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ABSTRACT Motion planning is challenging for robotic manipulators. Achieving high efficiency and
generalization while considering various constraints simultaneously can be difficult. One common solution
is to use iterative projection techniques to acquire feasible manipulator configurations and then search for a
valid path to reach the goal state based on those configurations. However, such iterative techniques tend to be
computationally expensive and time-consuming. The problem becomes more serious if equality constraints
are involved, due to their narrower solution space. In this paper, we propose the Learning-Assisted Con-
strained Rapidly-Exploring Random Tree (LAC-RRT) algorithm, which employs self-supervised learning
to train a model that can directly convert any sampled configuration to a new and valid configuration using
feature values constrained by the imposed equality constraints, avoiding the need for iterative optimizations.
Unlike other learning-based motion planning techniques, which typically solve the problem by building
the constraint manifold based on a fixed set of constraints, LAC-RRT permits better generalization by
allowing the equality constraints to be specified at run time. The experimental results show that the proposed
LAC-RRT surpasses other approaches in most cases. Specifically, LAC-RRT can significantly reduce
computation time by 80-90% for acquiring valid configurations and performing motion planning.

INDEX TERMS Constrained motion planning, self-supervised learning, constraint manifold.

I. INTRODUCTION
Motion planning is crucial in controlling the motion of a
robotic manipulator, which involves finding a sequence of
actions that enables the manipulator to transition from its
current state to a desired state. The resultant motion plan
typically needs to satisfy requirements of the given task and
the restrictions imposed by the environment, such as avoiding
obstacles, maintaining end effector orientation, or staying in
contact with an object. The problem is normally formulated
as an optimization problem that searches for a feasible and/or
optimal path in the configuration space that satisfies the
imposed constraints. Configuration space refers to the space
of joint states in the robotic manipulator and the subspace that
satisfies the constraints is called the constraint manifold [15].
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For robotic manipulators with a high degree of freedom
(DoF), the computation complexity in finding a feasible
solution in the configuration space is very high. Sampling-
based motion planning, e.g., Rapidly-exploring Random Tree
(RRT), is often the preferred solution due to its efficiency in
high dimensional space [1], [2], [8], [17], [20].

Constraints in motion planning can be categorized as
inequality constraints, e.g., obstacle avoidance, and equality
constraints, e.g., maintaining a given orientation. Inequal-
ity constraints generally have a large constraint manifold
because of the amount of configurations that can satisfy the
constraints. Hence, to handle inequality constraints, the most
common approach is to use rejection sampling [5], which
involves generating a large number of samples and discarding
those that fail to meet the constraints. However, rejection
sampling is not suitable for solving problems with equal-
ity constraints, because it is unlikely to obtain samples on
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low-dimensional constraint manifolds, such as a line, through
repeated sampling.

To handle equality constraints, projection strategies, such
as gradient descent projection and pseudo-inverse Jacobian
projection, have been studied extensively [1], [2], [10], [21].
However, these methods may be inefficient because of the
large number of iterations required to project the sampled
configuration onto the constraint manifold [16]. Alterna-
tively, direct sampling strategies may be exploited, which
learn the constraint manifold offline and then sample from
the manifold during online planning. For example, Şucan
and Chitta [17] utilized the approximation graph to store
the precomputed valid configurations. Recently, deep neu-
ral networks are employed to learn the constraint man-
ifold for better generalization. Sutanto et al. [18] trained
constraint-manifold networks with different loss functions
to describe motion constraints, while Lembono et al. [11]
used generative adversarial networks to learn the constraint
manifold.

Although direct sampling strategies accelerate the plan-
ning process by precomputing the constraint manifold, they
typically require ground-truth data for training, which may
be generated from existing planners. This limits their perfor-
mance to the quality of the planners. Furthermore, changes
in the environment or constraints require the training data
recollected and the model retrained. They cannot handle new
or different constraints during online inference. From the
above discussions, we can see that an ideal strategy for robotic
motion planning should efficiently handle constraints while
generalize well to new constraints at run time.

