings show that AP enhances understandabil-
ity, functionality, reusability, and TQI by increasing
cohesion.

VOLUME 11, 2023 99149



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

TABLE 5. The object-oriented measures after refactoring method (RM) implementation.

2) ENCAPSULATE FIELD (EF)
The EF aims to limit access to the field from outside the class.
To reach this aim, the public or default type of fields should
be encapsulated. Therefore, there are threemechanisms to use
the EF: 1) mechanism 1 (M1): encapsulation of the public
fields; 2) mechanism 2 (M2): encapsulation of the public
static fields; and 3) mechanism 3 (M3): encapsulation of
the default fields. The effect of using the EF through the
threemechanisms has been identified. Findings reveal that EF
improves the TQI in all the mechanisms; however, different
mechanisms have different effects on DAM, CAM, NOM,
flexibility, effectiveness, and understandability. Table 10 dis-
plays the influence of EF on the three mechanisms.

The EF does not change the DAM in M2 and M3 because
QMOOD sets the same values for static, default, and pri-
vate fields to calculate the DAM; therefore, flexibility and
effectiveness are not affected. The NOM does not affect M2
because the static methods are not counted in the NOM;

consequently, the understandability is not affected. It should
be noted that the M1 is the most commonly used.

3) EXTRACT CLASS (EC)
When an existing class is too large or has too many responsi-
bilities, the EC is used to create a new one. Therefore, there is
one mechanism (M1) to perform the EC. In this mechanism,
the responsibilities of the large class are divided, and a new
class is created. The associated methods and fields are trans-
ferred from the source class (the large class) to the new class.
The influence of applying the EC through this mechanism has
been identified. Table 11 depicts the influence of EC on the
related quality characteristics through this mechanism.

According to the findings, the EC increased DSC, CIS,
CAM, DAM, DCC, and NOM while decreasing ANA. As a
result, extendibility and understandability get worse, while
reusability, flexibility, effectiveness, functionality, and TQI
get better.

99150 VOLUME 11, 2023



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

TABLE 6. External quality characteristics and TQI post-using the refactoring method (RM).

4) EXTRACT SUPERCLASS (ESP)
The ESP is used where two or more classes have similar com-
mon features (attributes and methods). Common methods are
either private, protected, or mixed with the public. Therefore,
the ESP can be used in two mechanisms (M): 1) M1: all
common methods extracted to the superclass are private or
protected; 2) M2: the methods extracted to the superclass
are public or mixed (public and private). The results are
presented in Table 12 and indicate how the ESP affects quality
characteristics in both mechanisms.

The ESP improves the TQI in M1 while impairing the TQI
in M2. In S2, the ESP reduces messaging (CIS) dramatically,
as the common methods extracted from the subclasses to
the superclass are public, and therefore the reusability and
functionality are reduced, which in turn weakens the TQI of
the system.

5) HIDE METHOD (HM)
The goal of the HM is to keep the methods private or pro-
tected. As a result, there is one mechanism (M1) to apply the

HM. In this mechanism, the access modifier of the method is
made private. The impact of using theHMvia this mechanism
has been identified. Table 13 shows how HM affects the
related quality attributes through this mechanism.

The findings show that HM reduced messaging (CIS),
thereby impairing reusability, functionality, and TQI.

6) INLINE CLASS (IC)
The reason for using an Inline Class is that a class does almost
nothing and is not responsible for anything. There are two
mechanisms (M) for inlining a class. 1) mechanism 1 (M1):
the target class is slightly coherent, in which the methods
are related to some extent, and 2) mechanism 2 (M2): the
class is non-cohesive (a zero-cohesion class), in which no
methods or a small number of methods are not related to each
other. Findings show that applying the IC to M1 reduces the
cohesion of the system while applying the IC to M2 does
not affect the cohesion of the system. Table 14 presents the
influence of the IC in both mechanisms.

VOLUME 11, 2023 99151



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

TABLE 7. A summary of every refactoring method’s effect on metrics.

99152 VOLUME 11, 2023



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

TABLE 7. (Continued.) A summary of every refactoring method’s effect on metrics.

TABLE 8. A summary of every refactoring method’s effect on external quality characteristics and TQI.

Applying IC to both mechanisms is almost the same for the
effect on quality attributes, except for a very slight difference
in cohesion. M1 is the most widely used in this study because
most of the opportunities identified belong to M1.

