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ABSTRACT The execution of smart cities around the globe has risen due to the steady connectivity
and increased number of wireless devices. Due to low-cost network construction and simple technical
implementation, Wi-Fi networks have become a dominant wireless technology to enable the connectivity
of Internet-of-Things (IoT) in smart cities. There are a number of services and applications running in
smart cities with different demands of the quality of service (QoS). The paper focuses to address the latency
problem, which is a key performance metric regarding QoS, in time sensitive applications in smart cities. The
emerging paradigm, Software-defined Networking (SDN) is extended for Wi-Fi networks to ensure fairness
of traffic load among the access points (AP). We propose three algorithms based on service time, M/G/1
analysis and AP selection to determine the packet transmission delay, packet latency rates and choosing
a least loaded destination AP respectively. The optimization of load among the APs ensures a reduced
packet latency factor, when a communication link is formed between the smart city IoT devices and the
APs. A symmetric load index and a reduced packet latency rate is maintained between the IoT devices
and the OpenFlow enabled APs using three software-defined algorithms designed in this study. A Linux
based software-defined testbed is developed to ensure the credibility of the algorithms developed. Extensive
experimentation using the hardware devices confirm that the proposed algorithms are efficient enough to
reduce the latency rate and enhance the throughput rate by 17%, 13% and 9% when compared to received
signal strength indicator scheme (RSSI), Po-Fi scheme and aggregatedWi-Fi scheme respectively, by shifting
the wireless traffic load from a higher packet latency IoT device to a least loaded AP.

INDEX TERMS QoS, Wi-Fi, SDN, smart city, testbed.

I. INTRODUCTION
Wi-Fi networks have become common in humans life day by
day due to its facile connectivity anytime and anywhere [1].
Wi-Fi networks can be easily seen in shoppingmalls, airports,
campus networks and smart homes due to their low-cost net-
work construction and simple technical implementation [2].
The APs constitute the major components of the Wi-Fi
network as they provide access to the Internet. Spontaneous
deployment of the APs lead to unbalanced network resource
utilization and variable AP densities [3]. Research shows that
almost 70 percent of the data traffic in the future will be
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dependent on the Wi-Fi networks outnumbering the wired
networks due to rapid increase in portable Wi-Fi associated
devices [4]. High usage of smart wearables that are connected
to wireless smart phones through Wi-Fi networks instead
of cellular connections are making outdoor usage of Wi-Fi
networks inevitable [5]. In order to provide a satisfied QoS
for voice over IP (VoIP) applications Wi-Fi load balancing
still remains a hot topic to explore.

In order to achieve near to optimal throughput especially
after COVID-19 pandemic, Wi-Fi networks are commonly
used for Internet access in uploads and downloads for
applications such as video meetings, video conferences,
online classes and healthcare [6]. In order to support
functionalities of many IoT applications, Wi-Fi networks are
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used as the main candidate to design the communication
network technologies for smart cities [7]. The fruits offered
by the smart cities are however not very attractive for the
ordinary people because of many issues arising in today’s
world of big data such as availability of data, reliability,
latency and privacy [8]. In smart cities the hurdle is to transmit
and process the real time data sent from the IoT devices to
the APs. Some delay sensitive applications need a priority-
based service for data processing else the application is
worthless. Applications such as health care require service
differentiation and load balancing among the APs in terms of
wireless traffic load for efficient monitoring of patients and
emergency reporting [9].
A massive sensor network comprising of thousands of

nodes is required to cover the entire smart city region [10].
The sensor nodes differ in types and are deployed in random
locations. Due to the specific functionality of the nodes,
some nodes are difficult to replace such as nodes used as
regenerative repeaters to support long range communications
due to obstacles, nodes which are used to support low power
consumption in structure monitoring or nodes which are
deployed in remote areas [11]. The huge sensor network
requires huge data rates thus outperforming many wireless
network technologies such as LoRa or Zigbee [12]. The
implementation of Wi-Fi networks with interconnected IoT
devices become inevitable. The sensor data from the IoT
devices is transferred over the Wi-Fi networks to specific
servers or management entities. The IoT devices need
to ensure a threshold for packet latency overcoming the
fact that they may lie in overlapped Wi-Fi regions [13].
In the basic service set (BSS), some APs continuously
receive normal administrator traffic while other APs become
overloaded with delay sensitive traffic received from health-
care applications or VoIP. In such scenarios an adaptive
network configuration is required that connects the IoT
device sending delay sensitive information to an AP which
is underloaded [14]. The fairness of load among the APs
cannot be achieved in standard IEEE 802.11 networks and
hence non standardize protocols/hardware makes it almost
impossible to achieve load balancing among the APs in smart
cities.

