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ABSTRACT In this paper, we propose a new framework for classifying and visualizing malware files
using subspace-based methods. The rise of advanced malware poses a significant threat to internet security,
increasing the pressure on traditional cybersecuritymeasureswhichmay no longer be adequate. As signature-
based detection is limited to known threats, sophisticated methods are needed to detect and classify emerging
malware that can bypass traditional antivirus software. Using representative image patterns to analyze
malware features can provide a more detailed and precise approach by revealing detailed patterns that may
be missed otherwise. In our framework, we rely on subspace representation of malware image patterns; a set
of malware files belonging to the same class is compactly represented by a low-dimensional subspace in high
dimensional vector space. Then, we use Subspace method (SM) and its kernel extension Kernel Subspace
method (KSM) to classify a malware file by measuring the angle between the corresponding input vector
and each class subspace. Further, we propose a visualization framework based on subspace representation
and occlusion sensitivity analysis which enables detection of critical malware features. These visualizations
can be used in conjunction with the proposed classification method to aid in interpretation of results and
can lead to better understanding of malicious threats. We evaluate our methods on Malimg and Dumpware
datasets and demonstrate the advantage of our methods over previous single-image verification methods that
are vulnerable to varying conditions. With 98.07% and 97.21% accuracy, our algorithm outperforms other
state-of-the-art techniques.

INDEX TERMS Malware, malware image, subspace method, kernel subspace method, occlusion sensitivity
analysis.

I. INTRODUCTION
The realm of cyber security is plagued with numerous
challenges, and among them the presence of amyriad types of
malicious software, often referred to only as malware. These
malicious programs can cause serious harm to computer
systems and compromise sensitive information, making
it imperative for individuals and organizations to remain
vigilant against such security threats. Malware is frequently
used by cybercriminals to launch suspicious activities and
cyberattacks. Malware refers to any computer program
designed to cause harm to a system or network, including

The associate editor coordinating the review of this manuscript and
approving it for publication was Gangyi Jiang.

unauthorized access, theft of sensitive information, disruption
of normal operations, and more. This form of software oper-
ates covertly and aims to exploit vulnerabilities in the target
system, allowing the attacker to gain unauthorized access
or control over the affected device. Common examples of
malware include viruses, worms, Trojans, and ransomware.
The proliferation of malware has become a major concern
for individuals and organizations alike, as the impact of
a successful attack can be substantial, leading to loss of
sensitive information, financial damage, and damage to the
reputation of the affected entity.

To mitigate the threat posed by malware, it is important to
employ robust cybersecuritymeasures. Suchmeasures should
include the regular updating of software, the utilization of
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antivirus programs, and the education of users. The timely
identification of malware once it has infiltrated the system is
of utmost importance, and can only be achieved through the
implementation of effective security measures and practices.

The widespread use of wireless over-the-air (OTA) deliv-
ery mechanisms in software (SW) updates highlights the
need for advanced malware analysis techniques that can
accurately detect and respond, in real time, to new and
emerging threats [35]. This is particularly important as OTA
technology enables the seamless and efficient distribution of
SW updates, but also presents a path for malware to enter
a system. Attackers can leverage OTA technology to launch
or replace safe files with malicious ones. Consequently, the
development of robust malware analysis methodologies that
can effectively differentiate between benign and malicious
files is essential for ensuring the security of modern
computing systems.

In this paper, we aim to address the tasks of malware
classification and malware analysis, two similar but distinct
problems. Especially, we emphasize the importance of
accurately differentiating between benign and malicious files
in the context of wireless OTA delivery mechanisms.

Malware classification is one of the most significant prob-
lems in the area of cybersecurity [28]. Malware authors intro-
duce evasion strategies like obfuscation, encryption, packing,
and so on. Traditionally, two types of methods are used
to identify the malicious executable in personal computers
systems: static and dynamic. A malware researcher employs
specific tools like IDA-Pro [65] to analyze an executable
file following its disassembly in the static method. If it is
determined that the executable file is malicious, its signature
is created and stored in the database for future reference. This
procedure, also known as signature-based detection, is labor-
intensive and time-consuming, making it potentially unfit
for real-time detection [37] and [38]. Furthermore, a distinct
signature is required for the detection of each malicious file,
which means that these systems may be vulnerable to new
types of malware. Obfuscation techniques that transform the
malware binary into a self-compressed or uniquely structured
binary can further hinder the effectiveness of static feature
analysis.

Various traditional machine learning approaches such as
support vector machine [1], k-nearest neighbors [2], random
forests [3], naive bayes [4] and decision tree [5] have
been used to detect and classify known malware. These
approaches, while they have proven successful, are hard to
interpret due to black-box nature of some machine learning
algorithms and feature selection. Recently, rather than
focusing on non-visible features for malware classification,
Nataraj et al. [6] proposed malware Vision-based Analysis
Technique, a new approach based on image processing, also
known as malware visualization. They used a malware image
dataset consisting of 9,342 malware samples belonging to
25 different classes. This work transformed the structure
of packed binary samples into two-dimensional grayscale
images. The resulting images revealed specific texture

FIGURE 1. Conceptual diagram of subspace method for classifying
malware image patterns into three classes.

patterns that were highly informative about the underlying
malware class. However, the primary difficulty in these
supervised machine learning algorithms is modeling the
image set in such a way that we can effectively exploit the
semantic knowledge that distinguishes malware files from
benign ones.

In this paper, we introduce a novel method for malware
classification and analysis that relies on subspace representa-
tion of pattern sets, which has proven successful in numerous
pattern recognition problems [8], [9], [10]. A convenient way
to deal with image-sets is to compactly represent them by
a low-dimensional subspace of a high-dimensional feature
vector space. The subspace representation is well known to
be valid for representing a set of digital images, where in our
case, each malware class family can be considered as a set
of malware-visualized images and represented as Malware
Subspaces through Principal Component Analysis (PCA)
without data centering. This approach reveals interesting
statistical information about each data distribution through
their corresponding eigenvectors.