7) INLINE METHOD (IM)
The Inline Method is the inverse of the Extract Method.
Therefore, four mechanisms have been identified, and their
effects on the quality attributes have been determined. These
mechanisms are 1) inlining the public methods (M1), 2)

inlining the private or protected methods (M2), 3) inlining
the public static methods (M3), and 4) inlining the public
methods alongwith the de-encapsulation of the related field if
it is required (M4). The results demonstrate that various IM
usage mechanisms affect quality characteristics differently.
Table 15 summarizes the outcomes of IM use within each
mechanism.

In most mechanisms, the IM harms the overall system
quality as evaluated by TQI. The IM improves the TQI inM2,
but this mechanism is rare because most methods in a system
are public.

VOLUME 11, 2023 99153



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

TABLE 9. Influence of add parameter.

TABLE 10. Influence of encapsulate field.

TABLE 11. Influence of extract class.

8) MOVE FIELD (MF)
There are three mechanisms for using the Move Field. Each
mechanism for using MF is applied based on its oppor-
tunity. These mechanisms (M) are: 1) move public fields
(M1), 2) VOLUME XX, 2017 9 move public static fields
(M2), and 3) move private fields (M3). Each mechanism
has identified the MF effect. The results reveal that vari-
ous mechanisms have varying impacts on quality charac-
teristics. Table 16 presents how MF affects the relevant
mechanism.

The MF commonly improves the TQI, as is clear in both
M1 and M2. In M3, the effect of MF is dynamic (D), depend-
ing on the encapsulation situation (number of private fields)
of the source and target classes. DAM does not change when
all fields in the source and target classes are private. When
there are more private fields in the source class than there are
public fields and fewer private fields in the destination class
than there are public fields, DAM increases. When there are
more private fields in the target class than there are public
fields and fewer private fields in the source class than there are
public fields, DAM decreases. Therefore, flexibility, effec-
tiveness, understandability, and TQI are affected by changes
in the DAM.

TABLE 12. Influence of extract superclass.

TABLE 13. Influence of hide method.

9) REMOVE PARAMETER
The RP aims to remove the parameter that is not utilized
in the method body. One mechanism (M1) is used to perform
the RP. The effect of applying the RP via this mechanism has
been determined. The effect of applying the RP through this
mechanism has been identified. Table 17 depicts the influence
of RP on the related quality characteristics.

The findings show that RP reduces understandability,
reusability, functionality, and TQI by decreasing cohesion.

10) RENAME METHOD
The RM aims to make the name of the method explain its
purpose. The RM is carried out by one mechanism (M1). The
effect of applying the RM through this mechanism has been
determined. The influence of RP on the associated quality
characteristics is seen in Table 18. The results show that the
RM does not affect either the internal or external qualities of
the product.

The findings of this study provide valuable insights into
the impact of various refactoring methods on software quality
characteristics. One of the key findings is that the mech-
anisms for applying refactoring methods play a signifi-
cant role in determining their effects on software quality.
The study identified different mechanisms for each refac-
toring technique, depending on the internal design of the
software system. This led to variations in the impact of
refactoring methods on quality characteristics. Moreover,
the study explored the impacts of each refactoring method
through different mechanisms. The study’s findings empha-
size the importance of understanding the specific mecha-
nisms and their effects when applying refactoring methods
to improve software quality. By identifying the mechanisms
and their corresponding impacts, software practitioners can
make informed choices in selecting appropriate refactoring
methods to address design defects and enhance quality char-
acteristics effectively.

99154 VOLUME 11, 2023



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

TABLE 14. Influence of inline class.

TABLE 15. Influence of inline method.

The obtained results from this study are of significant
importance in the field of software engineering and refac-
toring practices. They shed light on the complex relationship
between refactoring methods and software quality character-
istics, providing valuable insights and guidance for software
developers, researchers, and industry experts. The results
highlight the importance of understanding the mechanisms
of applying refactoring methods and their corresponding
impacts on quality characteristics. Armed with this knowl-
edge, software developers canmake informed decisions when
selecting appropriate refactoring techniques to improve spe-
cific aspects of their software systems. This helps in address-
ing design defects and optimizing the software’s overall
quality.