A new network architecture, SDN is recently introduced
to address the problems in wireless networks [15]. In SDN,
the data plane is separated from the control plane giving
the network administrator an overall view of the network
to install applications easily in wireless networks without
changing the hardware. There are almost very few studies
that use the functionality of SDN to upgrade the network
infrastructure of smart cities. SDN has the power to dynam-
ically configure the wireless network resources according to
the network conditions [16]. SDN simplifies the complexities
of wireless networks such as future 6G networks or Wi-Fi
networks. Due to the abstraction of the control plane and data
plane many vendors such Cisco, Microsoft, HP and Google
are supporting OpenFlow standards [17]. By inducing SDN
into Wi-Fi networks, we believe that we can achieve optimal
load balancing among the APs in software defined Wi-Fi
networks (SD-WiFi) deployed in smart cities.

In this paper, network resource utilization is achieved by
using the functionalities of SDN into the W-Fi networks
deployed in smart cities. An SDN controller is programmed
to associate the IoT devices to the least loaded AP for
optimal packet latency performance. In traditional Wi-Fi
networks the association decisions are made by the wireless
devices based on the received signal strength indicator
(RSSI). The wireless device-based association decisions do
not guarantee throughput as the AP showing highest RSSI
could be overloaded providing the least access to the Internet.
In the proposed work the SDN controller computes the
reports received by the APs tomake network wide association
decisions that which IoT should be connected to which AP in
order to achieve the lowest packet latency rate. The smart city
design incorporates multiple APs with overlapped coverage
making a dense Wi-Fi network scenario with mobile IoT
devices. The IoT devices connect to the OpenFlow enabled
AP to access the internet. The SDN controller has the load
balancing applications installed on it which collect the AP
reports and make network wide computations to ensure
fairness of load among the APs by performing handoffs.
The proposed research introduces three algorithms based on
service time estimation, M/G/1 analysis and choosing the
least loadedAP. The purpose is tomaintain the load symmetry
among the APs and at the same time reduce the end-to-
end delay for a satisfied QoS. Service time-based algorithm
choses the IoT device with the highest end-to-end packet
delay to be de-associated and then re-associated to a least
loaded AP. The algorithm runs on a constant network traffic
rate and efficiently handoffs the IoT device. TheM/G/1 based
algorithm also shifts the IoT device with highest end-to-
end delay to a least loaded AP. The algorithm makes use of
the random traffic distribution using Poisson process. The
SDN controller ensures the fairness of load among the APs
deployed in the smart city. The major contributions of the
proposed work are:

• An algorithm based on service time is designed to
find the highest end-to-end packet transmission delay
for an IoT device without changing any hardware
configuration. The computations are performed by
the SDN controller using the packet arrival time
information.

• Highest end-to-end packet latency for an IoT device is
calculated using M/G/1 analysis. The computations are
performed regardless of any hardware change.

• A third algorithm is designed to reassociate the IoT
devices with highest end-to-end packet latency rate to
the AP with the least load.

• A Linux based software defined Wi-Fi networks (SD-
Wi-Fi) testbed is designed to verify the credibilities of
the aforementioned algorithms.

The remainder of this paper is organized as follows.
Section II explores the related work. Network model is
explained in Section III. Section IV explains the proposed
algorithm designs. Section V describes the experimental
setup. Section VI discusses the results gained from the exper-
imental setup. The conclusion is presented in Section VII.
Tables 1 show the list of abbreviations used in this study.
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TABLE 1. List of abbreviations.

II. RELATED WORK
The centralized controller in the SDN framework is responsi-
ble to make network wide decisions [18]. A lot of research
work has been done where SDN is chosen as the main
paradigm to choose the AP. SDN is used to address the
scalability issues at the control plane [19]. A two-tier
arrangement of controllers is used to balance the load
among the controllers. Analytical hierarchal process (AHP)
is employed as an application to prioritize the most sensitive
traffic packet to be processed first. The latency factor is
not considered. Data rate base fittingness function is used
by the SDN controller to choose the most least loaded
AP [20]. The research does not take into account the end-
to-end packet latency. Healthcare scenarios are taken into
account using SDN to address the packet delay ratio through
simulations [21]. A high-density Wi-Fi network is proposed
with SDN capabilities to ensure load balancing [22]. Fairness
of load among the APs is discussed without discussing
the jitter factor. The load on the APs is balanced through
a learning-based algorithm using software defined W-Fi
networks (SDWN) [23]. The work takes into account the
throughput for TCP connections. A QoS aware study for Wi-
Fi network is done using SDN [24]. A same radio channel is
used for all APs and wireless stations. A traffic aware load
balancing based simulation research is performed [25]. The
research considers the service differentiation while ignoring
the end-to-end delay.

An algorithm is designed for Wi-Fi networks which is
capable of choosing a least loaded AP among the loaded
ones [26]. The study considers the throughput as the
main metric for the performance evaluation. Multi-criteria
association-based study makes use of SDN in the Wi-Fi
networks [27]. Smooth handoffs are presented considering
multi metrics. The load matrix among APs and packet latency
rates are ignored. Virgil is proposed to choose an AP with
the best connection quality [28]. The paper discussed the
AP load and the traditional received signal strength indicator
(RSSI) methods. The research demanded the hardware to
be IEEE 802.11 k/v supported. The IoT devices are used
in many applications and have become the main part of
the smart city designs [29]. A deterministic load balancing
algorithm is designed for the IoT devices based on the
game theory approach [30]. The game theory approach
inculcates extra nonlinear complex mathematical equations
to the system model. In multi hop networks, video load
balancingmethod is proposed [31]. The performance of video
applications in the mesh network is improved. The method
relies on routing algorithms and fully ignores the packet
delays.