To meet the above requirement and address equal-
ity constraints, this paper introduces a novel motion
planning approach, called Learning-Assisted Constrained
Rapidly-Exploring Random Tree (LAC-RRT). It is based on
the key insight that equality constraints of motion planning
typically impose restrictions on ‘‘features’’ of the manip-
ulator, such as end-effector orientation, wrist position, the
angle between the plane of the elbow joint and the vertical
plane, etc. Thus, handling equality constraints in the feature
space may be more straightforward and efficient than in
the configuration space. What is needed is to transform a
sampled configuration during the random tree exploration
into the corresponding feature embedding, adjust the feature
embedding according to the equality constraints, and then
map it back to get a valid configuration. To achieve these,
this paper proposes a self-supervised deep learning network,
the Configuration Transfer Model (CTM).

CTM employs an encoder-decoder structure where the
encoder maps a given configuration into the feature embed-
ding and the decoder transforms it back. What is novel in
CTM is a third module, called the Custom Feature Composer
(CFC), which during training indicates the explicit features
of the manipulator that will be constrained by the imposed
equality constraints and what the values of these features are
for this specific input configuration. CFC is used to force the

decoder to learn not just an arbitrary transformation but a
transformation that knows how to map an embedding with
specific feature values back to a configuration. It follows that
during inference, i.e., online path planning, we only need to
provide the feature values imposed by the equality constraints
to the decoder and it can generate a valid configuration from
the embedding of a sampled configuration produced by the
encoder.

By working in the feature space, the proposed LAC-RRT
can directly transform any random configuration to a
constraint-satisfying, valid configuration. This significantly
accelerates the planning process compared to iterative pro-
jection methods. Unlike learning-based direct sampling,
LAC-RRT provides the flexibility of evaluating equality con-
straints that constrain using different feature values during
online planning. There is no need to recollect data or retrain
the model.

Our experiments show that LAC-RRT requires only
1.4 - 3.1% of the computation time to generate a feasible
configuration compared to conventional projection methods.
In comparison to least squares optimization, our method
requires only 4.3% and 14.8% of computation time to meet
position and orientation constraints, respectively. Moreover,
LAC-RRT needs only 20% time to meet orientation con-
straints compared to L-BFGS-B. When considering obstacle
avoidance, it only needs about 10% computation time to plan
a motion to meet orientation constraints.

The remainder of the paper is organized as follows.
Section II surveys related works, and Section III presents
the proposed method. Section IV shows our experiments and
discusses the results. Conclusions are drawn in Section V.

II. RELATED WORK
The LAC-RRT algorithm is motivated by CBiRRT [1], [2],
which employs iterative projection techniques to obtain suit-
able configurations on the constraint manifold for constrained
motion planning. Other studies also embrace similar ideas,
including Lavalle et al. [10], which uses randomized gradient
descent to handle closed-chain kinematic constraints, and
ATACE [21], which iteratively calculates projected nodes
based on random configurations by randomized gradient
descent. In a more general constrained motion planning con-
text, Stilman [16] compares various projection techniques
and finds that the pseudo-inverse projection method is more
efficient in calculating valid configurations. Although these
approaches offer promising solutions for constrained motion
planning, the iterative process tends to be computationally
expensive and time-consuming.

To address the efficiency problem, direct sampling strate-
gies are proposed. These strategies model the constraint
manifold offline and bypass the iterative process by sampling
directly from the model during online planning. Şucan and
Chitta [17] approximate the constraint manifold by comput-
ing valid configurations beforehand and storing them in a
data structure for online sampling. To improve generalization,
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recent studies have turned to deep learning techniques.
Sutanto et al. [18] propose ECoMaNN to learn the manifold
for equality constraints, while Lembono et al. [11] use gen-
erative adversarial networks (GANs) to learn the distribution
of the constraint manifold and directly utilize the generated
samples to avoid computations during planning. The prob-
lem with direct sampling strategies is that they require data
recollection and model retraining if there are any changes to
the environment or constraints. They cannot handle new or
different constraints during online inference.