As mentioned in the paper, maintenance and evolution
activities consume a significant portion of software develop-
ment costs. By knowing how different refactoring methods
affect software quality, developers can focus on the most
effective techniques to enhance reusability, flexibility, and
extendibility. This, in turn, reduces maintenance efforts and
costs in the long run. Understanding the various impacts of
refactoring methods on quality attributes allows developers
to assess potential risks associated with adopting specific
techniques. They can choose refactoring methods that align
with the project’s goals and avoid those that might introduce
undesirable consequences on software quality.

The findings contribute to the growing body of knowl-
edge in the field of refactoring research. By identifying the
mechanisms and impacts, this study provides a foundation
for further investigations into the relationships between refac-
toring and software quality. Future research can build upon

TABLE 16. Influence of move field.

TABLE 17. Influence of remove parameter.

TABLE 18. Influence of rename method.

these results to explore additional refactoring techniques or
different software systems. Refactoring tools and automated
code refactoring services can leverage these results to provide
developers with more intelligent and context-aware sugges-
tions. By understanding the mechanisms and their impacts,
such tools can offer targeted and relevant refactoring recom-
mendations, making the refactoring process more efficient
and effective.

In conclusion, the obtained results have far-reaching
implications for software developers and the broader soft-
ware engineering community. They provide evidence-based
insights into the relationship between refactoring meth-
ods and software quality characteristics, enabling informed
decision-making, optimizing software maintenance, and
advancing the field of refactoring research. By understanding
the mechanisms and impacts of refactoring methods, devel-
opers can effectively improve software quality and reduce
maintenance costs, ultimately leading to better software prod-
ucts and more efficient software development practices.

V. THREATS TO VALIDITY
Aquality assessmentmodel (QMOOD) [56] and the choice of
refactoring approaches raise questions concerning construct
validity. The top 10 refactoring methods in research and prac-
tice have been picked to avoid a subjective decision [13], [33],

VOLUME 11, 2023 99155



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

[40]. This research also evaluated how refactoring methods
affected the overall quality index (TQI), external characteris-
tics, and internal quality characteristics using the acceptable
quality model (QMOOD). The link between treatment and
result poses a threat to the validity of the conclusion. Thus,
43 independent experiments were carried out across five case
studies in this study. As a result, the study’s findings are
sufficient to form a conclusion.

Internal validity represents the degree to which research
reliably demonstrates a cause-and-effect link between treat-
ments and actual results 49. To examine the impact of refac-
toring methods via case studies, the case studies chosen for
examination were evaluated solely in the scope of refactoring
and had not been subjected to any treatments other than
refactoring. The investigations began with small-scale case
studies and moved on to larger case studies as they continued,
enabling the researcher to acquire expertise. External validity
is the capacity to generalize the results. Experiments have
been conducted on a variety of open-source and academic
case studies from different application fields and sizes to
improve the external validity of this work. Because refac-
toring methods are often used in Java systems, this research
examines their application in Java projects. The findings
cannot, however, be said to be generalizable to other pro-
gramming languages with varying refactoring methods and
tool support.

VI. CONCLUSION AND FUTURE WORK
Refactoring is a popular strategy for increasing the quality of
software products [18]. Even though it has been demonstrated
that refactoring does not improve all aspects of software qual-
ity indefinitely [16], [33], recent research indicates that differ-
ent refactoring methods have noticeably different, sometimes
contradictory, and negative effects on software quality [13],
[19]. As a result, developers face difficulties choosing appro-
priate refactoring methods to improve software quality [33],
[39]. No research has been conducted to explain why refactor-
ing methods have contradictory effects on quality assurance
or to optimize mechanisms for using refactoring methods.
Therefore, this research offers an experimental investigation
and in-depth analysis of the mechanisms of applying refac-
toring methods that result in various impacts of refactoring
method application on quality characteristics. Ten refactoring
methods were used one at a time in five case studies. The
diverse effects of ten refactoring methods are produced in
large part by the mechanisms of their application. Each of
these refactorings makes use of a different mechanism, and
each method affects quality characteristics differently (either
positively, negatively, or not at all). To increase the quality
of software applications, software engineers must choose the
best mechanisms for every refactoring method. These results
can serve as guidance for software engineers in utilizing
refactoring methods to boost the quality of the software using
themost effectivemechanism, and they can also help software
engineers understand how to utilize refactoring methods to
enhance the quality of the software while considering this

factor. In other words, these results help software profession-
als understand how to use refactoring methods to improve
software quality while taking their mechanisms into account.