The wireless traffic load is modeled in an SDN supported
Wi-Fi network [32]. Four tier network model is used
to achieve load balancing. Meta heuristic techniques are
employed to balance the load among the OpenFlow switches.
The performance metrics consider the fairness of load among
the controllers and throughput achieved. Data offloading
schemes are presented in 5G networks using multiple
channels [33]. The work focuses on the bandwidth allocation
ignoring the latency metrics. A distributed coordination
function study uses denseWi-Fi networks [34]. The main aim
of the study is to evaluate the access modes performance for
different system parameters. The study focuses on optimal
throughput performance for different load conditions. QoS
award load balancing is achieved in Wi-Fi networks using
SDN [24]. The OpenFlow protocol is modified to support
the function of load balancing among the APs. The scheme
focuses on the performance attributes of semi centralized
and fully centralized load balancing options. An SDN based
handoff reduction algorithm is designed [35]. The scheme
uses the simple network configuration manager to help
reduce the detection and discovery times. The load on
the APs is not the main focus neither the latency rate.
A detailed comparison table is shown in Table 2. The table
compares the proposed scheme with the previous research
work conducted in the field of load balancing for Wi-Fi
networks.

To the best of our knowledge this is the first standardize
study tominimize the latency rate of packets transmitted from
the IoT devices to multiple APs in a smart city environment
using a testbed. The APs installed work on multiple radio
channels. The SDN controller is responsible to maintain
the threshold of latency for the packets transmitted from
IoT devices towards the APs. The SDN controller having
the overall view of networks, reduces the packet latency by
handing over the highest end-to-end latency IoT device to the
least loaded AP.
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TABLE 2. Comparison table for load balancing methods in Wi-Fi networks.

III. NETWORK MODEL
The proposed network model takes into account a smart city
design where the APs are deployed to constitute a city-wide
Wi-Fi network. The APs form a dense Wi-Fi network where
all the APs have an overlapped coverage. The Wi-Fi network
supports all city-wide wireless applications communication
over the IoT devices as depicted in the Figure 1. In the smart
city-wide Wi-Fi network design two types of data traffic are
incorporated. The first type of traffic relates to the human
generated traffic such as from the smart wireless devices and
the second type of traffic relates to the machines generated
traffic such as from the IoT devices that support various
technologies such as Bluetooth, LoRa, Zigbee etc. All the
traffic is routed through OpenFlow enabled APs which are
connected to the SDN controllers. The application plane in
the SDN takes control of load balancing application. The
load balancing application ensures fairness of load among the
APs which in return reduces the packet latency. The control
plane has the SDN controller or several controllers which
communicate to all APs through the OpenFlow protocol.
The OpenFlow acts as a bridge of information exchange
between the APs and the controller. The data plane has the
forwarding devices which generate all wireless traffic. The
wireless traffic is routed through APs to the SDN controller.

The OpenFlow protocol is used as the communication
protocol standard in SDNwhere as in some previous research
related to e-Health other protocols and architectures are used
for specific applications. A simple network management
protocol (SNMP) is deployed in the application plane to
collect all the packet information from the OpenFlow enabled
APs. On receiving these reports, the SDN controller makes
the computations related to load balancing. During the beacon
frame reply and response procedure the media access control
(MAC) address of the devices are also communicated to
the SDN controller through the OpenFlow protocol hence
allowing the SDN controller to de-associate a wireless device
from an AP and then re-associate with the least loaded AP.

IV. ALGORITHM DESIGNS
This section describes the design of three proposed algo-
rithms. The two algorithms aim to find the IoT devices with
the highest end-to-end latency rate. After the IoT devices are
selected they undergo a handoff as instructed by the SDN
controller. The design of first algorithm is based on packet
delivery time estimation and the second algorithm design is
based on the queuing analysis theory. After the IoT device
with the highest end-to-end latency rate is selected through
the first two algorithms, it is handed over to the least loaded
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FIGURE 1. The proposed architecture.

AP. The selection of the least loaded AP is performed through
the third algorithm.

A. ESTIMATION OF SERVICE TIME
The end-to-end packet delay ETEd for an IoT device x is
calculated by the summing the queuing delay QDtx and the
service time STtx as shown in Eq.1.

ETEd = QDtx + STtx . (1)

The queuing delay varies with the service time and packet
arrival rate. In the proposed scheme the arrival rates for all
the arrival processes are kept same and it is assumed that all
the arrival processes are similar. When the network operation
region is far away from the saturation region, the queuing
delay in comparison to the service time is negligible. Hence
the end-to-end delay is directly dependent on the service time,
the longer the service time the longer the end-to-end delay.
In Wi-Fi networks the average service time is calculated as
shown in Eq.2.