It can be seen that direct sampling is similar to iterative
projection in that they both work in the configuration space.
The difference is that direct sampling pre-evaluates the con-
straints and establishes the valid configurations offline to
avoid online iterative computations, while iterative projection
evaluates the constraints at run time and approximates its way
to a valid configuration gradually. As a result, iterative pro-
jection can flexibly handle new constraints at run time, while
direct sampling must stick to the constraints that it is trained
for. In contrast, instead of learning the constraint manifold,
LAC-RRT learns how to transform between configuration
space and feature space. During the process, it changes the
features of the input configuration to conform to the imposed
equality constraints and then produces a valid configuration.
It thus allows the direct transformation of any random con-
figuration to an equality-constraint-satisfying configuration,
while inequality constraints can be simply handled through
rejection sampling. This significantly accelerates the plan-
ning process compared to iterative projection methods and
provides the flexibility of evaluating new constraints at run
time when compared to direct sampling.

In addition to sampling-based approaches, recent studies
have considered reinforcement learning (RL) as a solution to
the motion planning problem [3], [13]. RL involves training
a policy network that takes observations as input and outputs
the desired velocity of the actuators, enabling it to con-
trol robots in real-time. Unlike sampling-based approaches,
RL efficiently handles dynamic obstacles without the need
to check for collisions at each sampled joint configuration,
making it more suitable for real-time applications. However,
RL’s training process can be time-consuming, and it may
encounter convergence issues when dealing with complex
problems. In this paper, our focus is specifically on solving
problems involving static obstacles.

III. APPROACH
LAC-RRT is an extension of RRT-based algorithms [6], [7],
[9], designed for constrained motion planning. By utilizing
CTMs, LAC-RRT can efficiently generate configurations on
the constrained manifold directly without a lengthy iterative
process to search for valid configurations. The difference
between prior approaches and LAC-RRT is illustrated in
Fig. 1. The same CTM can handle the same type of con-
straints, which constrain on the same set of features, e.g.,
moving on a horizontal plane but varying in height. New
constraints may be imposed at run time as long as they belong

FIGURE 1. Constrained sampling-based methods aim to construct a path
connecting the start configuration and the goal configuration on the
constraint manifold by building a tree. To locate a node that satisfies the
constraints for expanding the tree, prior methods utilize projection
techniques, which usually involve iterative computation to move the
projected configuration towards the constraint manifold. This paper
introduces CTM, which directly transforms a sampled configuration to a
valid configuration on the manifold based on the given constraints,
thereby accelerating the planning process significantly.

to the same type. For different types of equality constraints,
different CTMs may need to be trained. It is also impor-
tant to note that CTM is not specialized to any particular
RRT approach. In this paper, we use the bi-directional RRT
(BiRRT) as an example to illustrate the proposed method.

A. PROBLEM DEFINITION
Consider a robotic manipulator with N -DoF, whose con-
figuration space C is a N -dimensional joint space. Given a
start configuration qs and a goal configuration qg, the goal
of motion planning is to find a path on C connecting these
two configurations. When considering constraints imposed
by the environment and the task, such as obstacle avoid-
ance and maintaining orientation, the valid configuration
space is reduced to a low-dimensional constraint manifold.
Obtaining valid configurations on this manifold is challeng-
ing, as resampling can be time-consuming and modeling the
manifold may require recollection and retraining with every
change in constraints. Our objective is to efficiently find a
set of valid configurations on the constraint manifold that
connects the start and goal configurations.

B. CONFIGURATION TRANSFER MODEL
The proposed CTM is a self-supervised learning model capa-
ble of directly generating a valid joint configuration satisfying
specified constraints without the need for an iterative process.
To convert a sampled configuration into a valid one, CTM
separates the joint configuration into an implicit embedding
part and an explicit vector part. Explicit features are the ones
that need to be restricted, e.g., the orientation of the end-
effector. A decoder then converts the long vector (obtained
by concatenating the embedding and the vector) back to the
configuration. Distinguishing partial explicit features allows
us to adjust the values of the features based on application
requirements, generating a valid corresponding configuration
with desired feature values. As depicted in Fig. 2, CTM
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comprises of three modules: an encoder, a decoder, and the
Custom Feature Composer (CFC). The encoder converts the
input configuration into a posture embedding, which cap-
tures the posture feature of the manipulator under the given
configuration, whereas CFC calculates partial features of the
manipulator using off-the-shelf methods, such as forward
kinematics.