Subspace Method (SM) [8], [9], [10] is known as the typ-
ical classification method based on subspace representation.
Figure 1 shows a conceptual diagram of the subspace method
for classifying malware image patterns into three classes.
In this method, an input malware image Q is converted to
a vector xin and then it is classified by using the similarity
between xin and the class subspace Pc for the c-th malware
classe. Here, the similarity is defined based on the minimum
angle θcmin between xin and Pc or the length of the orthogonal
projection of xin onto Pc, x̂cin. Finally, the input vector xin
is classified into the class with the smallest angle or the
maximum projection length. In this paper, we will use the
angle-based similarity.

However, in many image classification tasks, the data dis-
tribution cannot be exactly represented by a linear subspace,
as it often contains a nonlinear structure. To address this
limitation, we utilize a nonlinear extension of SM using the
kernel trick, kernel subspace method (KSM) [62], [63], [64],
to achieve high classification performance.

Due to the high similarity between malicious and benign
files, it is often difficult for security practitioners to identify
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vulnerable sections of code that might cause security
concerns. To help address this issue, alongside KSM clas-
sification, we introduce a new framework, called Occlusion
Sensitivity Analysis based on Kernel Difference Subspace
(OSA_KDS), for enhancing and visualizing the importance
of each element of a given malware image vector, aiding in
discriminating the malware file from benign (safe) files.

The basic idea of OSA_KDS is to apply the Occlusion
Sensitivity Analysis (OSA) to a discriminative feature vector.
OSA_KDS measures the importance of a specific element in
a discriminative feature vector between malware and benign
classes. The importance of each element is estimated based
on the change in the length of the discriminative feature
vector when the element is occluded by a small window
mask. The occluded element that produces a larger change
degree is regarded as a more critical element in the malware
analysis. The discriminative feature vector that we consider
here is extracted by projecting a malware pattern vector
onto a Kernel Difference subspace (KDS) [31], [34], which
represents the difference between malware and benign class
subspaces. By sliding the mask over the whole feature vector,
OSA_KDS obtains all the elements’ importance to generate
a saliency map that visualizes them. This saliency map
can provide a comprehensive and insightful visualization of
discriminative features of a given malware file to security
practitioners.

One may think that we could explicitly visualize the
projection vectors. However, it is impossible to do so, as we
use the kernel mapping. We can also realize the visualization
of discriminative elements using the preimage technique [68].
However, this method is so complicated due to the iterative
calculation that the visualization result tends to be unstable.

The main contributions of our work are:
• We propose a novel subspace representation strategy for
the purpose of detecting and classifying malware fam-
ilies, leveraging representative digital images of each
class family. The framework is simple, computationally
efficient and highly interpretable, without sacrificing
good performance.

• We propose a subspace-based framework for visualizing
features significant for malware detection, which can
serve as a starting point for reverse-engineering and
studying critical parts of software that differentiate
between benign and malicious behaviours.

• We evaluate our malware classification framework on
two publicly available datasets and compare it to
various state-of-the-art approaches, demonstrating its
effectiveness.

The paper is structured as follows: Section II discusses
the background and related work on various malware
analysis and detection techniques; Section III introduces
the detailed of the data pre-processing and Section IV
presents the proposed methods for malware classification and
visualization. Section V, describes the details of the datasets
employed and an empirical evaluation of the experimental
results obtained. Additionally, quantitative and qualitative

experiments on malware classification and malware visual-
ization are described. Finally, Section VI concludes paper and
offers possible future directions.

A. MATHEMATICAL NOTATION
In this section, we summarize the notations used in this
paper. We use lowercase symbols for scalars (e.g., a), bold
lowercase for vectors (e.g. x), uppercase for sets (e.g., X ),
bold uppercase for matrices (e.g., A) and calligraphic for
subspaces (e.g., P). We also use the superscript ·

(s) to refer
to safe ‘‘Benign’’(e.g., P (s) refers to a subspace of benign
image-set), ·

(m) to refer to malicious ‘‘Malware’’ (e.g., P (m)

refers to a subspace of malware image-set), and ·
(in) to refer

to unknown ‘‘Input’’ image.

II. BACKGROUND
In this section we provide background on traditional
malware detection systems, starting with classic static and
dynamic analysis methods in subsection II-A, followed by
more advanced methods relying on feature extraction in
subsection II-B, and provide context for our contributions.

A. STATIC AND DYNAMIC ANALYSIS
There are two primary approaches used in malware detection
and analysis: static and dynamic. While dynamic analysis
requires running a program or a file and observing its
behavior in real time, static analysis examines a program
or a file without actually running it. Both approaches
have advantages and disadvantages, and the choice of one
often depends on the context and desired result. However,
in order to achieve the most robust and efficient results,
a comprehensivemalware detection system typically employs
a combination of both static and dynamic analysis methods.

Static analysis eliminates the need for a runtime inquiry
based on the execution of suspicious files, as it identifies
the malware sample’s structure without actually running
the code. Additionally, this type of analysis makes use
of a number of features, including strings, opcodes, API
calls, byte sequences, and control flow diagrams, all of
which are disclosed from the portable executables’ raw
bytes (PEs) [11]. In advanced static analysis, the program
commands are thoroughly examined using a disassembler,
which is used to generate assembly code from machine
code [12], [13]. During the analysis, the assembly instructions
are thoroughly examined to identify the characteristics of
malware.

In a notable example of static analysis, Tian et al. [15] used
printable strings and a frequency length function to classify
the malware. Their findings indicate that the frequency
function can be used to identify the malware class family and
can be combined with other features to classify the malicious
code.

Static approaches provide a fast recognition system while
utilizing significantly less computational resources, as there
is no requirement for execution. However, they are often
disrupted by obfuscation techniques such as instruction
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reordering, register renaming, and garbage insertion that
transform the malware binary into a self-compressed or
uniquely structured binary can hinder the effectiveness of
static feature analysis.

