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ABSTRACT This paper introduces an innovative model for precise extraction of lung nodules from 3D
computed tomography (CT) scans. Our approach comprises two essential preprocessing stages aimed at
refining search accuracy and nodule segmentation. Initially, we leverage a two-level joint Markov-Gibbs
random field (MGRF) model to delineate the lung region, effectively distinguishing lung wall nodules
from the chest region with shared visual characteristics. Subsequently, employing a deep learning U-net
technique, we pinpoint the region of interest (ROI) housing the lung nodule, minimizing the inclusion of
surrounding lung tissues. Further enhancement comes from a 3D U-net, trained with a novel loss function
to mitigate under- or over-segmentation issues. The resulting segmentation robustly outlines lung nodules in
terms of morphology and volume metrics, validated by Dice coefficient (DCE), absolute volume difference
(AVD), 95th-percentile Hausdorff distance (HD), sensitivity, and specificity metrics. To assess our approach,
we conducted comprehensive experiments. Our evaluation encompasses in vivo data from 50 patients and
employs 679 subjects from the publicly available dataset of the Lung Image Database Consortium and Image
Database Resource Initiative (LIDC-IDRI). The LIDC-IDRI dataset, a seminal resource for computer-aided
diagnosis (CAD) in lung nodules, offers annotations enabling tasks like detection, segmentation, classifi-
cation, and quantification. Our experiments showcase our model’s superiority over existing deep learning
methods, particularly evident inmetrics such as the 95th-percentile HD andDCE.While limited demographic
information constrains a comprehensive analysis, our approach’s robust performance underlines its potential
integration into nodule assessment AI systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hengyong Yu

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

99807

https://orcid.org/0000-0003-2557-9699
https://orcid.org/0000-0001-6421-6001
https://orcid.org/0009-0001-2831-2327
https://orcid.org/0000-0002-9045-6698
https://orcid.org/0000-0001-7264-1323
https://orcid.org/0000-0002-5852-0813


B. E. Youssef et al.: Integrated Deep Learning and Stochastic Models for Accurate Segmentation of Lung Nodules

INDEX TERMS Computed tomography (CT), joint stochastic model, lung nodules, Markov-Gibbs random field,
segmentation, 3D-UNet.

I. INTRODUCTION
Lung cancer is responsible for 25% of all cancer cases in
the United States. In 2023, an estimated 238,340 people
in the United States will be diagnosed with lung cancer,
and 127,070 lung cancer patients will die [1]. Developing
an artificial-based system to analyze detected lung nodules
based on objective imaging markers using the current image
analysis framework plays an immense role in the early diag-
nosis of lung nodules, especially small lung nodules that are
far away from large airways and rarely cause symptoms [2].
To extract these imaging, or radiomic, markers such as shape
complexity, nodule size, and appearance inhomogeneities,
the first step is to extract/segment the nodule from surround-
ing tissues, which will be this paper’s main focus.

A. RELATED WORK
Several strategies have emerged to tackle the intricate task
of segmenting lung nodules from the intricate structures
present in computed tomography (CT) images. These strate-
gies can be broadly classified into two categories: deformable
model-based methods and deep learning-based approaches.
In the following section, we delve into a comprehensive
overview of these two categories, highlighting their distinc-
tive features and contributions.

1) DEFORMABLE MODEL-BASED LUNG NODULE
SEGMENTATION
Deformable models, renowned for their ability to capture
complex shapes and boundaries, have found significant appli-
cation in image processing and computer vision, including the
segmentation of anatomical structures like lung nodules in CT
images [3]. These models excel in scenarios where objects
possess irregular boundaries or intricate contours, such as
lung nodules [3].

Farag et al. [4] introduced a method employing active
shape models (ASM) and template matching to detect lung
abnormalities. Incorporating Markov-Gibbs random field
(MGRF) models, [5] enhanced segmentation accuracy and
robustness by capturing nuanced appearance variations.

Itai et al. [6] presented a multi-step methodology that
involves pre-processing, lung segmentation, and nodule
extraction using deformable models. Gonçalves et al. [7]
explored Hessian-based techniques, employing a process that
encompasses pre-processing, computation of the Hessian
matrix, and rule-based elimination of false positives.

Shakir et al. [8] proposed a 3D segmentation tech-
nique combining hybrid level sets, leveraging intensity,
texture, and edge features to improve accuracy. In contrast,
Shakibapour et al. [9] adopted an unsupervised metaheuristic
search approach for segmentation, integrating shape, inten-
sity, and texture features through optimization techniques.