As mentioned above, CFC is a user-defined problem-
specific module, which identifies the explicit features that
will be subjected to equality constraints in online path plan-
ning, providing specific values for these features based on the
input configuration. For instance, if the online path planning
necessitates maintaining the orientation of the end-effector
as an equality constraint, the explicit feature would be the
end-effector orientation. In this case, a simple forward kine-
matics function can be employed within CFC to determine
the end-effector orientation from the input configuration.
Subsequently, the explicit features are concatenated with the
embedding obtained from the encoder to train the decoder.
In the end, the decoder learns not just an arbitrary transfor-
mation, but a transformation that can map an embedding with
specific feature values back to a configuration. Note that since
CFC does not require training, onemay alternatively calculate
the explicit features offline for better training efficiency.

During inference, i.e., online path planning, the encoder
receives a sampled configuration and produces the corre-
sponding feature embedding. The decoder then takes the
embedding together with the desired values of the explicit
features, e.g., a specific orientation of the end-effector, that
are imposed by the equality constraints to produce a new
configuration. The new configuration will be a valid con-
figuration that satisfies the equality constraints. Finally, the
decoder utilizes the posture embedding and the explicit fea-
tures to produce a valid configuration.

CTM is more efficient than traditional projection methods
in dealing with equality constraints, because it infers a valid
configuration without iterations. However, CTM is limited to
holonomic constraints, as it is designed as a transfer model
that utilizes individual configurations and does not take into
account velocities or accelerations.

C. LEARNING-ASSISTED CONSTRAINED
RAPIDLY-EXPLORING RANDOM TREE
This section introduces the LAC-RRT algorithm, which
achieves constrained motion planning using CTM. Although
the pseudocode in Algorithm 1 is based on BiRRT, other
RRT-based approaches may also be utilized. To begin,
LAC-RRT initializes two trees (Ta and Tb) with the start and
goal configurations. The algorithm samples a random config-
uration from the configuration space, and the NearestNeigh-
borNode function identifies the closest node to the sampled
configuration in Ta. The function ExtendCTM extends the
tree toward the sampled configuration as closely as possible,
while taking into account the desired constraints. This func-
tion returns the last achieved configuration, which has been
added to the tree, while approaching the target configuration.

Algorithm 1 Constrained RRTWith CTMs (BiRRT version)
Input: start configuration: qs; goal configuration: qg;
Output: a feasible path P on the manifold
1: Ta.Init(qs); Tb.Init(qg);
2: while iteration < MAX_ITERATION do
3: qrand ← RandomConfig();
4: qanear ← NearestNeighborNode(Ta, qrand );
5: qareached ← ExtendCTM(Ta, qanear , qrand );
6: qbnear ← NearestNeighborNode(Tb, qareached );
7: qbreached ← ExtendCTM(Tb, qbnear , q

a
reached );

8: if isConnected(Ta, Tb) then
9: P← ExtractPath(Ta, Tb);

10: return SmoothPath(P);
11: else
12: Swap(Ta, Tb)
13: end if
14: end while
15: return None

The extension process is terminated when the configuration
violates any constraint, such as collisions with obstacles, and
the last configuration is the configuration before the invalid
one. The other tree undergoes a similar process, but the target
is set to the configuration returned from the first tree, rather
than the sampled configuration. Once the two trees are linked,
a feasible path connecting the start and goal configurations
can be found. Otherwise, the trees are exchanged and the
whole process is repeated. To achieve a shorter path, a short-
cut smoothing algorithm may be employed. A straightfor-
ward approach is to randomly select two nodes from the path
and attempt to insert a short cut between them.

Algorithm 2 illustrates the ExtendCTM function, which
incorporates a series of configuration nodes into the tree,
starting from the closest node and moving towards the target
direction. The DiscretedPath function breaks down the line
between the closest and target configurations into multiple
waypoints using a predetermined length 1step. As these
waypoints may not lie on the constraint manifold because
of the arbitrary nature of the sampled configuration, CTM
is employed to transfer each waypoint to the corresponding
configuration on the manifold.