Dynamic analysis offers a complementary approach
to static analysis in malware detection. Static detection
techniques can only deal with malware that has been
compressed by utilizing packers with known signatures.
Therefore, dynamic analysis uses behavioral analysis to
identify distinguishing patterns in suspicious files when they
are processed in sandboxes and virtual computers to protect
the machines from malware [39], [40] and [41]. It looks at
parameters, function calls, information flows, file-registry
changes, and network activities. More precisely, the main
elements that the dynamic analysis focuses on can be stated
as function call analysis [16], dangerous activity detection,
and alteration of Windows registry entries.

Basic dynamic analysis looks into how malware behaves
using monitoring tools such as Process Monitor, API
Monitor, Process Explorer, Regshot, ApateDNS, Wireshark,
and Sandboxes [13]. Debugging tools such as OllyDbg and
WinDbg, on the other hand, are utilized in advanced dynamic
analysis, and debuggers enable malware analysts to view
the contents of variables, parameters, and memory areas by
individually executing each command [17].

The fact that dynamic malware analysis typically necessi-
tates significantly more resources, such as memory and CPU
usage, due to the large amount of computational overhead
makes it inefficient when dealing with a large dataset.
Additionally, dynamic analysis may ignore certain forms
of malicious code if the execution environment does not
accurately replicate the actual operating conditions in which
the malware operates. To uncover discriminatory features,
decompression and unpacking of some portable executable
(PE) files is necessary.

B. FEATURE EXTRACTION TECHNIQUES
1) N-GRAMS
N-grams are one of the most common types of features
used for the purpose of identifying and classifying malware.
N-grams enable the extraction of sequential patterns and
features from the underlying textual content of malware
samples, making it easier to identify common characteristics
and behaviors. By leveraging n-grams as a means of
representing and analyzing malware, security researchers are
better equipped to detect and classify malicious software, and
ultimately mitigate the associated risks and impacts.

Zolotukhin and Hamalainen [18] used the n-gram features
to extract the opcode sequence as an input feature of malware
detection, implying that using such features can lead to high
efficiency in analysis as it does not require the malware
to be actually executed. Additionally, Santos et al. [19]
found that the statistical characteristics of both malware and
benign software’s opcode sequences differ, indicating that
after disassembly, malware can be identified by the frequency
of various opcode sequences.

Fuyong et al. [20] presented a novel approach for detecting
and classifying malware using n-grams attribute similarity.
Their proposed method involved selecting n-grams with
the highest information gain as features and calculating
the information gain of each bytes n-gram in the training
samples. The averages of each attribute of the feature vectors
from the malware and benign samples were then calculated
separately. Lastly, a similarity metric based on Jaccard,
cosine, or Tanimoto distances was then used to compare
the average vectors of the two categories with the feature
vector of the unknown sample, and the sample was classified
as malware or benign based on the resulting similarity
score.

Despite the effectiveness of n-gram approaches for
detecting malware, there are several issues that warrant
consideration. Firstly, Raff et al. [21] have suggested that
byte n-grams tend to rely heavily on executable string
content, particularly PE header items. Consequently, feature
selection methods tend to prioritize frequently occurring
n-grams, such as low-entropy features like strings and
padding, which may limit the ability of the approach to
capture a wide range of diverse and significant malware
features. In addition, the exponential increase in the number
of possible n-grams with larger n values makes it computa-
tionally expensive to enumerate every n-gram, leading to the
curse of dimensionality. Consequently, feature reduction and
selection techniques should be employed to overcome this
issue.

2) GRAPH-BASED
Graph-based methods can be used for feature extraction in
malware classification by representing the program behavior
in a graph format. The dynamic execution of the program is
analyzed to identify system calls, API invocations, and other
interactions with the operating system, which are then used
to build the graph. The graph’s nodes symbolize events or
actions, while edges represent the dependencies or ordering
between them.

Park et al. [14], proposed a novel method for classifying
malware based on the maximal common subgraph. A soft-
ware sandbox model helped to capture malware system calls.
To enable malware classification, behavior graphs are then
generated from the captured system calls. The proposed
method successfully classified new malware with low false-
positive rates.

Kong et al. [22], used structural data to build a model in
order to classify the malware. They make use of the function
call graph to obtain the structural information for each
malware sample. They employed the discriminate distance
metric learning strategy, which clusters malware samples
belonging to the same class family, in addition to the assemble
of a classifier strategy, which divides malware into its various
families.

Graph-based methods have proven useful in identify-
ing both known and unknown malware. Nevertheless, the
computation of pairwise graph similarity in large malware

VOLUME 11, 2023 102495



Djafer Yahia M et al.: Efficient Malware Analysis Using Subspace-Based Methods

datasets takes a considerable amount of time, which scales
quadratically with the size of the dataset. Additionally, certain
methods used to calculate pairwise graph similarity, such
as graph matching or isomorphism, can be computationally
impractical.

3) VISION-BASED
In vision-based feature extraction, malware binaries are
represented as an image. A 2D array is created after the
malware binary is transformed into an 8-bit vector [6].
According to previous studies, it is found that malware types,
which belong to the same class family, have similar images
[6], [12].
Malware classification based on image features has been

performed by malware researchers using both machine
learning and deep learning classifiers. Notably, texture
features such as GIST, Local Binary Patterns (LBP), and
Wavelet-based features have been successfully extracted
from malware images [23], [24], [25]. Experimental analyses
incorporated various machine learning classifiers, including
Naive Bayes (NB), Decision Tree (DT), Logistic Regression
(LR), Random Forest (RF) [26], [27], K-Nearest Neighbor
(KNN) [6], and Support Vector Machine (SVM) [6].