Future work will investigate the relationship between the
mechanisms of applying the refactoring methods factor and
other popular refactoring methods. Future empirical research
might explore other factors, including developer program-
ming skills, refactoring tools, quality measurement models,
and software size.

REFERENCES
[1] V. Rajlich, ‘‘Software evolution and maintenance,’’ in Proc. Future Softw.

Eng., Hyderabad, India, May 2014, pp. 133–144.
[2] A. L’Erario, H. C. S. Thomazinho, and J. A. Fabri, ‘‘An approach to soft-

ware maintenance: A case study in small and medium-sized businesses IT
organizations,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 30, no. 5, pp. 603–630,
May 2020.

[3] X. Sun, B. Li, H. Leung, B. Li, and Y. Li, ‘‘MSR4SM: Using topic mod-
els to effectively mining software repositories for software maintenance
tasks,’’ Inf. Softw. Technol., vol. 66, pp. 1–12, Oct. 2015.

[4] F. U. Rehman, B. Maqbool, M. Q. Riaz, U. Qamar, and M. Abbas,
‘‘Scrum software maintenance model: Efficient software maintenance in
agile methodology,’’ in Proc. 21st Saudi Comput. Soc. Nat. Comput. Conf.
(NCC), Riyadh, Saudi Arabia, Apr. 2018, pp. 1–5.

[5] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, ‘‘Code smells
and refactoring: A tertiary systematic review of challenges and observa-
tions,’’ J. Syst. Softw., vol. 167, Sep. 2020, Art. no. 110610.

[6] A. Ghannem, M. Kessentini, M. S. Hamdi, and G. El Boussaidi, ‘‘Model
refactoring by example: A multi-objective search based software engineer-
ing approach,’’ J. Softw., Evol. Process, vol. 30, no. 4, p. e1916, Apr. 2018.

[7] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, ‘‘Multi-criteria
code refactoring using search-based software engineering: An industrial
case study,’’ ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, pp. 1–53,
Aug. 2016.

[8] A. M. Fernández-Sáez, M. R. V. Chaudron, and M. Genero, ‘‘An indus-
trial case study on the use of UML in software maintenance and its
perceived benefits and hurdles,’’ Empirical Softw. Eng., vol. 23, no. 6,
pp. 3281–3345, Dec. 2018.

[9] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, and
Y. Cai, ‘‘Interactive and dynamic multi-objective software refactoring
recommendations,’’ in Proc. 33rd ACM/IEEE Int. Conf. Automated Softw.,
Montpellier, France, May 2019, p. 30.

[10] C. Abid, V. Alizadeh, M. Kessentini, T. do Nascimento Ferreira, and
D. Dig, ‘‘30 years of software refactoring research: A systematic literature
review,’’ 2020, arXiv:2007.02194.

[11] E. E. Ogheneovo, ‘‘On the relationship between software complexity and
maintenance costs,’’ J. Comput. Commun., vol. 2, no. 14, pp. 1–16, 2014.

[12] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for Soft-
ware Design Smells: Managing Technical Debt, 1st ed. Waltham, MA,
USA: Morgan Kaufmann, 2015, p. 258.

[13] S. Kaur and P. Singh, ‘‘How does object-oriented code refactoring influ-
ence software quality? Research landscape and challenges,’’ J. Syst. Softw.,
vol. 157, Nov. 2019, Art. no. 110394.

[14] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide,
‘‘Recommendation system for software refactoring using innovization and
interactive dynamic optimization,’’ in Proc. 29th ACM/IEEE Int. Conf.
Automated Softw. Eng., Vasteras, Sweden, Sep. 2014, pp. 331–336.

[15] M. Alotaibi, ‘‘Advances and challenges in software refactoring: A ter-
tiary systematic literature review,’’ M.S. thesis, Rochester Inst. Technol.,
Rochester, NY, USA, 2018.

[16] A. Almogahed, M. Omar, and N. H. Zakaria, ‘‘Impact of software refactor-
ing on software quality in the industrial environment: A review of empirical
studies,’’ in Proc. Knowl. Manag. Int. Conf. (KMICe), Sarawak, Malaysia,
Jul. 2018, pp. 229–234.

[17] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactor-
ing: Improving the Design of Existing Code, 1st ed. New York, NY,
USA: Addison-Wesley, 2002, p. 431.

[18] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code Refactoring, 2nd ed. New York, NY, USA: Addison-Wesley, 2019,
p. 448.