[ST tx]avg =

N−1∑
a=1

∅u

[
∂t tu +

∂ctu
2

ρc

1 − ρc

]
+ β (ρc)

+ ∂t tx +
∂ctx
2

ρc

1 − ρc
. (2)

The node u, queue utilization is calculated as ∅u = STtu3,
where 3 is the packet arrival rate, the probability of collision
is represented as ρc and the backoff interval time is calculated
in Eq.3.

β (ρc) =
1 − ρc − ρc(2ρc)bu

1 − ρc

∁Wminimum

2
. (3)

where ∂ttu and ∂ctu are the transmission and collision times
for node u, ∁Wminimum is the minimum contention window
size. The transmission and collision times are mathematically
expressed as ∂ttu = pt/ϒu + ∂N1 and ∂ctu = pt/ϒu + ∂N2
respectively. pt is the packet size, N1 and N2 are the constant
times as prescribed in IEEE 802.11 standard protocol and the
channel transmission rate for node u is presented as ϒu. The
working principle of the proposed algorithm is as follows:

1) The Packet_In events are initiated when the packets
reach the OpenFlow enabled APs and are forwarded
to the SDN controller. The recorded arrival times of
the Packet-In events are used by the SDN controller
to find the standard deviation and average standard
deviation of the interarrival times of the Packet_In
event. The information is used for the packet service
time calculations.

2) The highest value of the average interarrival time will
decide a handoff to be taken. If there are number of
higher interarrival time values then based on the highest
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standard deviation value, the specific IoT device will be
chosen for the handoff.

3) The monitoring of the Packet_In events will be done
continuously. If the interarrival time is not reduced for
the IoT device that was re-associated, the handoff to
another AP will take place.

4) On the addition of a new IoT device to the network
and on the load imbalance of the OpenFlow enabled
APs, the SDN controller monitors the interarrival times
of the Packet_In messages. If the average value of the
packet interarrival times exceed the threshold values,
step 2 is repeated.

The steps are summarized in algorithm 1.

Algorithm 1 Estimation of Service Time
1: Receive the packets.
2: Calculate the standard deviation and average of interar-

rival times for each IoT device.
3: Select the IoT device with the highest average interarrival

time.
4: if more then one IoT device have the maximum average

interarrival time then
.

5: Select the IoT device with the highest standard
deviation.

6: Hand it over to the least loaded OpenFlow enabled AP.
7: else
8: Hand it over to the least loaded OpenFlow enabled AP.

9: if The average interarrival time is not minimized then
.

10: Calculate the standard deviation and average of
interarrival times for each IoT device.

11: else
12: if Any new IOT device joined the network and the

APs load is imbalanced then
.

13: Calculate the standard deviation and average of
interarrival times for each IoT device.

14: else
15: Check if any new IOT device joined the network

and the AP load is imbalanced.
16: end if
17: end if
18: end if

B. M/G/1 ANALYSIS
The wireless traffic is generated from a number of IoT
devices. The aggregated wireless traffic is modeled for
approximation using a Poisson arrival process. Pollaczek-
Khinchine (PK) formulae is used to calculate the end-to-end
delay with the help of M/G/1 queuing analysis. Using the PK
formula, the mean waiting time for the packet in the queue is
calculated through Eq.4.

Quetx = 3 ∗
(ϑ2

sx + [ST tx]avg
2)

2 ∗ (1 − 3 ∗ [ST tx]avg))
. (4)

where ϑsx represents the standard deviation of the service
time at the node x, 3 is the packet arrival rate, [ST tx]avg is

the average service time. Using Eq.1, the average end-to-end
packet delay of node x is calculated using Eq.5.

[ETDd ]avg = Quetx + [ST tx]avg. (5)

The working principle of the proposed algorithm is as
follows:

1) The SDN controller after saving the Packet_In events,
computes the standard deviation and average standard
deviation for the interarrival times.

2) The SNMP reports the SDN controller regarding the
packet arrival rate. The PK formula is used by the SDN
controller to compute the end-to-end delay for each IoT
device. From here the service time of each IoT device
is deduced.

3) The IoT device with the maximum end-to-end delay is
selected for handoff.

4) The IoT device which underwent a handoff is moni-
tored to see if its end-to-end packet delay is lowered.
If the delay is not lowered then step 2 is repeated for
another least loaded AP.

5) When ever a new IoT device is associated to an AP
or there is an imbalance of the AP load, the end-to-
end delay for all IoT devices is rechecked by the SDN
controller.When the end-to-end delay exceeds in value,
step 2 is repeated.

The steps are summarized in algorithm 2.

Algorithm 2M/G/1 Analysis
1: Receive the packets.
2: Calculate the standard deviation and average of interar-

rival times for each IoT device.
3: Using the PK formula from Eq.4, approximate the end-

to-end delay for each IoT device.
4: Select the IoT device with the highest end-to-end delay.
5: Hand it over to the least loaded OpenFlow enabled AP.
6: if more then one IoT device have the maximum average

interarrival time then
.

7: Calculate the standard deviation and average of
interarrival times for each IoT device.

8: else
9: ifAny new IOT device joined the network and the APs

load is imbalanced then
.