The approach by Roy et al. [10] stands out by merging a
level-set model, effectively combining intensity-based and
boundary-based attributes to accurately segment nodules
within lung regions. Rakesh and Mahesh [11] presented
a holistic approach involving thresholding, morphological
operations, and region growing, allowing for multiple stages
of nodule segmentation.

Savic et al. [12] adopted a fast-marching level set method,
refining lung nodule segmentation through an initial thresh-
old and subsequent fast-marching technique application.

2) DEEP LEARNING-BASED TECHNIQUES
Deep learning has emerged as a significant advancement
in various fields, revolutionizing the way complex patterns
are learned and interpreted from data. Within the realm of
medical imaging, particularly in the analysis of CT scans of
lungs, there is a prominent trend where deep learning models
are being incorporated for nodule segmentation models [13],
[14], [15], [16]. Thesemodels, including convolutional neural
networks (CNNs), harness large labeled datasets to discern
patterns that differentiate nodules from surrounding tissues.
After training, these models autonomously segment nod-
ules in new images. Several network architectures, such as
U-Net, Mask R-CNN, and Dual-Branch Residual Networks
(DBRN), have been proposed for this purpose.

Cao et al. [17] introduced the DBRN, harnessing two paral-
lel branches for feature extraction and fusion, which enhances
the representation of nodules. The work of Roy et al. [18]
bridged deep learning and shape-driven level sets, using a
CNN for nodule characteristic recognition and initializing the
level set method.

Huang et al. [19] presented a two-stage deep CNN-based
method for efficient nodule detection and segmentation.
Aresta et al. [20] proposed iW-Net, combining a U-Net-
based segmentation network with an interaction network to
allow users to interactively refine segmentation results.

Singadkar et al. [21] designed a deep deconvolutional
residual network that employs a two-pronged approach for
feature capture and strategic connections, improving nodule
segmentation. Dong et al. [22] introduced a novel multi-view
secondary input residual CNN that capitalizes on diverse
input angles for enhanced 3D lung tumor segmentation.

Xiao et al. [23] enhanced the conventional Res2Net with
3D U-Net, creating the 3D-Res2UNet model and incorporat-
ing multiple techniques for improved segmentation precision.
Shi et al. [24] comparedmultiscale residual U-Net with fuzzy
C-means clustering, demonstrating the superiority of the
former.

Khan et al. [25] proposed a novel framework merging seg-
mentation and classification through aVGG-SegNet architec-
ture, extracting deep attributes for improved nodule detection.
Yu et al. [26] introduced a comprehensive algorithm utilizing
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3D-Res U-Net and 3D-ResNet50 for segmentation and
recognition tasks.

Kido et al. [27] employed the N3D-FCN model for can-
didate extraction and refinement, achieving accurate lung
nodule segmentation. Lung PAYNet, a pyramidal deep learn-
ing architecture with attention mechanisms, was presented by
Bruntha et al. [28] for lung nodule segmentation.

Bhattacharjee et al. [29] introduced ResiUNet, combining
U-Net and ResNet152 to enhance segmentation accuracy.
Usman and Shin [30] proposed DEHA-Net, incorporating
hard attention networks and adaptive ROI mechanisms for
improved segmentation precision.

Halder and Dey [31] offered a framework integrating pre-
processing, segmentation, and classification modules, using
an innovative combination of techniques to address chal-
lenges at each stage.

Comparing these diverse techniques, it becomes evident
that deformable model-based approaches excel in managing
intricate contours, which are prevalent in lung nodules. On the
other hand, deep learning-based methods offer the advantage
of data-driven pattern recognition. Deformable model-based
approaches often require manual feature engineering, while
deep learning approaches automatically learn features from
data. Notably, certain approaches, such as Roy et al.’s fusion
of CNNs and shape-driven level sets [18], demonstrate the
potential for synergizing deep learning and traditional tech-
niques to achieve improved results.

B. CHALLENGES AND CONTRIBUTIONS
Despite their substantial progress, both deformable model-
based and deep learning-based strategies encounter spe-
cific challenges. Deformable model-based methods may
encounter difficulties in accurately segmenting certain nod-
ule types, such as cavity and lung wall nodules, along with
limitations in handling concave boundaries. Conversely, deep
learning-based approaches are hampered by imbalanced data,
where nodule size is considerably smaller than surrounding
tissues, leading to reduced accuracy. To surmount these con-
straints, we present a novel U-Net-based approach capable
of addressing the spectrum of nodule segmentation chal-
lenges. Additionally, we introduce a unique loss function that
rectifies imbalanced data, contributing to heightened segmen-
tation precision.