Dai et al. [50] proposed a method that based on memory
dump data, involving the conversion of malwarememory data
dump binary files into grayscale images. They utilized HOG
features to train a multilayer perceptron (MLP) classifier.
Bozkin et al. [52] employed a combined representation with
GIST and HOG features to create signatures from malware
RGB images. These signatures are then used to train various
machine learning classifiers such as Random Forest and
linear SVM.

Such experiments across the literature have established
a varying degree of success for pairing classification algo-
rithms and different extracted image features.

Furthermore, the field of malware classification has
seen the emergence of various deep learning architec-
tures and techniques, each with its own strengths and
weaknesses.

Gibert et al. [43] proposed a notable deep learning-based
approach for detecting and classifying malware. Their
methodology involved utilizing grayscale images of mal-
ware’s binary content as inputs for a convolutional neural
network (CNN). The process also relies on transforming
the malware binary into an 8-bit vector, which is then used
to create a 2D array representing the malware sample as a
grayscale image.

In their proposed architecture, the grayscale image was fed
into a CNN for further processing. The architecture consisted
of three convolutional blocks, a fully connected layer, and
an output layer. Each convolutional block incorporated
essential operations such as convolution, ReLU activation,
max-pooling, and normalization. The fully connected layers
utilized the learned features to identify specific target outputs,
while the convolutional layers acted as detection filters
for particular data features or patterns. They tested their

method on the Microsoft Malware Classification Challenge
dataset [56], against hand-crafted feature extractors, and
the results show that a deep learning architecture performs
better at classifying malware that is represented as grayscale
images. Rezende [51], on the other hand, utilized a pretrained
VGG16 neural network for feature extraction; a Support
vector machine (SVM) classified the input malware using the
extracted features.

Although deep learning-based methods to malware detec-
tion have achieved good results, there is still a need for
further research for developing robust and efficient models,
especially in cases where large amounts of training data are
not readily available.

One of the other open challenges in malware detection and
classification lies in its multimodal nature, where multiple
types of features need to be considered. Solely relying on
assembly language instructions and raw byte sequences or
their compressed representations as inputs can lead to a loss
of valuable information crucial for characterizing malware.
To address this challenge, we employed subspace model
representation to identify and classify images efficiently.

III. DATA PRE-PROCESSING
In this section, the Portable Executable (PE) Malware files
will be briefly discussed, followed by an explanation of the
pre-processing algorithm used to convert PE files into their
grayscale image.

A. PE MALWARE
Files such as executables, object code, DLLs, FON Font
files, and others are saved in PE format, which is utilized
in both 32-bit and 64-bit versions of the Windows operating
system. Portable Executables in the 32-bit format are referred
to as PE32, while PE32+ refers to Portable Executables in
the 64-bit format. Figure 2 depicts a PE file’s fundamental
structure. A brief MS-DOS executable serves as the base
for every PE file. The number of sections, the size of the
‘‘PE Optional Header,’’ the file’s characteristics, and other
details about the executable are all contained in the PE
Header. After the DOS header, which has a main file header
and an optional header that tells how the PE file is stored,
there is a PE header. The optional header entries can then
be divided into two parts. The general information in the
first section can be used by an operating system to load
and run an executable. In addition, the data directory is the
second section in which each entry specifies the section’s
address and size. The section table follows immediately after
the Optional header. The section table provides information
about all section names, locations, lengths and characteristics.
Finally, the data directory is followed by section table which
is a collection of section headers. Each section’s messages are
summarized in the fields of section headers.

B. BINARY TO IMAGE
The widespread use of Nataraj et al.’s [6] invention of
binary-to-image conversion, has provided numerous new
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FIGURE 2. PE file structure.

anti-malware research ideas. This type of binary file visu-
alization has bridged the gap between computer vision
and executable byte-level sequences. Further, it allows
practitioners and researchers to better comprehend malware
structure because the patterns contained within such images
are easily discernible.

There are typically a number of methods for transforming
binary code into images [45]. It is also possible to identify
malware families by using the most significant patterns of
features in the malware images. The process of converting
malware binary files into grayscale images is depicted in
Figure 3. An algorithm that converts a binary PE file into
a sequence of 8-bit vectors or hexadecimal values can
be used to translate malware binaries into images. The
malware binary file is first read in a vector of unsigned
8-bit integers and can be represented in the range [0,255]
(0:black, 255:white). Then we convert the binary value of
each component into its equivalent decimal value. Finally, the
resulting decimal vector is reshaped to a 2D matrix and then
interpreted as a grayscale image. The size of the malware
binary file largely determines the 2D matrix’s width and
height.

IV. PROPOSED METHOD
In this section, we explain the algorithms of Subspace
Method and Kernel Subspace Method, where we describe
how malware classification is accomplished using subspace
representation and its kernel extension. We then propose mal-
ware visualization framework based on occlusion sensitivity
analysis.

A. MALWARE SUBSPACE REPRESENTATION
The subspace-based methods have shown great performance
in various applications [29], [30], [31], [32], [33], [34],
as they can effectively capture the data variation and stably
output the similarity between a vector and a subspace or
two subspaces. It involves creating a subspace representation
per image set, calculating similarities between an input
vector/subspace and class subspaces, and finally performing
the classification. In related work, subspace representation
has been widely used to preserve significant features of

high-dimensional data, resulting in improved classification
accuracy and efficiency. Given the increasing complexity
and sophistication of malware attacks, it is becoming
more challenging to detect and prevent these attacks using
traditional classification methods. Therefore, we propose to
leverage subspace representation to address these challenges
in malware classification.

A set of n malware images is arranged into a matrix
X = [x1, x2, . . . , xn] ∈ Rd×n, where each image xi is a
d-dimensional vector. The orthogonal normal basis B of a
ds-dimensional subspace P is obtained by applying the
principal component analysis (PCA) to a set of image patterns
of the class. In practice, we can obtain B by computing the
SVD of X as follows:

X = U3V⊤, (1)

where U ∈ Rd×n contains eigenvectors as columns and
3 ∈ Rn×n is a diagonal matrix containing eigenvalues. B is
represented as [u1,u2, . . . ,uds ] using the ds eigenvectors of
U, corresponding to the ds highest eigenvalues.
This procedure yields a low-dimensional subspace for the

given image set, which can preserve certain information such
as the distribution of pixel values and structural features
relevant to malware analysis.