99156 VOLUME 11, 2023



A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

[19] A. Almogahed, M. Omar, N. H. Zakaria, and A. Alawadhi, ‘‘Software
security measurements: A survey,’’ in Proc. Int. Conf. Intell. Technol., Syst.
Service Internet Everything (ITSS-IoE), Hadhramaut, Yemen, Dec. 2022,
pp. 1–6.

[20] A. Almogahed, H. Mahdin, M. Omar, N. H. Zakaria, S. A. Mostafa,
S. A. AlQahtani, P. Pathak, S. M. Shaharudin, and R. Hidayat,
‘‘A refactoring classification framework for efficient software
maintenance,’’ IEEE Access, vol. 11, pp. 78904–78917, 2023, doi:
10.1109/ACCESS.2023.3298678.

[21] N. Rachatasumrit andM. Kim, ‘‘An empirical investigation into the impact
of refactoring on regression testing,’’ in Proc. 28th IEEE Int. Conf. Softw.
Maintenance (ICSM), Trento, Italy, Sep. 2012, pp. 357–366.

[22] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle, ‘‘A multidimensional
empirical study on refactoring activity,’’ in Proc. Conf. Center Adv. Stud.
Collaborative Res., Toronto, ON, Canada, 2013, pp. 132–146.

[23] N. Naiya, S. Counsell, and T. Hall, ‘‘The relationship between depth of
inheritance and refactoring: An empirical study of eclipse releases,’’ in
Proc. 41st Euromicro Conf. Softw. Eng. Adv. Appl., Madeira, Portugal,
2015, pp. 88–91.

[24] F. Palomba, A. Zaidman, R. Oliveto, and A. De Lucia, ‘‘An exploratory
study on the relationship between changes and refactoring,’’ in
Proc. IEEE/ACM 25th Int. Conf. Program Comprehension (ICPC),
Buenos Aires, Argentina, May 2017, pp. 176–185.

[25] A. Almogahed and M. Omar, ‘‘Refactoring techniques for improving
software quality: Practitioners’ perspectives,’’ J. Inf. Commun. Technol.,
vol. 20, no. 4, pp. 511–539, 2021, doi: 10.32890/jict2021.20.4.3.

[26] K. Stroggylos and D. Spinellis, ‘‘Refactoring-does it improve software
quality?’’ in Proc. 5th Int. Workshop Softw. Quality (WoSQ: ICSE Work-
shops), Minneapolis, MN, USA, May 2007, p. 10.

[27] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba,
‘‘An experimental investigation on the innate relationship between quality
and refactoring,’’ J. Syst. Softw., vol. 107, pp. 1–14, Sep. 2015.

[28] Q. D. Soetens and S. Demeyer, ‘‘Studying the effect of refactorings:
A complexity metrics perspective,’’ in Proc. 7th Int. Conf. Quality Inf.
Commun. Technol., Porto, Portugal, Sep. 2010, pp. 313–318.

[29] D. Wilking, U. F. Khan, and S. Kowalewski, ‘‘An empirical evaluation of
refactoring,’’ E-Informatica Softw. Eng. J., vol. 1, no. 1, pp. 27–42, 2007.

[30] A. Almogahed, M. Omar, and N. H. Zakaria, ‘‘Categorization refactoring
techniques based on their effect on software quality attributes,’’ Int. J.
Innov. Technol. Exploring Eng., vol. 8, no. 8S, pp. 439–445, 2019.

[31] A. Almogahed, M. Omar, and N. H. Zakaria, ‘‘Empirical studies on soft-
ware refactoring techniques in the industrial setting,’’ Turkish J. Comput.
Math. Educ., vol. 12, no. 3, pp. 1705–1716, Apr. 2021.

[32] A. Halim and P. Mursanto, ‘‘Refactoring rules effect of class cohesion
on high-level design,’’ in Proc. Int. Conf. Inf. Technol. Electr. Eng.,
Yogyakarta, Indonesia, Oct. 2013, pp. 197–202.

[33] J. Al Dallal and A. Abdin, ‘‘Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: A systematic literature
review,’’ IEEE Trans. Softw. Eng., vol. 44, no. 1, pp. 44–69, Jan. 2018.

[34] M. Kim, T. Zimmermann, and N. Nagappan, ‘‘An empirical study of
refactoring challenges and benefits atMicrosoft,’’ IEEE Trans. Softw. Eng.,
vol. 40, no. 7, pp. 633–649, Jul. 2014.