The key contributions of our work can be distilled into the
following categories:

1) Two-Level Joint Markov-Gibbs Random Field
(MGRF) Model: Our methodology revolves around
a pioneering two-level MGRF model, adept at distin-
guishing lung wall nodules and enhancing segmenta-
tion accuracy. This model addresses the nuances posed
by nodule resemblance, culminating in improved detec-
tion accuracy.

2) Precision in Region of Interest (ROI) Extraction: In
conjunction with the aforementioned model, we intro-
duce an innovative strategy employing a Fully Con-
volutional Network (FCN) for precise ROI extraction

around detected lung nodules. This precise extraction
minimizes the inclusion of extraneous tissues, aug-
menting the overall accuracy of segmentation.

3) 3D U-Net Architecture and Novel Loss Function:
Recognizing the intricacies of 3D nodule segmentation,
our custom 3D U-Net architecture is fortified with a
novel loss function. This fusion of specificity and sensi-
tivity metrics promotes a balanced outcome, mitigating
both over- and under-segmentation and contributing to
precise segmentation results.

4) Equitable Data Handling with Customized loss
Function: In addition to algorithmic innovations, our
methodology addresses the challenge of imbalanced
data through a tailored loss function. This function
ensures the representation of nodules of varying sizes,
fostering an inclusive and unbiased segmentation out-
come.

Throughout the forthcoming sections, our paper delves into
the technical details of our methodology, unraveling the
foundational steps that underpin accurate lung nodule extrac-
tion from CT images. By synergistically harnessing the
strengths of deformable models and deep learning, our
approach redefines lung nodule segmentation, promising
robustness, accuracy, and significant advancements in med-
ical diagnostics.

II. METHODS
Figure 1 illustrates the fundamental steps involved in the
segmentation of detected lung nodules from CT images.
These steps comprise: (i) separation of lung wall nodules
from the chest region using a two-level joint MGRF model
(ii) employing Fully Convolutional Network, a deep learning
network, to extract a region of interest (ROI) centered at the
detected lung nodules’ core, (iii) segmenting the detected
lung nodules from the CT images’ extracted ROI using 3D
U-Net with a novel loss function accounting for both speci-
ficity and sensitivity performance metrics to prevent over or
under-segmentation of the detected lung nodules, and (iv)
finally applying connectivity analysis to extract the largest
connected component that represents the segmented detected
lung nodules. Below, we will discuss in-details each of the
aforementioned steps.

A. AUTOMATIC EXTRACTION OF LUNG REGIONS
In order to enhance the accuracy of segmenting lung nodules,
particularly those located within the lung wall, the initial step
involves the separation of the lung region from the chest.
To accomplish this task, we have devised an approach that
performs lung region segmentation from CT images. Our
approach effectively captures the spatial correlation among
lung voxels and the intensity distribution of voxels within
lung tissues. For this purpose, we employ a two-level joint
MGRF Model. The MGRF model represents a joint prob-
abilistic distribution of the initial images and the targeted
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FIGURE 1. Proposed 3D-U-Net Framework for Pulmonary Nodule Segmentation: Beginning with Dataset Acquisition, followed by Lung Region Separation,
ROI Extraction, Nodule Segmentation, and culminating in Connected Component Extraction.

region maps, as shown below:

P(g,m) = P(g|m)P(m) (1)

where: a conditional distribution of images given a map,
denoted by P(g|m), and an unconditional distribution of
maps, denoted by P(m). To estimate the maximum a pos-
teriori probability (MAP) of the map, given an image g,
we maximize the log-likelihood function L(g,m) and obtain
m∗

= argmaxm L(g,m).

L(g,m) = logP(g|m) + logP(m) (2)

To estimate the map image (m), this segmentation approach
used a combination of a discrete Gaussian (LCDG) as a
model for the CT data (g) and an MGRF as a model for the
map image (m). For further mathematical details, please refer
to [32]. Figure 2 demonstrates the lung segmentation in three
directions - axial, sagittal, and coronal - using the two-level
joint MGRF model.