B. SUBSPACE METHOD FOR CLASSIFICATION
Subspace Method (SM) is a classification method based on
computing similarities between an input vector and class
subspaces. The similarity of an input vector xin ∈ Rd to the
c-th class subspacePc is defined based on theminimum angle
θcmin between xin and Pc as shown in Fig 1, by the following
equation:

sim(xin,Pc) = cos2 θcmin =

ds∑
i=1

(xin · uci )
2

||xin||2
, (2)

where ds is the dimension of Pc, uci is the i-th d-dimensional
orthogonal basis vector of Pc, and (·) is an inner product.
For our malware classification task containing C malware

classes where each class has {xci }
n
i=1, SM works as follows:

(I) Classes subspaces {Pc}Cc=1 are created using Eq. (1),
(II) an input vector xin is created from a single input malware
image. Then, xin is compared to class subspaces {Pc}Cc=1
using Eq. (7) and is classified into the class with the highest
similarity.

While SM is effective at classifying many types of
malware, it may not perform as well when attempting to
distinguish between classes that exhibit significant inter class
variation. Due to the strong non-linearity and significant
variations in appearance within malware images as depicted
in Figure 3, SM may not be fully effective on its own.
To address this limitation, we introduce the Kernel Subspace
Method (KSM) [62], [63], [64] as an extension for SM, which
is well-suited for classifying the complex and diverse features
of malware images.
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FIGURE 3. Pre-processing of malware files.

We apply KSM to the malware classification task, as it can
handle this non-linearity resulting from the large variation of
image appearance, leading to higher accuracy in classifying
the malware images. Moreover, KSM is computationally
efficient and requires only a few parameter adjustments,
making it a practical and effective solution for malware
classification.

C. KERNEL SUBSPACE METHOD FOR CLASSIFICATION
Figure 4 illustrates the flow of the KSM algorithm for
malware classification with C(= 3) classes.

Given n images X = [x1, . . . , xn] in a d-dimensional
image pattern vector space I, they will be mapped onto an
f-dimensional feature space F using a nonlinear mapping
function φ : Rd

→ Rf .
The inner product (φ(x) · φ(y)) between their respective

function values need to be calculated so that PCA can be
applied to the mapped images. However, this calculation can
be challenging, as the dimension of the feature space F can
be very high or even infinite. The kernel trick provides a
solution by defining the kernel mapping φ through a kernel
function k(x, y) which satisfiesMercer’s conditions, allowing
for the calculation of inner products (φ(x) · φ(y)) of the
mapped images from the inner products of the original input
patterns (x·y). A common choice is to use the Gaussian kernel
function [36], defined as:

k(x, y) = exp
(

−
||x − y||2

σ 2

)
. (3)

The PCA of the mapped images is referred to as the
kernel PCA [36], results in a nonlinear subspace in the input
space I.

Consider that the ds-dimensional nonlinear subspace Vc of
the c-th class is generated from n training images {xcj }

n
j=1

. The
i-th orthonormal basis vector eci of Vc can be represented by

the linear combination of {φ(xcj )}
n
j=1

as folows:

eci =

n∑
j=1

acijφ(x
c
j ), (4)

where the coefficient acij is the j-th component of the
eigenvector ai that corresponds to the i-th largest eigenvalue
λi of the n × n matrix K, which is defined by the following
equation:

Kij = (φ(xci ) · φ(xcj )). (5)

aci is normalized to satisfy λi(aci · aci ) = 1. The projection
of the mapped φ(xin) onto the i-th orthonormal basis vector
eci of the nonlinear subspace Vc can be computed using the
following equation:

(φ(xin) · eci ) =

n∑
j=1

acijk(xin, xj). (6)

Based on the above, the similarity between the ker-
nel mapping φ(xin) of an input vector xin and the c-th
nonlinear class subspace Vc is defined by the following
equation:

sim(xin,Vc) =

ds∑
i=1

(φ(xin) · eci )
2

||φ(xin)||2
, (7)

where ds is the dimension of the class subspace Vc and
||φ(xin)||2 = 1 when using the Gaussian kernel function
(Eq.3). Then, xin is classified into the class with the highest
similarity.

D. MALWARE VISUALIZATION BASED ON OCCLUSION
SENSITIVITY ANALYSIS (OSA)
In this section, we explain our new proposed framework,
Occlusion Sensitivity Analysis based on Kernel Difference
Subspace (OSA_KDS), for visualizing the discriminative
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FIGURE 4. The process flow of kernel subspace method (KSM) in malware classification.

elements of a given malware image pattern. In the following,
we assume that malware and benign files are represented in a
vector form with d dimensions.

1) BASIC IDEA OF OSA_KDS
Figure 5 shows the overview of OSA_KDS for malware
visualization. OSA_KDS applies the Occlusion Sensitivity
Analysis (OSA) to a discriminative feature vector extracted
from a given malware vector. OSA estimates the importance
of a specific element of a given feature vector depending
on the change degree in the class score when the element
is occluded by a small mask. Here, the occluded element
with a larger change in class score is regarded as a more
critical one. Motivated by this simple idea, the essence
of OSA_KDS is to measure the change degree in the
length of a discriminative feature vector when a specific
element is occluded by a small window mask. Similarly,
the occluded element with a larger length change is
regarded as a more critical one. A discriminative feature
vector is extracted by projecting a malware image vector
onto a kernel difference subspace (KDS) [31], [34] that
represents the difference between malware and benign class
subspaces.