10: Calculate the standard deviation and average of
interarrival times for each IoT device.

11: else
12: Check if any new IOT device joined the network and

the AP load is imbalanced.
13: end if
14: end if

C. FINDING THE LEAST LOADED AP
The algorithms find the least loaded AP. Once the least lead
AP is found the SDN controller initiates the handoff. The
IoT devices with the maximum average interarrival time
as calculated in section IV-A or the IoT devices with the
maximum end-to-end delay as calculated in section IV-B, are
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handed over to the least loaded AP. The working principle of
the proposed algorithm is as follows:

1) The SDN controller is responsible to receive all the
flows from the OpenFlow enabled APs. When ever a
packet is received the Packet_In event is triggered.

2) The SDN controller on receiving the flows makes the
computations such as extraction of number of packets
received form a specific AP. The computations are
performed periodically.

3) The least loadedAP chosen by the SDN controller is the
one with the minimum number of Packet_In messages.

4) SDN controller computes the Packet_In messages
continuously. Step 2 is repeated for extraction of
packets coming from a specific AP to choose a least
loaded AP.

The steps are summarized in Algorithm 3.

Algorithm 3 Finding the Least Loaded AP
1: Receive the packets.
2: Increment the packet count received from the AP, also

keep the record of the AP from where the packet came
from.

3: Calculate the standard deviation and average of interar-
rival times for each IoT device.

4: Select the IoT device with the highest average interarrival
time.

5: if more then one IoT device have the maximum average
interarrival time then
.

6: Select the IoT device with the highest standard
deviation.

7: Select the AP with the minimum packet count.
8: Hand the IoT device to the chosen OpenFlow enabled

AP.
9: else

10: Select the AP with the minimum packet count.
11: Hand it over to the chosen OpenFlow enabled AP.
12: if The average interarrival time is not minimized then

.
13: Calculate the standard deviation and average of

interarrival times for each IoT device.
14: else
15: if Any new IOT device joined the network and the

APs load is imbalanced then
.

16: Calculate the standard deviation and average of
interarrival times for each IoT device.

17: else
18: Check if any new IOT device joined the network

and the AP load is imbalanced.
19: end if
20: end if
21: end if

V. EXPERIMENTAL PLATFORM
A real-time Linux based software defined testbed as depicted
in Figure 2 is built to verify the credibilities of the three
proposed algorithms. Extensive emulation runs are carried
out on the experiment setup build with a real hardware.

FIGURE 2. The experimental setup with the IoT devices and OpenFlow
enabled APs.

The OpenFlow enabled APs are emulated using GIADA
Mini PCs. In the experimental setup 8 OpenFlow Enabled
APs are used. The transmission range of each OpenFlow
enabled AP is 1-33m. NETGEAR WNDA 3200 devices are
used as the IoT devices. 50 IoT devices are used which
continuously generate data traffic at the transmission rate of
400 to 600 packets per second. The transmission rates of
400 to 600 per seconds are used to design a high density
SD-Wi-Fi. In the performance evaluation, the network is
initially loaded with a transmission rate of 400 packets per
second to verify the latency rate after load optimization
and later the network is loaded with a transmission rate of
600 packets per seconds to monitor the latency rate after
load optimization. IEEE 802.11 ‘‘n’’ standard is used in the
experimental setup. The personal computer (PC) used in
the setup, runs 19.10 Ubuntu operating system. The wired
connections are established through Gigabit Ethernet ports.
A single run took about 30 minutes of test time.

The step wise implementation details of the testbed are:

1) TheUSBwireless cards are used to function as APs and
the IoT devices. The Ubuntu PCs are also used as the
IoT devices. The tools used to configure the wireless
USB cards are iw and hostapd so that the USB cards act
as IoT devices and APs respectively. In the proposed
research a low cost test bed is formed with the help
of the wireless USB cards which are configured with
a unique IP address.

2) The testbed architecture is shown in Figure 3. To sup-
port the management provided by the SDN controller
the APs connect to the SDN switch. The USB wireless
port is added to the Open Vswitch (OVS) using the
ovs − vsctl command that manipulates the wireless
messages. The IP layer is managed by the bridge. The
bridge does not provide any additional support for the
power control, transmission rate and channel utiliza-
tion. iw and hostapd are used to modify the wireless
parameters. The SDN controller is connected to the
APs using the transmission control protocol (TCP)
link. In the control plane the information between the
wireless controller and OpenFlow controller is shared
with the help of the extensible markup language XML
which support the parameter files.
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FIGURE 3. The architecture of testbed.

3) The information of the IoT devices in the cover-
age area of the APs is collected through the iw
AP_Namestation dump command line interface (CLI).
Similarly, the IoT devices collect the discoverable
AP information through the iw STA_Name scan CLI.
The information collected is forwarded the RYU SDN
controller.

In order to make a smooth functionality of the testbed
many software packages are also used such as Floodlight,
Empower-5G framework and Open vSwitch (OVS), which
support the hardware. Floodlight package is a component-
based framework for software-defined networking. It is used
for the proper functioning of the SDN controller. The flood-
light package is installed on a dedicated PC using the Open-
WRT which supports the OpenFlow standards. The APs are
OpenFlow enabled mean that the OVS switch is preinstalled
in them using the OVS software. The OpenFlow protocol acts
as a bridge for communication between the SDN controller
and the OpenFlow enabled AP.