These transferred configurations are stored (line 4-7) but
are not directly inserted into the tree, because they may vio-
late other (inequality) constraints such as joint limitations and
obstacle avoidance. To filter out invalid configurations, the
transferred configurations are passed through the takewhile*
functions. These functions iteratively examine each element
in the list, keeping the element if the statement is true until an
invalid one is encountered. The takewhileValidConfig func-
tion retains the element if it satisfies the joint limitations and
desired constraints, and does not exceed 1step in each joint’s
moving distance. Similarly, the takewhileCollisionFree func-
tion retains the first few elements that do not collide with
obstacles. After this, only the valid configurations remain
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FIGURE 2. Architecture of CTM, which comprises of three modules: an encoder, a decoder, and a custom feature composer. The encoder compresses
the joint configuration into an implicit feature embedding. The custom feature composer is a user-defined, problem-specific module that during
training identifies the explicit features from the input configuration. These explicit features will be constrained by the equality constraints of the
application at online motion planning. Finally, the decoder learns how to regenerate the input configuration knowing the values of the explicit
features. Hence, during online motion planning, the decoder can produce a valid new configuration given a sampled configuration and a set of
equality constraints on the explicit features.

Algorithm 2 ExtendCTM(T , qnear , qtarget )
Input: configuration tree: T ; the nearest configuration:

qnear ; target configuration: qtarget ;
Output: the last reached configuration qreached
1: 1step← 0.05 ▷ 0.05 degrees for revolute joints
2: qreached ← qnear
3: q1:K ← DiscretedPath(qnear , qtarget , 1step);
4: for each qi in q1:K do
5: qionMfd ← CTM(qi, EqualityConstraint);
6: qonMfd .append(qionMfd );
7: end for
8: q1:konMfd ← takewhileValidConfig(q1:KonMfd , 1step);
9: q1:nsafe← takewhileCollisionFree(q1:konMfd );

10: for each qnode in q1:nsafe do
11: T .Add(qnode)
12: qreached ← qnode
13: end for
14: return qreached

and can be inserted into the tree. It is important to note
that additional takewhile* functions may be necessary if the
application has more constraints, and multiple CTMs may
need to be trained for different types of equality constraints.

IV. EXPERIMENTS
In Sec. IV-A, we provide a detailed description of the experi-
mental setups. Sec. IV-B focuses solely on evaluating the per-
formance of CTM in comparison with other techniques. CTM
is the primary core of LAC-RRT, responsible for converting

a sampled configuration to a valid configuration that sat-
isfies given equality constraints. By evaluating the CTM
module, we can gain a better understanding of LAC-RRT.
Sec. IV-C presents a comparison of different CTMs that can
convert configurations to the same constraint manifold to
determine which design is superior in cases where constraints
can be reduced. In Sec. IV-D, we compare the performance
of motion planning in different scenarios across various
approaches.

A. EXPERIMENTAL SETUP
For the evaluation of the proposed method, we utilized
the Bullet Real-Time Physics Simulator [4] and the 7-DoF
robotic manipulator, Franka Emika Panda.1 All experiments
were conducted on a computer with an Intel i7-8700 CPU
and 64 GB of memory. In the experiments, we imposed
equality constraints on either the end-effector position or
orientation, as these are commonly used in manipulator
planning. We adopted Variational Auto-encoder [14] as the
encoder-decoder structure in CTMs. Most CTMs shared
a similar architecture, with both the encoder and decoder
consisting of two fully connected layers, each layer con-
taining 512 neurons, and a posture embedding length of
4. As additional constraints, we considered the orientation
of the end-effector and its position. The orientation of the
end-effector is represented in 4 dimensions, while the posi-
tion is represented in 3 dimensions, resulting in an approx-
imate 50-50 ratio between the explicit feature and posture
embedding. For implementing the CFC module, utilizing

1https://www.franka.de/
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TABLE 1. Comparisons of the compliance rate, distance error, and average computation time using the gradient descent projection, the pseudoinverse
projection, and the proposed method. The distance error was measured in meters. A converted configuration was considered compliant if its constrained
features were within 0.05 meters of the constraints. Each constraint was tested 1000 times. Please note that CR stands for compliance rate.

forward kinematics is sufficient because it allows us to cal-
culate both constrained features. To accelerate the training
process, we stored configurations at 30-degree intervals for
each motor, and used forward kinematics to compute the
corresponding end-effector pose beforehand.