[35] K. O. Elish and M. Alshayeb, ‘‘A classification of refactoring methods
based on software quality attributes,’’ Arabian J. Sci. Eng., vol. 36, no. 7,
pp. 1253–1267, Nov. 2011.

[36] O. Chaparro, G. Bavota, A. Marcus, and M. Di Penta, ‘‘On the impact
of refactoring operations on code quality metrics,’’ in Proc. IEEE Int.
Conf. Softw. Maintenance Evol., Victoria, BC, Canada, Sep./Oct. 2014,
pp. 456–460.

[37] A. S. Nyamawe, H. Liu, Z. Niu, W. Wang, and N. Niu, ‘‘Recommending
refactoring solutions based on traceability and codemetrics,’’ IEEEAccess,
vol. 6, pp. 49460–49475, 2018.

[38] A. Almogahed, M. Omar, and N. H. Zakaria, ‘‘Refactoring codes to
improve software security requirements,’’ Proc. Comput. Sci., vol. 204,
pp. 108–115, Jan. 2022.

[39] A. Almogahed, M. Omar, and N. H. Zakaria, ‘‘Recent studies on the
effects of refactoring in software quality: Challenges and open issues,’’ in
Proc. 2nd Int. Conf. Emerg. Smart Technol. Appl. (eSmarTA), Ibb, Yemen,
Oct. 2022, pp. 1–7.

[40] A. Almogahed, M. Omar, N. H. Zakaria, G. Muhammad, and
S. A. Al Qahtani, ‘‘Revisiting scenarios of using refactoring techniques
to improve software systems quality,’’ IEEE Access, vol. 11,
pp. 28800–28819, 2023.

[41] M. Kim, T. Zimmermann, and N. Nagappan, ‘‘A field study of refactoring
challenges and benefits,’’ in Proc. ACM SIGSOFT 20th Int. Symp. Found.
Softw. Eng. (FSE), Cary, NC, USA, 2012, pp. 1–11.

[42] A. Kaur and M. Kaur, ‘‘Analysis of code refactoring impact on software
quality,’’ in Proc. MATEC Web Conf., EDP Sci., Punjab, India, 2016,
pp. 1–6.

[43] A. Chavez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia, ‘‘How
does refactoring affect internal quality attributes: Amulti-project study,’’ in
Proc. 31st Brazilian Symp. Softw. Eng., Fortaleza, Brazil, 2017, pp. 74–83.

[44] K. O. Elish andM. Alshayeb, ‘‘Using software quality attributes to classify
refactoring to patterns,’’ J. Softw., vol. 7, no. 2, pp. 408–419, Feb. 2012.

[45] M. Alshayeb, ‘‘The impact of refactoring to patterns on software quality
attributes,’’ Arabian J. Sci. Eng., vol. 36, no. 7, pp. 1241–1251, Nov. 2011.

[46] N. Kumariband and A. Saha, ‘‘Effect of refactoring on software quality,’’
in Proc. Comput. Sci. Inf. Technol. (CS & IT), 2014, pp. 37–46, doi:
10.5121/csit.2014.4505.

[47] J. Oliveira, R. Gheyi, M. Mongiovi, G. Soares, M. Ribeiro, and A. Garcia,
‘‘Revisiting the refactoring mechanics,’’ Inf. Softw. Technol., vol. 110,
pp. 136–138, Jun. 2019.

[48] J. Oliveira, R. Gheyi, F. Pontes, M. Mongiovi, M. Ribeiro, and
A. Garcia, ‘‘Revisiting refactoring mechanics from tool developers’ per-
spective,’’ in Proc. Brazilian Symp. Formal Methods, vol. 12475. Cham,
Switzerland: Springer, 2020, pp. 25–42.

[49] H.Mumtaz,M. Alshayeb, S.Mahmood, andM.Niazi, ‘‘An empirical study
to improve software security through the application of code refactoring,’’
Inf. Softw. Technol., vol. 96, pp. 112–125, Apr. 2018.

[50] A. Kaur, ‘‘A systematic literature review on empirical analysis of the
relationship between code smells and software quality attributes,’’ Arch.
Comput. Methods Eng., vol. 27, no. 4, pp. 1267–1296, Sep. 2020.