B. AUTOMATIC ROI EXTRACTION
To ensure minimal overlap with other structures within seg-
mented lung regions, we automated the selection of a region
of interest (ROI) centered around the detected lung nod-
ule’s centroid. This approach removes potential subjectivity
associated with manual decisions. Our use of a fixed-size
bounding box for region extraction not only eliminates the
need for resource-intensive algorithms, ensuring a uniform
computational load, but also enhances processing speed by
enabling predictable ROI extraction, efficient parallel pro-
cessing, and leveraging a U-Net-based network for rapid

FIGURE 2. Visualization of 3D lung segmentation results projected onto
2D axial (left), coronal (center), and sagittal (right) planes. The upper row
presents 2D profiles of the original CT images, while the lower row
showcases our segmentation results.

nodule detection and segmentation. Our workflow employs a
bounding box of dimensions 40 × 40 × 40 voxels for ROI
extraction, with the lung nodule centroid detected using a
U-Net-based Fully Convolutional Network (Net-1), as illus-
trated in Figure 3.

Net-1 is trained to segment lung nodules from CT images
within the extracted lung region. The ROI center is then
aligned with the 3D segmented lung nodule centroid. How-
ever, this step is solely utilized to estimate the centroid for
the cross-section with the maximum axial representation of
the detected lung nodule. Once the centroid is estimated,
a bounding box of size 40 × 40 × 40 is extracted around
it. It’s important to note that although training the Net-1
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network requires time and effort to tune its hyper-parameters,
the proposed ROI extraction method significantly outpaces
alternative approaches involving the Hough Transform.

C. SEGMENTATION OF LUNG NODULES
The 3DU-Net architecture has been extensively studied in the
literature, and its ability to handle 3D data, preserve spatial
information, and generate accurate segmentations makes it a
powerful tool for medical image analysis. This paper presents
a framework that proposes the utilization of the 3D U-Net
architecture for the segmentation of detected lung nodules
within the extracted ROIs (see Figure 1). The 3D U-Net
architecture is designed with an encoder-decoder network
structure, incorporating skip connections to allow integrating
both high- and low-level features. The encoder component,
responsible for downsampling the input image, consists of
convolutional and pooling layers. Conversely, the decoder
component gradually increases the spatial resolution of the
output using upsampling and convolutional layers. The skip
connections establish connections between corresponding
layers in the encoder and decoder, allowing for the integration
of local and global contexts. To generate a probability map for
the segmented lung nodules, a softmax activation function is
employed in the network’s final layer.

To extend the capabilities of the previous U-Net architec-
ture, a modified version called
3D-U-Net was introduced [33]. Unlike the fully 2D archi-
tecture of the original U-Net, the 3D U-Net analyzes the
entire image and produce full-resolution segmentations via
incorporating a sequence of a contraction encoder and an
expansion decoder. The input to the 3D U-Net is a 3D vol-
ume, employing 3D convolution, 3D maxpooling, and 3D
upconvolution layers. In contrast, the 2D U-Net exclusively
operates in the 2D domain.

The addition of max pooling layers in CNNs after individ-
ual convolutional layers aims to reduce the dimensionality
of the image by decreasing the number of pixels in the
output. This brings multiple benefits, including alleviating
the computational load by reducing the resolution of the
output from the convolutional layer. Simultaneously, the use
of max pooling enables the network to examine larger regions
of the image concurrently, while also reducing the risk of
overfitting.

On the other hand, the proposed 3D U-Net is a deep neural
network that produces compact volumetric segmentations by
training with a small number of annotated 2D slices. The
encoder pass shrinks the image at each step by doubling
the number of channels and halving the spatial image size.
The decoder pass in the proposed approach enlarges the
spatial dimensions of the image while gradually reducing
the number of feature channels, ultimately leading to the
labeling layer. Through the utilization of U-Net’s network
architecture and data augmentation techniques, the learning
models achieve impressive levels of abstraction, even with
limited annotated examples. The architecture consists of an

analysis pathway and a synthesis pathway, both comprising
four resolution stages. Within the analysis pathway, each
layer incorporates two convolutions with dimensions of 3 ×