2) KERNEL DIFFERENCE SUBSPACE BETWEEN MALWARE
AND BENIGN CLASS SUBSPACES
We elaborate on the fundamental component of OSA_KDS,
kernel difference subspace (KDS) [31], [34]. KDS represents
the difference components between two nonlinear subspaces,
and is essentially a nonlinear and multi-dimensional general-
ization of a difference vector between two vectors.

To generate KDS between ds-dimensional malware and
benign (safe) class subspaces for our problem, we con-
structed our private data set of safe grayscale images
generated from PE benign files collected from different

operating system safe programs. We utilized Nataraj [6]
approach to generate the grayscale images from the safe
files.

Let the gallery set of n images from Safe and Malware
classes, denoted as X (s)

= [x(s)1 , . . . , x(s)n ] and X (m)
=

[x(m)1 , . . . , x(m)n ], respectively. The orthonormal basis vectors
of the ds-dimensional nonlinear class subspaces for safe and
malware, P (s) and P (m), are obtained by applying KPCA to
the training patterns as described in Sec. IV-C.

Let E be the matrix that contains all the orthonormal basis
vectors of the two nonlinear subspaces as columns: E =

[e(s)1 , . . . e(s)ds , e
(m)
1 , . . . e(m)ds ]. Then, we calculate the matrix D,

defined as E⊤E. We obtain each element of the matrix D by
calculating the inner product between the i-th orthonormal
basis vector e(s)i of the Safe class subspace and the j-th
orthonormal basis vector e(m)j of the Malware class subspace
as follows:

Dij = (e(s)i · e(m)j ), (8)

=

( n∑
l=1

asilφ(x
(s)
l ) ·

n∑
l′=1

amjl′φ(x
(m)
l′ )

)
, (9)

=

n∑
l=1

n∑
l′=1

asila
m
jl′ (φ(x

(s)
l ) · φ(x(m)l′ )), (10)

=

n∑
l=1

n∑
l′=1

asila
m
jl′k(x

(s)
l , x(m)l′ ). (11)

Finally, KDS is subspace spanned by the eigenvectors
corresponding to the ds smallest eigenvalue of the matrix
D [31], [34]. The i-th eigenvector di of D is represented as∑ds×2

j=1 bijej, where ej is the j-th column of the matrix E, and
the coefficient bij is the j-th component of the eigenvector
bi that corresponds to the i-th smallest eigenvalue βi of the
matrix D. bi is normalized such that βi(bi,bi) = 1.
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FIGURE 5. Overview of malware visualization framework based on OSA_KDS.

3) PROJECTION OF A MALWARE IMAGE VECTOR ONTO KDS
We project a kernel mapped malware vector φ(x(m)) onto
the ds-dimensional KDS to extract the discriminative feature
vector φ̃(x(m)) as follows:

φ̃(x(m)) = (z1, z2, . . . , zds ), (12)

zi = (φ(x(m)) · di) = (φ(x(m)) ·

ds×2∑
j=1

bijej). (13)

Note that the last equation can be calculated by using Eq.(6).

4) PROCESS FLOW OF OSA_KDS
Figure 5 illustrates the whole process of OSA_KDS. Each
step is summarized as follows:
1) We generate KDS, D, between ds-dimensional malware

and benign class subspaces, P (s) and P (m).
2) We project kernel mapped feature vector φ(xorg) of the

original malware image pattern ontoD by using Eq.(12).
The projection is represented by φ̃(xorg).

3) We occlude a specific element of xorg by a mask mi and
then obtain its kernel mapped φ(xmi ).

4) We project kernel mapped feature vector φ(xmi ) onto
D by using Eq.(12). The projection is represented by
φ̃(xmi ).

5) We compare the length of the projection, φ̃(xmi ) with
that of φ̃(xorg) to calculate the difference δ(mi) between
them as the importance for discriminating malware and
benign classes as follows:

δ(mi) = 1.0 − max(||φ̃(xorg)|| − ||φ̃(xmi )||, 0), (14)

where negative differences are discarded. The element
that produces a larger δ(mi) is regarded as more
important.

6) The differences δ of all elements are obtained by sliding
the occlusion mask over the whole malware pattern
vector.

8) All the importances {δ(mi)} are intergrated and shown
as a saliency map to provide a comprehensive and
insightful visualization of discriminative features of the
malware file.

V. EXPERIMENTS AND DISCUSSIONS
This section presents an empirical evaluation of the results
obtained by our proposed methods. First, in Subsection V-A
we introduce the performance metrics used in this study and
in Subsection V-B we describe the datasets used for our
experiments. Then, in subsections V-C and V-D we detail
our quantitative and qualitative experiments on malware
classification and malware analysis.

A. PERFORMANCE METRICS
For the sake of completeness, we define the perfor-
mance metrics used to evaluate our approach; concretely,
we will report four metrics: Accuracy, Precision, Recall, and
F1-score.

The accuracy is simply defined as the fraction of total
predictions that are correct. More formally, it is defined as
follows:

Accuracy(%) = 100% ×
Correct predictions
Total predictions

. (15)

While accuracy is a standard metric used for model
evaluation and is a good estimator of model quality, for
security-related applications it is useful to investigate other
metrics. More specifically, it is often useful to evaluate a
model in terms of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN). Consider a
dataset with n total samples and C classes (e.g. malware
families). The above-mentioned building blocks of advanced
metrics are defined as:

• TPi refers to the number of samples correctly classified
as belonging to class family i ∈ C .
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• TNi refers to the number of samples correctly classified
as not belonging to class family i ∈ C .

• FPi refers to the number of samples incorrectly classi-
fied belonging to class family i ∈ C .

• FNi refers to the number of samples incorrectly classi-
fied as not belonging to class family i ∈ C .

In those terms, Precision is defined as the number of true
positives over the sum of true and false positives:

Precision =

∑C
i=1 TPi∑C

i=1(TPi + FPi)
. (16)

and Recall as the number of true positives over the sum of
true positives and false negatives.