The proposed method is compared with several algo-
rithms, including the Jacobian-pseudo inverse projection
method [1], [2], the gradient descent projection method, and
optimization algorithms such as least squares optimization
and limited-memory bound-constrained Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS-B) optimization [12], [19], [22].
The gradient descent projection method used in this study
is the conventional approach that necessitates gradient
computation instead of the randomized gradient descent
method [10], [21]. To provide more experimental results,
optimization algorithms that are commonly used to meet the
objective with an initial state are also included. We imple-
mented the CTMs in Pytorch and measured the computation
time using the time.clock() function from the Python Standard
Library. It should be noted that the algorithms compared
in this study are also implemented in Python, which can
be 10-100 times slower than C during runtime. Therefore,
the findings drawn in this paper only reveal the effect of
LAC-RRT when using high-level languages.

B. ACCURACY AND COMPUTATION TIME
In this section, we compare the compliance rate, error, and
computation time of different approaches to evaluate their
performance during the extension process, which is a cru-
cial step in sampling-based motion planning methods (see
Sec. III-C). To simulate the extension process during motion
planning, we first set a random valid configuration to the
manipulator without considering obstacles, and then we eval-
uate the converted configuration obtained from the different
methods. To ensure a fair comparison among the methods,
we used the average error of the proposed method, i.e., 0.01,
as the termination condition of other methods that involve
iterative processes. For more comprehensive information
on the parameters used in our experiments, please refer to
Appendix A.
The comparison results with equality constraints on

end-effector position are presented in Table 1, where the error
is evaluated based on the L2 norm between the desired and
achieved constraints. The table shows that CTM outperforms
the two conventional projection techniques in terms of speed,

requiring only 1.4 - 3.1% of the computation time to generate
a feasible configuration. However, since CTM is a learning-
based approach, it is subject to relatively high distance errors
because of model error. While CTM and gradient descent
projection exhibit similar errors, CTM’s errors are 10 times
higher than those of the pseudoinverse method.

Table 2 presents a comparison of optimization methods for
meeting the equality constraints on the end-effector position
and orientation. The L2 norm is utilized to measure position
error, whereas orientation error is measured by the following
equation:

Errororieantation = 1− (quat1 · quat2)2

where quat1 and quat2 represent orientations in quaternion.
A smaller error indicates that the two quaternions are closer.
For more information about the constraints, please refer to
Appendix A. Similar to Table 1, CTM exhibits high effi-
ciency but may have higher errors. In comparison to least
squares optimization, CTM requires only 4.3% and 14.8%
of computation time to meet position and orientation con-
straints, respectively. Moreover, compared to L-BFGS-B,
CTM reduces computation time by 80% while meeting ori-
entation constraints and has similar computation time in
meeting position constraints. We also show the results in the
form of plots, please refer to Appendix B.

Another noteworthy finding is that the compliance rates
of other approaches in meeting constraints are higher than
those of CTM. By examining failed cases, it is noticed that
CTM struggles to convert configurations near the boundary
of the configuration space, which may be because of the
fewer datapoints in those areas. This issue is not present in
other conventional methods. However, other methods still
have their limitations and problems, such as getting stuck in
localminimawhile approaching themanifold, which prevents
obtaining valid configurations.

To summarize, CTM significantly improves efficiency in
transforming random configurations to meet specific con-
straints. Although it has higher error rates compared to other
methods, it can be complemented by methods such as numer-
ical optimizations to achieve the required precision with a
much reduced iteration time.