[51] Payroll Management System. Accessed: Feb. 11, 2021. [Online]. Avail-
able: https://code-projects.org/library-management-system-in-java-with-
source-code/

[52] Source Code & Projects. Accessed: Aug. 18, 2019. [Online]. Avail-
able: https://code-projects.org/library-management-system-in-java-with-
source-code/

[53] Banking System Management. Accessed: Aug. 25, 2020. [Online]. Avail-
able: https://github.com/derickfelix/BankApplication

[54] JHotDraw Files. Accessed: Jul. 25, 2019. [Online]. Available:
https://sourceforge.net/projects/jhotdraw/files/JHotDraw/5.2/

[55] jEdit Files. Accessed: Nov. 25, 2019. [Online]. Available:
https://sourceforge.net/projects/jedit/files/jedit/5.5.0/

[56] J. Bansiya and C. G. Davis, ‘‘A hierarchical model for object-oriented
design quality assessment,’’ IEEE Trans. Softw. Eng., vol. 28, no. 1,
pp. 4–17, Jan. 2002.

[57] P. K. Goyal and G. Joshi, ‘‘QMOOD metric sets to assess quality of Java
program,’’ in Proc. Int. Conf. Issues Challenges Intell. Comput. Techn.
(ICICT), Ghaziabad, India, Feb. 2014, pp. 520–533.

[58] C. M. S. Couto, H. Rocha, and R. Terra, ‘‘A quality-oriented approach
to recommend move method refactorings,’’ in Proc. 17th Brazilian Symp.
Softw. Qual., Curitiba, Brazil, 2018, pp. 11–20.

[59] V. Pham, C. Lokan, and K. Kasmarik, ‘‘A better set of object-oriented
design metrics for within-project defect prediction,’’ in Proc. Eval. Assess-
ment Softw. Eng., Trondheim, Norway, 2020, pp. 230–239.

[60] V. AIzadeh, M. A. Ouali, M. Kessentini, and M. Chater, ‘‘RefBot: Intel-
ligent software refactoring bot,’’ in Proc. 34th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), San Diego, CA, USA, 2019, pp. 823–834.

[61] Metrics 3—Eclipse Metrics Plugin Continued ‘Again’.
Accessed: Aug. 5, 2019. [Online]. Available: https://github.com/qxo/
eclipse-metrics-plugin

[62] N. Alsolami, Q. Obeidat, and M. Alenezi, ‘‘Empirical analysis of object-
oriented software test suite evolution,’’ Int. J. Adv. Comput. Sci. Appl.,
vol. 10, no. 11, pp. 89–98, 2019.

[63] Eclipse Foundation. Accessed: Jul. 25, 2019. [Online]. Available:
https://www.eclipse.org/downloads/

[64] JDeodorant. Accessed: Sep. 2, 2019. [Online]. Available:
https://marketplace.eclipse.org/content/jdeodorant

[65] K. M. Eisenhardt, ‘‘Building theories from case study research,’’ Acad.
Manage. Rev., vol. 14, no. 4, pp. 532–550, Oct. 1989.

[66] P. P. Maglio and C. Lim, ‘‘Innovation and big data in smart service
systems,’’ J. Innov. Manage., vol. 1, pp. 1–11, May 2016.

[67] C. Vassallo, G. Grano, F. Palomba, H. C. Gall, and A. Bacchelli, ‘‘A large-
scale empirical exploration on refactoring activities in open source soft-
ware projects,’’ Sci. Comput. Program., vol. 180, pp. 1–15, Jul. 2019.

VOLUME 11, 2023 99157

http://dx.doi.org/10.1109/ACCESS.2023.3298678
http://dx.doi.org/10.32890/jict2021.20.4.3
http://dx.doi.org/10.5121/csit.2014.4505


A. Almogahed et al.: Optimized Refactoring Mechanisms to Improve Quality Characteristics

[68] C. Dibble and P. Gestwicki, ‘‘Refactoring code to increase readability and
maintainability: A case study,’’ J. Comput. Sci. Colleges, vol. 53, no. 9,
pp. 1689–1699, 2014.

ABDULLAH ALMOGAHED received the B.S.
degree in engineering and information technology
from Taiz University, Yemen, in 2009, and the
M.S. degree in information technology and the
Ph.D. degree in computer science with a major
in software engineering from Universiti Utara
Malaysia (UUM), Malaysia, in 2017 and 2021,
respectively. He is currently a Postdoctoral Fel-
low with the Faculty of Computer Science and
Information Technology, Universiti Tun Hussein

Onn Malaysia (UTHM), Parit Raja, Malaysia. His current research interests
include software refactoring, empirical software engineering, software qual-
ity, software maintenance, security, applied machine learning, and wireless
networks.