Recall =

∑C
i=1 TPi∑C

i=1(TPi + FNi)
. (17)

While Precision measures the percentage of actual mal-
ware among those identified as malware by the model,
Recall measures the percentage of malware successfully
identified. In ideal situation, a model would achieve both
high Precision and Recall, but often these two measures are
conflicted: increasing Precision decreases Recall and vice-
versa. A metric unifying these two measures is the F1_score,
a weighted average of Precision and Recall, defined as
follows:

F1_score =
2 × Recall × Precision
Recall + Precision

. (18)

B. DATASETS
In this section we briefly describe public datasets used in
our experiments for the tasks of malware classification and
malware analysis.

1) MALIMG DATASET
Malimg [6] is a public benchmark dataset, hosted on
data science platform Kaggle [66], and comprises 9,339
malware samples belonging to 25 different malware
classes. These classes are: Adialer.C, Agent.FYI, Allaple.A,
Allaple.L, Alueron.gen!J, Autorun.K, Benign, C2LOP.P,
C2LOP.gen!g, Dialplatform.B, Dontovo.A, Fakerean, Instan-
taccess, Lolyda.AA1, Lolyda.AA2, Lolyda.AA3, Lolyda.AT,
Malex.gen!J, Obfuscator. AD, Rbot!gen, Skintrim.N, Swiz-
zor.gen!E, VB.AT, Wintrim.BX, and Yuner.A. Additionally,
the number of samples belonging to a malware class differs
across the dataset, making it a highly-imbalanced dataset.
Malware samples in this dataset are publicly provided as
images of various sizes, with an average size of 510 ×

410 pixels. For our experiments, we uniformly resized all
samples to 32 × 32 pixels images.

2) DUMPWARE DATASET
The Dumpware10 malware dataset covers 4,294 portable
executables and is entirely based on memory forensics. The
memory dump files were obtained through the creation
of a virtual Windows 10 environment, and the malware

FIGURE 6. Detailed malware distribution of Dumpware dataset.

FIGURE 7. Detailed malware distribution of Dumpware dataset.

files were stored in PNG format. The dataset is divided
into 11 categories that include 10 malware classes and
one benign class; it comprises 3,686 malware samples
collected from diverse malware families and 608 benign
samples.

Malware binaries were converted into different greyscale
images by setting the rendering parameter called ‘‘column
widths’’ [52], resulting in images of 224 × 224 and 300 ×

300 pixels, which we use. For our initial set of experiments,
we resized the 224 × 224 images into 32 × 32 images,
resulting in a 1024-dimensional feature vector. However, for
the sake of comparison with competing methods, for the
second part of the classification experiment we used 224 ×

224 pixels images without resizing.
The distribution of malware samples in both Malimg and

Dumpware datasets are given in Figures 6 and 7.

C. EXPERIMENT ON MALWARE CLASSIFICATION
In this experiment, our goal is to evaluate the quality of
our proposed malware classification framework based on
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FIGURE 8. KSM confusion matrix on Malimg dataset for malware classification.

kernel subspace method (KSM). We utilize both Malimg
and Dumpware datasets to this end; in case of Malimg
dataset, the task is malware class family classification,
and for Dumpware dataset, the task consists of classifying
between malware families and benign files. We compare
the proposed KSM framework to established state-of-the-
art methods in the task of malware classification for given
datasets and discuss results, pros and cons of our proposed
approach.

The experimental setup followed the author protocol for
each benchmark dataset. For the Malimg dataset, we divided
it into a training and testing set in a 90:10 ratio. The
training set consisted of 8,405 samples, while the testing set
comprised 934 samples, collectively representing 25 different
malware families. For the Dumpware dataset, we utilized
4,294 samples, including 10 malware families and a single
class of benign executables.

1) RESULTS AND DISCUSSION
The results of the experiment, presented in Tables 1 and 2,
demonstrate that the proposed KSM showed a higher accu-
racy compared to existing systems discussed in the literature,

with 98.07% and 97.09%onMalimg andDumpwaremalware
datasets, respectively. The proposed model’s validity, low
complexity, and interpretability make it a viable alternative to
deep learning-based methods, and provides more opportunity
to tune hyperparameters.

In KSM, since the kernel trick makes use of a Gaussian
exponential function, the value of σ is an additional
hyperparameter to take into account. For optimal perfor-
mance, we found that setting σ to 0.1 consistently achieved
the best results on both datasets. In our experiments,
the dimensions of the reference subspaces were selected
empirically. Before generating the subspaces, we can suggest
if the data is proper or not for a subspace representation,
by observing the distribution of the eigenvalues computed
when performing PCA. We observed that retaining a small
number of eigenvectors, typically between 8-30 in the case of
Malimg dataset, and between 15-45 with Dumpware dataset,
resulted in the highest classification performance in terms of
accuracy, precision, recall, and F1-score metrics. Moreover,
these eigenvectors possess the highest discriminative power,
while increasing the the subspace dimension may introduce
more noise than meaningful information, leading to reduced
classifier performance.
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FIGURE 9. KSM confusion matrix on Dumpware dataset for malware classification.

TABLE 1. Malware classification performance comparison with
state-of-the-art approaches on the Malimg dataset.

Figures 8 and 9 depict confusion matrices, where the
actual category of each malware class family is represented
by the ordinate of the confusion matrix, and the prediction
category of the malware class family is represented by the
horizontal coordinate; each value on the diagonal from [0,0]
to [25,25] (for the Malimg dataset) and [0,0] to [11,11] (for
the Dumpware dataset) in the confusion matrix represents
the correct predicted labels of each class. The biggest errors
for Malimg are in distinguishing between C2LOP.gen!g and
C2LOP.P on one side, and Swizzor.gen!E and Swizzor.gen!I.
In the case of Dumpware, KSM is very good at predicting
malware class, marking only several malware files as
safe.