Empower-5G framework which is an SDN based radio
access network, enables the seamless handovers of IoT
devices from one AP to another. The frame work is
installed in the PC and run through the SDN controller.
Using Empower-5G, all the APs registered in the Wi-Fi
network obtain a unique service set identifier (SSID). The
Empower-5G framework establishes a light virtual access
point (LVAP) for each IoT device that associates to the
OpenFlow enabled AP. During the handovers, instead of
physical device re-associations, LVAPs are shifted from one
AP to another making the handovers smooth and seamless
and thus maintaining the throughput. The LVAPs can be
easily installed and deleted on the APs by the SDN controller.
The RUDE/CRUDE software is used to emulate the traffic
generated by the IoT devices. The RUDE/CRUDE software
has the functionality of usergram data protocol (UDP)
traffic generator which follows the server/client pattern. The
background traffic can also be generated at different data rates
by the same software. In order to measure the end-to-end
delay between the IoT devices and the destination device,
a precision time protocol (PTP) is used.

FIGURE 4. Payloads used to achieve QoS in the smart cities environment.

VI. PERFORMANCE EVALUATION
The performance evaluation of the three proposed algorithms
is explained in this section. The performance of the algo-
rithms is validated through extensive experimentations. The
test time for each experiment has been keep for approximately
30 minutes.

A. SD-WI-FI IMPLEMENTATION
A real time testbed differs from an emulation platform
due to a number of reasons. In the emulation platform
signal fading and channel interference are usually ignored.
These factors have a key importance when dealing with
a testbed platform. More development efforts are involved
while developing a prototype testbed. It is costly to make a
testbed in comparison to the simulation/emulation platform
especially when designing a high density SD-Wi-Fi where
there are a large number of IoT devices involved.

B. CHALLENGES AND LIMITATIONS
While creating the testbed for the three algorithms proposed a
number of challenges arose. The challenges and experimental
details are listed below:

• In this study the OpenFlow standard has been extended
to the wireless networks where it has only been used
for the wired networks in the past. The service time,
M/G/1 analysis and finding the least loaded APs in
the proposed study required wireless management and
mobility. The extended OpenFlow format for wireless
networks is illustrated in Figure 4.
In order to achieve the QoS in the smart city envi-
ronment, the OpenFlow extension message formats are
depicted in the Figure 4. The payloads illustrate the
working of the three proposed algorithms. The service
time payload used for the service time, transports the
standard deviation and interarrival times information
from the APs to the SDN controller. The fields also
carry the service set ID (ssid), daemon process ID (Dpid)
and the media access control (MAC) address of the AP.
The M/G/1_prefix@ is similar to the payload used for
service time with the exception that it carries the PK
formula information along with average load levels. The
last payload AP_prefix@ is used to find the least loaded
AP. It carries the information related to association and
dissociation. The fields hold the information related to
MAC address of the overloaded AP and least loaded
AP. The payload also carries the MAC addresses of IoT
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FIGURE 5. The MAC header frame control domain.

FIGURE 6. (a) End-to-End packet delay before and after the handoffs. (b) Comparison of End-to-End packet delay with interarrival time events.
(c) Comparison of proposed algorithm with the ideal handoff.

FIGURE 7. (a) End-to-End packet delay before and after the handoffs for increased transmission rates. (b) Comparison of End-to-End packet delay with
interarrival time events for increased transmission rates. (c) Comparison of proposed algorithm with the ideal handoff for increased transmission rates.

devices to be deassociated from an overloaded AP and
reassociated to an underloaded AP.

• The testbed development consumes a lot of cost and
coding as high density SD-Wi-Fi involves large number
of IoT devices which are connected to the APs. Each
wireless device needs an extra lines of code in the
OpenWRT_emulation platform.

• We have used the packet transmission rates from 400 to
600 packets per second to ensure a loaded SD-Wi-Fi
scenario but in real testbed platform the IoT devices
not always transmit a packet so additional sensing
functions are needed to be devised for the IoT devices.
The MAC header frame control domain is depicted in
the Figure 5. The 11 bit is the depiction of the re-
transmission indicator. The retransmission indicator is
switched to 1, whenever the frame is retransmitted. The
APs determine the packet retransmissions by checking

the retransmission indicator of the received frames. The
retransmission indicator is also added to the OpenFlow
standard payloads to support the additional sensing
functions of the IoT devices.