3 × 3, followed by the rectified linear activation function
(ReLU). ReLU serves as a piecewise linear function that
directly outputs the input if it is positive, and otherwise
outputs zero. The popularity of ReLU stems from its ease
of training and its ability to enhance overall performance,
making it a widely used default activation function in various
neural networks. Subsequently, a max-pooling operation with
dimensions of 2×2×2 and strides of two in each dimension
is applied. The synthesis pathway begins each layer with an
upconvolution operation of 2 × 2 × 2 and strides of two in
each dimension. This is followed by two convolutions with
dimensions of 3×3×3, each accompanied by a ReLU activa-
tion. Additionally, shortcut connections are established from
layers in the analysis pathway with matching resolutions,
contributing crucial high-resolution features to the synthesis
pathway. Finally, a 1 × 1 × 1 convolution is employed in the
last layer to reduce the number of output channels to match
the desired number of labels, which in this instance is three.
The overall architecture consists of 19,069,955 parameters.
To further improve the performance of our model, we fine-
tune the 3D U-Net architecture using a novel adaptive loss
function.

D. LOSS FUNCTION
During training, the U-Net model updates its parameters
by backpropagating the gradient of the loss function with
respect to the model parameters. The goal is to minimize the
cross-entropy loss function, which leads to better accuracy
in predicting the segmentation masks. The Cross Entropy
loss function (LCE) is widely used to train models. However,
when training a model for segmentation using binary LCE,
it is crucial to ensure that the model accurately predicts each
class. Given that t represents the ground truth label, with
1 denoting object (the nodule) and 0 denoting background,
and p is the probability that a pixel belongs to the object class
t = 1, we can define the Cross Entropy loss value using the
following equation:

LCE = − t log(p)︸ ︷︷ ︸
Nodules

− (1 − t) log(1 − p)︸ ︷︷ ︸
Background

(3)

Cross-entropy loss treats all classes equally and assigns
equal importance to each class, regardless of how well it is
classified. Unfortunately, datasets with extreme imbalance
between the segmentation classes can cause the model to
underestimate the less represented class, resulting in poor
performance.

To address this problem, Focal Loss [34] allows for more
flexible predictions by providing the model with a margin
of error. The Focal Cross Entropy Loss (LFCE) enhances
the ability to differentiate between simple and complex
samples and addresses the class imbalance encountered by
single-stage detectors. The focal loss uses the factor γ that
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FIGURE 3. A visual representation for the architecture of the incorporated Fully Convolutional
Network for the ROI localization.

modulates the impact of the standard LCE. This modification
allows the model to focus more on challenging examples and
down-weigh the influence of simpler ones, thus enhancing
its ability to deal with class imbalance. The LFCE function is
shown in Equation 4.

LFCE = − t(1 − p)γ log(p)︸ ︷︷ ︸
Nodules

− (1 − t)pγ log(1 − p)︸ ︷︷ ︸
Background

(4)

However, despite its effectiveness in capturing com-
plex cases, the Focal Loss fails to fully address the
trade-off between sensitivity and specificity inherent in cross
entropy-based loss functions.

To address this issue, we propose a novel Adaptive Focal
Cross Entropy Loss (LAFCE), which merges the overall per-
formance of each subject within the training patch rather than
solely focusing on pixel losses. In other words, we aim to have
a loss function that can consider not only pixel-level losses
but also subject-level performance within the training patch.

The LAFCE loss function, as defined in Equation 5, lever-
ages adaptive factors βt that correspond to the reciprocal
within-class accuracy (sensitivity for t = 1 and specificity for
t = 0) at the current training epoch. Additionally, balancing
factors wt are introduced to further refine the loss function’s
behavior. These factors can be determined based on the fre-
quency of the ground truth class t in the training data or,
as in this study, tuned as hyperparameters through grid search
methodology along with cross-validation.

LAFCE = wtβtLFCE, (5)

The proposed LAFCE loss function effectively balances sensi-
tivity and specificity, which is particularly crucial in medical
image segmentation tasks. By incorporating the overall
subject-level performance within the training patch, LAFCE
takes into account class imbalances at both the pixel and sub-
ject levels. This approach allows for fine-grained control over

the contribution of each class to the overall loss, benefiting
the model’s ability to accurately segment objects in medical
images.

We applied the LAFCE loss function to optimize the
3D-U-Net architecture (Net-2) for lung nodule segmentation
on a dataset of lung CT scans. The architecture of the pro-
posed 3D-U-Net model is depicted in Figure 4. Input CT
scan regions of interest (ROIs) are pre-processed to match
the network’s expected input size. Training data undergo
augmentation through random rotations and flipping. The
encoder pathway of Net-2 consists of pairs of 3× 3× 3 con-
volutions followed by ReLU activations and 2 × 2 × 2 max
pooling layers with stride 2. Conversely, the synthesis path-
way employs 2 × 2 × 2 upsampling convolutional layers
followed by ReLU activations except for the final, softmax
layer.