Finally, a comparative analysis was conducted to eval-
uate the proposed KSM method against state-of-the-art
approaches. Tables 1, 2 and 3 display the respective accuracy
values of the proposed method and other state-of-the-art
studies on the Malimg and Dumpware benchmark datasets.
Notably, the proposed method demonstrated superior perfor-
mance compared to existing algorithms.

TABLE 2. Malware classification performance comparison with
state-of-the-art approaches on the Dumpware dataset.

In comparison to the existing methods, Aslan et al.
2021 [49] proposed a hybrid approach that combinedAlexNet
and Resnet-152 for malware detection, achieving an accuracy
of 97.62%.While their method showed superior performance
compared to its constituent models, the approach may
struggle to effectively detect complex malware variants that
employ packing and obfuscation techniques. Additionally,
their approach investigated the use of additional hidden layers
in deep learning to further enhance performance, which
increases model complexity. Similarly, in [61], an image-
based malware classification system incorporating a spatial
attention mechanism was proposed and evaluated using
the Malimg dataset, achieving an accuracy of 97.78%.
However, deep learning models often require a substantial
amount of data, making them less effective against malware
disguised with obfuscation techniques. In contrast, our
KSM framework outperformed both methods, achieving an
accuracy of 98.07%, precision of 97.0, recall of 97.2, and
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TABLE 3. Malware classification performance comparison with state-of-the-art approaches on the Dumpware dataset with bigger feature vector size.

FIGURE 10. Visualization results of OSA_KDS on Malimg dataset with various mask sizes.

F1 score of 97.0. By leveraging the power of nonlinear
subspace, the KSM framework excels in capturing intricate
structural patterns and features, making it more suitable
for detecting a wide range of malware types. Its ability
to achieve better performance with a less complex model
highlights its efficiency and effectiveness for malware
classification.

Results on the Dumpware dataset strengthen our claim
to the effectiveness of the proposed method. The simple
approach of Nataraj et al. [6] relying only on GIST descrip-
tors and a naive classifier yields an accuracy of 91.40%,
and is readily beaten by the competitors. Dai et al. [50]
also use simple features, but the stronger classification
capabilities offered by the multilayer perceptron increase
accuracy by more than 3% to 94.50%, showing that there
is space for improvement by using a more sophisticated
classifier.

Bozkin et al. [52] achieve an accuracy of 96.30%, making
it the best method utilizing classic computer vision features.
On the other hand, Rezende [51] rely on neural networks
for feature extraction, and obtain the best performance of
related methods at 96.60%. However, our proposed approach
demonstrates superior performance when compared to
these reference studies, outperforming even neural network

features. KSM method achieves 97.21% accuracy on the
same experimental settings.

D. EXPERIMENT ON MALWARE VISUALIZATION
In this section, we present the visualization results by the
OSA_KDS and discuss their effectiveness in revealing and
understanding discriminative features of malware files. The
dimensions for both malware and benign nonlinear class
subspaces were consistently set to six. Figures 10 and 11
show the experimental results, illustrating the visualization
outcomes for various malware families from both Malimg
and Dumpware datasets, obtained using different mask sizes.
We utilized several mask sizes: 1 × 1, 2 × 1, and 4 ×

1 pixels, to analyze the influence of occlusion levels on
the visualization results. We can see that the OSA_KDS
visualization results effectively capture the distinguishing
features among different malware families. This can be
also confirmed through the observation of correspondence
relations in the attention maps of different malware samples
belonging to the same class family.

The analysis conducted on the Malimg dataset using
OSA visualization revealed insightful findings. For instance,
the Adialer.C, Autorun.K and Fakarean malware families
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FIGURE 11. Visualization results of OSA_KDS on Dumpware dataset with various mask sizes.

exhibited relatively even distributions of pixels in their
attention maps, indicating their tendency to utilize complex
application programming interfaces (APIs). On the other
hand, Donotovo.A class family displayed more intense
pixel distributions and significant disparities in specific
regions, implying a greater diversity and potentially more
sophisticated malicious behavior. Notably, the visualization
method successfully identified distinct important features
even within similar malware families. This granularity
of feature detection contributes to a more comprehensive
understanding of the variations and nuances in the behavior of
different malware instances. These visualization results offer
the potential to assist experts trace back to the original code by
reversing the pre-processing techniques on the discriminant
pixels. This enables the identification of problematic PE file
sections within the bytecode, enhancing the interpretability
of visualized features and aiding in understanding the
underlying malicious behavior.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel method for
malware detection that combines the power of the kernel
subspace method (KSM) with representative pattern images,
leading to an efficient and effective solution for malware
analysis.

Furthermore, to enhance the interpretability of the detec-
tion process, we have employed a visualization approach
based on the Occlusion Sensitivity Analysis (OSA) technique
in combination with a discriminant kernel difference sub-
space (KDS). The KDS represents a specialized subspace
capturing the discriminant nonlinear components present in
the training subclass safe and malware classes. By leveraging
the length of the projected input vector onto the KDS,
we were able to identify additional discriminant features
specific to each malware class family.

The competitive performance of our method, demon-
strated through experiments and visualizations, establishes
its potential for practical application in real-world malware
detection and classification scenarios. The reported perfor-
mance analysis of our proposed approach KSM, revealed
outstanding results in both Malimg and Dumpware datasets.
The proposed method achieved an accuracy of 98.07% and
97.21%, respectively, surpassing the performance of existing
models cited in the literature.

In future work, we aim to enhance the performance of
malware analysis by integrating both bytes and ASM data.
Additionally, we also plan to design a hybrid system that
combines these data types in a complementary manner,
aiming to contribute to the literature on advanced malware
analysis techniques. To ensure the generalizability of our
proposed model, beyond Malimg and Dumpware datasets
used in our experimental evaluation, we would like to expand
the data collection to include more types of malware and
benign files to conduct further testing. Moreover, we will
explore the possibility of the integration of the OSA_KDS
visualization approach into automated malware analysis
frameworks.
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