C. EFFECT OF SERVICE TIME ON HANDOFFS
1) TRANSMISSION RATE OF 400 TO 500 PACKETS/S
In order to study the performance evaluation of the first
algorithm presented in section IV-A, we have used three
performance metrics. The first performance metric makes
the comparison for handoffs regarding the end-to-end packet
delay with a variable traffic rate. The Figure 6 (a) show
that the end-to-end packet delay decreases after the handoff
specifically when the traffic rate is much higher as explained
in Eq.2. The second performance metric makes a comparison
between the end-to-end packet delay and the interarrival
time of the Packet_In events received by the SDN controller.
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Figure 6(b) shows the comparison for variable traffic rates.
The third performance metric validates the application of the
service time algorithm for a real time handoff to be made. The
end-to-end delay for the handoff is recorded by the end user
using a smart device (ideal situation). The credibility of the
algorithm is seen in Figure 6(c) and it is observed that when
the proposed algorithm is used, the percentage of difference
reduces with the increase in traffic rate.

2) TRANSMISSION RATE OF 500 TO 600 PACKETS/S
Another set of experimentation is performed to validate the
credibility of the proposed algorithm. In the first set of
experimentation the IoT traffic was kept at the transmission
rate from 400 to 500 packets per second. By increasing
the packet rate we have made the network loaded. In the
second set of experimentation where the transmission rates
for IoT traffic is increased from 500 to 600 packets per
seconds, a significant difference is observed in the end-
to-end delay before and after the handoff as shown in
Figure 7(a). The significant difference in the end-to-end to
delay is observed due to changing the interarrival times of the
packet_In events received at the SDN controller as depicted
in Figure 7(b) and calculated from Eq 3. It is also observed
from Figure 7(c), that when the network load is increased the
proposed algorithm handoff almost matches the ideal handoff
scenario.

It is evident from Figure 6 (a) and Figure 7 (a) that
the proposed algorithm running on the SDN controller and
estimating the service time by counting the Packet_In events
significantly reduces the end-to-end packet delay for the
IoT devices after the handoffs are performed. This is due
to the fact that the re-transmissions are lowered. Another
deduction from Figure 6 (b) and Figure 7 (b) is when the
traffic rate is constant, the end-to-end packet delay at the
destination IoT device can be calculated from the interarrival
time of the Packet_In events received at the SDN controller.
By looking at Figure 6 (c) and Figure 7 (c), the handoffs
are even credible when the traffic rate is increased which
validates the functionality of the proposed algorithms. The
increase in network traffic pushes the network towards
saturation with higher backoff times, making the end-to-
end delay more dependent on the variations in service
time.

D. EFFECT OF M/G/1 ANALYSIS ON HANDOFFS
1) TRANSMISSION RATE OF 400 TO 500 PACKETS/S
The performance evaluation of the algorithm as presented
in section IV-B is checked in this section. The end-to-end
delay variation is observed for the change in packet rates. The
Figure 8 (a) depicts the credibility of the algorithm as the end-
to-end packet delay decreases rapidly after the handoff. The
case is not the same when the interarrival time is varied for
the Packet_In events received by the SDN controller using the
Poisson distribution of the traffic as observed from Figure 8
(b). Thus, there is not much of a change in the end-to-end
packet delay as depicted in Figure 6 (b) where the arrival rate
was kept fixed.

2) TRANSMISSION RATE OF 500 TO 600 PACKETS/S
On loading the network in terms of increased packet rates,
the performance of the proposed algorithm is evaluated in
terms of the end-to-end packet delay as shown in Figure 9(a)
and Figure 9(b). The end-to-end packet delay decreases after
the handoff as observed from Figure 9(a). On increasing the
network traffic, the difference between the end-to-end packet
delay before and after the handoff is comparatively small.
The ensures the smoothness of handoffs by the proposed
algorithms. By changing the interarrival times for Packet_In
events received by the SDN controller, the effect on the end-
to-end packet delay is negligible as depicted in Figure 9(b).
The estimated end-to-end delay calculated by the SDN
controller is compared to the end-to-end delay before the
handoff as shown in Figure 8(c). The difference in the time
arises due to the time taken by the operating system to fix a
time-stamp for outgoing and incoming packets. This delay is
system oriented and cannot be tackled.

While using the M/G/1 analysis for the handoffs, we can
observe a similar pattern for performance evaluation as
obtained in service time estimation algorithm. The end-to-end
packet delay reduces in the proposed M/G/1 based algorithm
after the handoff. On increasing or decreasing the network
traffic there is no effect on the packet interarrival time events
because due to the nature of the Poisson traffic, the queuing
delay in the shared IEEE 802.11 channel affects the end-to-
end delay more than the service time.

E. HANDOFF TO A LEAST LOADED AP
The Figure 10 (a) and Figure 10 (b) show the performance
evaluation of the algorithm proposed in section IV-C,
to choose the least loaded AP. The performance comparison
is made between the proposed algorithm and the algorithm
that measures the end-to-end delay for the IoT devices before
and after the handoff by choosing a destination AP randomly.
The traffic load is varied for both comparisons and the end-to-
end packet delay is calculated. It is obvious from the findings
that the end-to-end delay for the proposed algorithm before
and after the handoff is significantly then the algorithmwhich
choses the destination AP randomly.

The least loaded AP is chosen by the SDN controller by
calculating the wireless traffic load on each AP. The decisions
made by the SDN controller hence has an impact on the end-
to-end packet delay and channel capacity. The IoT devices
are mobile and continuously reporting their data to the SDN
controller, hence the proposed algorithm is not affected by the
mobility of the IoT devices.