C. COMPARISONS OF CTMs UNDER THE SAME OBJECTIVE
The previous section evaluates the performance of LAC-RRT
in meeting position and orientation constraints. The
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TABLE 2. Comparisons of the compliance rate, distance error, and average computation time using the least squares optimization, the L-BFGS-B
optimization, and the proposed method over 1000 trials. The distance error was measured in meters, and a converted configuration was considered
compliant if its constrained features were within 0.05 meters of the constraints. For orientation constraints, compliance required achieving an orientation
error of less than 0.05. Please note that CR stands for compliance rate.

TABLE 3. Comparisons of the average compliance rate and average error
using different CTMs over 1000 trials. Please note that CR stands for
compliance rate.

experiments utilize CTM to calculate a feasible configuration
with the full constraints, such as tuple (x, y, z), even if
the desired constraint only pertained to z. Another archi-
tecture option is to pass only z through CTM rather than
the entire position, which includes both current x and y.
This section aims to compare the performance of different
CTMs that target the same objective, to determine the optimal
design.

The comparison of CTMs with input constraints of z only
and (x, y, z) is shown in Table 3. The experimental results sug-
gest that employing the complete position as input achieves
higher compliance rates than relying solely on z. Therefore,
it is recommended to incorporate the complete constraint
when designing the CTM architecture. Further investigation
is left as future work.

D. LAC-RRT EVALUATION
Section IV-B compares the efficiency of various methods in
converting a random configuration to a valid one based on the
imposed constraints. This section evaluates the performance
of these methods in complete motion planning. To evaluate
the performance, we employ two distinct motion planning
scenarios, each consisting of a start and goal configuration on
the constraint manifold. The primary objective is to determine
a collision-free path from the start configuration to the goal.
BiRRT serves as the foundation for LAC-RRT, as outlined in
Sec. III-C, which may result in a suboptimal planned path.
For other techniques, the algorithm remains the same, except
for the extension stage. We repeat each scenario 100 times to
ensure accuracy.

TABLE 4. Comparisons of the average steps in each plan, and average
computation time using the least squares optimization, the L-BFGS-B
optimization, and the proposed method over 100 trials.

FIGURE 3. Two paths planned by our method for Scenario 1-2.

1) SCENARIO 1: PLANNING A PATH WHILE KEEPING THE
ORIENTATION
For Scenario 1, the end-effector orientation must remain
downwards throughout the motion. This is typically used
when the manipulator is holding a liquid-filled container,
such as a glass of water, and needs to move it from one
surface to another. In Scenario 1-1, the objective is simply to
reach the goal configuration from the starting configuration.
In Scenario 1-2, in addition to approaching the goal configu-
ration, the manipulator must also avoid obstacles between the
configurations, as shown in Fig. 3.

Table 4 displays the average number of steps per plan and
computation time, based on 100 trials. Results indicate that
LAC-RRT requires 94.4% and 91.4% less computation time
to plan a motion in Scenario 1-2, compared to least squares
optimization and L-BFGS-B, respectively. It is important to
note that the average number of steps only accounts for the
length of the final path and not discarded configurations,
but the computation time is estimated throughout the entire
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TABLE 5. Comparisons of the success rate, distance error, and average computation time using the proposed method and other 5 approaches over
20 trials. Hybrid-LAC is a hybrid method that combines our method and L-BFGS-B, please refer to IV-D2.

planning process. Therefore, the number of steps may not
have a strong positive correlation with computation time.

2) SCENARIO 2
In Scenario 2, the end-effector is restricted to moving either
vertically or horizontally, resembling tasks such as painting a
wall or writing a note on a table. Scenario 2-1 involves reach-
ing the goal configuration from the starting configuration on
a horizontal plane. In Scenario 2-2, apart from approaching
the goal configuration on a horizontal plane, the manipulator
must also avoid obstacles. For Scenario 2-3, the manipulator
needs to avoid collisions and reach the goal configuration on
a vertical plane. Fig. 4 illustrates two different paths found by
our methods.