HAIRULNIZAM MAHDIN is currently an Asso-
ciate Professor with the Faculty of Computer
Science and Information Technology, Universiti
Tun Hussein Onn Malaysia. He has an extensive
background in computer science and has been
actively involved in many conferences internation-
ally, serving in various capacities, including the
chairperson, a program committee, the general co-
chair, and the vice-chair. He has published over
100 journal articles and conference papers indexed

by various indexes, including WOS, Scopus, and Google Scholar. His
research interests include the Internet of Things (IoT), data management,
and artificial intelligence (AI).

MAZNI OMAR received the Ph.D. degree from
Universiti Teknologi MARA, Malaysia, for a the-
sis on the empirical studies of agile methodology
in humanistic aspects. She is currently an Asso-
ciate Professor with the School of Computing
(SOC), College of Arts and Sciences, Universiti
Utara Malaysia (UUM). She is also a Research
Fellow of the Institute for Advanced and Smart
Digital Opportunities (IASDO), SOC, UUM. She
managed to secure several research grants from the

university, national, international, and industry grants. She has published
several articles in Scopus and indexed journals, conference papers, and other
publications, such as the book of chapters and technical reports. Her research
interests include software engineering, knowledge management, and data
mining.

NUR HARYANI ZAKARIA received the Ph.D.
degree in computing science from Newcastle Uni-
versity, U.K. She is currently an Associate Profes-
sor with the School of Computing, College of Arts
and Sciences. She has published several articles in
Scopus and indexed journals, conference papers,
and other publications, such as the book of chap-
ters and technical reports. Besides that, she was
also involved in several research and consultation
activities from the university, national, interna-

tional, and industry grants. Her research interests include usable security,
information security, cybersecurity, and computer forensics. She is also an
Editorial Board Member of Journal of Information and Communication
Technology (JICT).

GHULAM MUHAMMAD (Senior Member,
IEEE) received the B.S. degree in computer sci-
ence and engineering from the Bangladesh Uni-
versity of Engineering and Technology, in 1997,
and the M.S. and Ph.D. degrees in electronic
and information engineering from the Toyohashi
University of Technology, Japan, in 2003 and
2006, respectively. He is currently a Professor
with the Department of Computer Engineering,
College of Computer and Information Sciences,

King Saud University (KSU), Riyadh, Saudi Arabia. He has super-
vised more than 15 Ph.D. and master’s theses. He is involved in many
research projects as a principal investigator and a co-principal investigator.
He has authored or coauthored more than 300 publications, including
IEEE/ACM/Springer/Elsevier journals, and flagship conference papers.
He owns two U.S. patents. His research interests include signal processing,
machine learning, the IoT, medical signal and image analysis, AI, and
biometrics. He was a recipient of the Japan Society for Promotion and
Science (JSPS) Fellowship from the Ministry of Education, Culture, Sports,
Science and Technology, Japan. He received the Best Faculty Award from
the Computer Engineering Department, KSU, during 2014–2015.

ZULFIQAR ALI (Member, IEEE) received the
M.Sc. and M.S. degrees in computer science from
the University of Engineering and Technology
Lahore, Pakistan, in 2007 and 2010, respectively,
and the Ph.D. degree in electrical and electronic
engineering from Universiti Teknologi Petronas,
Malaysia, in 2017. He was a Researcher with the
Department of Computer Engineering, King Saud
University, from 2010 to 2018, and a Research
Fellow with the BT Ireland Innovation Center,

Ulster University, from 2018 to 2020. He is currently a Lecturer with the
School of Computer Science and Electrical Engineering, University of Essex,
Colchester, U.K. He has published more than 60 international peer-reviewed
conference papers and journal articles. His current research interests include
explainable AI, digital speech and image processing, privacy and security in
healthcare using watermarking, and audio forgery detection. He is a fellow
of the Higher Education Academy and Advance HE, U.K. He has served on
the technical program committees for the IEEE Smart World Congress and
IEEE ACAI. He is also serving as an Associate Editor for the IEEE JOURNAL
OF BIOMEDICAL AND HEALTH INFORMATICS.

99158 VOLUME 11, 2023