F. AGGREGATE THROUGHPUT
The comparison of the aggregate throughput is made
with four schemes, the traditional RSSI scheme, Po-Fi
scheme [36] and aggregated Wi-Fi scheme [37]. The aggre-
gate throughput performance is shown in Figure 11. As the
number of IoT devices increase the aggregate throughput
increases initially and then tends to slow down gradually.
In the Wi-Fi network the distributed coordination function
(DCF) states that when the traffic load is increased the
throughput reaches a saturation limit. The RSSI based
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FIGURE 8. (a) End-to-End packet delay before and after the handoffs. (b) Comparison of end-to-end packet delay with interarrival time events.
(c) Calculated and estimated end-to-end delay.

FIGURE 9. (a) End-to-End packet delay before and after the handoffs with increased transmission rates. (b) Comparison of End-to-End
packet delay with interarrival time events with increased transmission rates.

FIGURE 10. (a) End-to-End packet delay before and after the handoffs with algorithm chosing random APs. (b) End-to-End packet
delay before and after the handoffs with the proposed algorithm for choosing least loaded AP.

throughput shows the poor performance as only one criterion
is chosen for AP association and this does not guarantee the
fairness of load among all the APs. Due to non-fairness of
load a single AP may get overloaded resulting in a degraded
throughput performance. In the traditional Wi-Fi networks,
the worst fact is that the wireless device keeps its association
with the AP unless it moves far away or the RSSI values

diminish due to some AP failure. In the traditional Wi-Fi
networks where only RSSI is used for association, the total
throughput contribution is just 40% of the total throughput.
In the proposed scheme the load among the APs is balanced
through the centralized SDN controller and destination AP is
chosen onlywhen it is underloaded. In this way the contention
is removed and the load fairness among the APs is enhanced.
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FIGURE 11. Aggregate throughput performance.

The packet delivery rate becomes better in the proposed
scheme as the IoT device gets connected to an underloaded
AP.

In comparison to RSSI scheme and Po-Fi scheme the
aggregated Wi-Fi shows better throughput performance. The
Po-Fi scheme is fully centralized which means unnecessary
probing frames are used for the southbound APIs and
this creates additional overheads leading to time delays.
Additional wireless functionalities and forwarding rules
induce extra times. Po-Fi relies on light virtual access points
(LVAPs) which need extra programmability and time efforts
to be created and then shifted alongside the user mobility.
In aggregated Wi-Fi scheme the throughput performance
is slightly better due to the OpenStack functionality which
allows the users to monitor, control and customize the
network resources. The use of service orchestrator (XOS)
incurs extra costs and time delays for packet processing. The
proposed scheme relies not only on the RSSI values but also
on the load of the APs. The proposed algorithms are designed
specifically to monitor the latency performance and only
those destinations APs are chosen for handoffs using SDN
which have better throughput performance and guarantee
access to the Internet. In the proposed scheme the aggregate
throughput is improved by 17%, 13% and 9%when compared
to RSSI, Po-Fi and aggregated Wi-Fi schemes respectively.

VII. CONCLUSION
The proposed research makes use of the capabilities of SDN
to ensure fairness of load among the OpenFlow enabled
APs in the smart city design while reducing the end-to-end
packet delay and enhancing the throughput rate by 17%, 13%
and 9% when compared to received signal strength indicator
scheme (RSSI), Po-Fi scheme and aggregated Wi-Fi scheme
respectively. The smart city design incorporates multiple APs
with overlapped coverage making a dense Wi-Fi network
scenario with mobile IoT devices. The IoT devices connect
to the OpenFlow enabled AP to access the internet. The
SDN controller has the load balancing applications installed
on it which collect the AP reports and make network wide
computations to ensure fairness of load among the APs
by performing handoffs. The proposed research introduces

three algorithms based on service time estimation, M/G/1
analysis and choosing the least loaded AP. The purpose is
to maintain the load symmetry among the APs and at the
same time reduce the end-to-end delay for a satisfied QoS.
Service time-based algorithm choses the IoT device with the
highest end-to-end packet delay to be de-associated and then
re-associated to a least loaded AP. The algorithm runs on
a constant network traffic rate and efficiently handoffs the
IoT device. The M/G/1 based algorithm also shifts the IoT
device with highest end-to-end delay to a least loadedAP. The
algorithm makes use of the random traffic distribution using
Poisson process. Extensive experimentation reveal that the
algorithm decreases the end-to-end packet delay. The third
algorithm is proposed to chose the least loaded AP. The SDN
controller based on the traffic load on the AP choses the
least loaded AP and while comparing the proposed algorithm
to the algorithm that chooses the destination AP randomly,
it is deduced that the end-to-end packet delay is significantly
reduced. We look forward to introduce artificial intelligence
(AI) in theOpenFlow enabledAPs tomake handover decision
themselves till certain load levels. The AI will help in service
differentiation and would prioritize packets to the controller
which are more delay sensitive hence improving the latency
factor.
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