Table 5 presents the success rate, average number of
steps per plan, and computation time based on 20 trials.
In Scenarios 2-1 and 2-2, the proposed method and the
L-BFGS-B optimization exhibit higher efficiency than the
other methods, requiring only about 10% of the computation
time to achieve planning. Notably, the L-BFGS-B optimiza-
tion outperforms LAC-RRT in these scenarios. This finding is
supported by Table 2, which shows that L-BFGS-B offers not
only high efficiency but also a higher success rate concerning
cases of position constraints. In other words, if the planning
involves areas where LAC-RRT struggles, our method may
need to sample more configurations and attempt alternate
paths, resulting in longer computation time. In the worst-case
scenario, LAC-RRT may not guarantee finding a solution,
even if feasible paths exist. We also show the results in the
form of plots, please refer to Appendix B.

To overcome this issue, one possible solution is to collect
more training data and enhance the areas where LAC-RRT
does not perform well. In this paper, we propose an alter-
native solution, which involves a hybrid approach that com-
bines the strengths of LAC-RRT and L-BFGS-B techniques.
By combining these two techniques, we can take advantage
of the efficiency of LAC-RRT in certain scenarios where
L-BFGS-B is comparatively slower, e.g., orientation con-
straints, while simultaneously addressing the shortcomings of
LAC-RRT, which can be susceptible to model error. Specifi-
cally, Hybird-LAC involves passing a sampled configuration
through LAC-RRT to obtain a converted configuration, and
then we verify if the converted configuration violates any
desired constraints. If so, we use L-BFGS-B to calculate

FIGURE 4. Two paths planned by our method for Scenario 2-2 (left) and
Scenario 2-3 (right).

the projected configuration again. We drop the configura-
tion and resample one if both approaches cannot obtain a
valid configuration. Although the Hybrid-LAC approach is
slower than using L-BFGS-B alone in Scenario 2 due to the
additional overhead of passing through LAC-RRT, it should
still outperform the sole use of L-BFGS-B in cases where
orientation constraints are involved.

V. CONCLUSION AND FUTURE WORKS
This paper proposes a learning-assisted RRT-based algorithm
for constrained motion planning. LAC-RRT exploits a
self-supervised model to efficiently convert a random con-
figuration to a valid one that satisfies the imposed equal-
ity constraints, reducing computation time during planning.
To handle equality constraints, LAC-RRT utilizes the CTM
module to obtain valid joint configurations. For inequality
constraints, such as obstacle avoidance, LAC-RRT incorpo-
rates off-the-shelf collision detection algorithms and rejection
sampling to discover feasible configurations. The proposed
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TABLE 6. The value of the constraints in the experiments.

TABLE 7. Parameters used for the projections and optimizations.

FIGURE 5. Comparisons of the average computation time using the least
squares optimization, the L-BFGS-B optimization, and the proposed
method over 1000 trials.

FIGURE 6. Comparisons of the average computation time using the
proposed method and other 5 approaches over 20 trials. Hybrid-LAC is a
hybrid method that combines our method and L-BFGS-B.

method outperforms other methods in the majority of the
cases. The experiments show that LAC-RRT requires only
1.4 - 3.1% of the computation time to generate a feasible
configuration compared to conventional projection methods.
In comparison to least squares optimization, our method
requires only 4.3% and 14.8% of computation time to meet
position and orientation constraints, respectively. For motion
planning, LAC-RRT only needs about 10% computation time
to plan a constrained motion. This is the first paper that
accelerates the planning process by learning the relation-
ship between configurations for solving the contained motion
planning problem.

Although LAC-RRT can be highly efficient during plan-
ning, it requires sufficient and comprehensive training data
that covers the entire configuration space. Determining the
exact quantity of necessary data can be challenging and may

vary for different manipulators. Future research should focus
on improving the CTM module after training has been com-
pleted. One possible approach is to plan multiple motions
without considering obstacles and gather training data from
areas where LAC-RRT experiences higher error rates. More-
over, our experiments employed a single CTM dedicated to
handling a specific type of feature (constraint). To further
advance the field, a future study could explore the integration
of multiple features within a single CTM.

APPENDIX A
IMPLEMENTATION DETAILS
See Tables 6 and 7.

APPENDIX B
EXPERIMENTAL RESULTS IN THE FORM OF PLOTS
See Figures 5 and 6.
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