E. NETWORK TRAINING AND HYPER-PARAMETERS
ESTIMATION
Before commencing network training, network hyper-
parameters need to be defined, which include variables
such as the number of kernels that determine the network
parameters that govern network training (i.e., architecture,
learning rate, optimizer, and epochs) and the loss function
hyperparameters (i.e., γ , w1, and w0) [35], [36]. In order
to enhance the performance and generalizability of the net-
work on new unseen data, a grid search methodology was
implemented to determine the optimal values for various
hyperparameters [37]. The search space for the initial number
of kernels was defined as 8, 16, 32, while the learning rate
of the Adam optimizer [38] was explored within the range
of 0.01, 0.001, 0.0001. The learning momentum was set to a
fixed value of 0.9, and the batch size was investigated across
the values of 8, 16, 32. Additionally, the number of epochs
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FIGURE 4. A visual representation for the architecture of the incorporated 3D U-Net with the proposed novel adaptive Focal Cross Entropy
loss (LAFCE).

ranged from 100 to 300, with a step size of 50, allowing
for a comprehensive exploration of the parameter space. This
meticulous grid search approach aimed to identify the optimal
configurations for these hyperparameters, ultimately maxi-
mizing the network’s performance and its ability to generalize
to new data. This process entails training the model with all
possible combinations of hyperparameter values, evaluating
the model’s performance, and selecting the combination of
hyper-parameters that would yield the best segmentation per-
formance.

F. IMPLEMENTATION CHALLENGES
The implementation of our methodology unveiled a spec-
trum of challenges, bridging the conceptual elegance of our
approach with the intricate realities of application.

Navigating through the initial stages, we confronted the
complexity of data preprocessing. This foundational step,
essential for refining inputs and enhancing segmentation
precision, demanded the creation of robust preprocessing
pipelines to ensure a consistent and accurate data stream
for subsequent phases. The integration of the two-level joint
MGRF model and deep learning techniques introduced intri-
cacies, requiring careful engineering to harmonize these
components seamlessly. Parameter tuning for the MGRF
model emerged as a nuanced challenge. Striking the right
balance between sensitivity and specificity to distinguish
lung wall nodules from the chest region demanded iterative
experimentation and validation. The intricacies of lung nod-
ule characteristics within the dataset underscored the need
for a well-calibrated model that could adapt to variations
effectively.

Parallelly, training deep learning models, notably the cus-
tom 3D U-Net architecture, showcased its computational

appetite. Handling the volumetric 3D data, coupled with the
intricacies of the architecture, necessitated judicious alloca-
tion of computational resources and meticulous fine-tuning.
Ensuring that the novel loss function converged effectively
further added to the training complexities. Additionally,
addressing data imbalances through a tailored loss function
unveiled its own set of considerations. Beyond the techni-
cal realm, ensuring the adaptability of our approach across
diverse datasets and real-world scenarios required a compre-
hensive validation strategy.

Finally, integrating our segmentation framework into clin-
ical workflows should face challenges transcending technical
boundaries. The final clinical application should be decided
by medical professionals, which highlights the need for
expert validation before clinical deployment. Hence, collabo-
rative efforts with medical professionals and technical teams
will be pivotal to ensure that our solution not only aligned
with medical standards but also offers a seamless user expe-
rience in actual medical settings.

III. EVALUATION METRICS
To evaluate the performance of the proposed segmenta-
tion framework, the Dice similarity coefficient (DSC), the
95th-percentile modified Hausdorff distance (HD), and the
absolute volume difference (AVD) were used [39]. A more
detailed explanation of these three metrics will be provided
in the following sections (refer to Fig. 5).

A. DICE SIMILARITY COEFFICIENT
The level of agreement between the segmented item and
the ground truth object is measured by the Dice similarity
coefficient (DSC). The DSC takes into account both False
Negative (FN) and False Positive (FP) segmentation errors,
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making it a useful metric for evaluating the segmentation of
small objects, which is the case in the proposed segmentation
approach. The formula for calculating the DSC is provided
in.

DSC =
2TP

2TP + FP + FN
(6)

where TP, FP, and FN represent the true positive, false pos-
itive, and false negative values, respectively. A higher DSC
value indicates superior segmentation performance, implying
that the proposed approach accurately delineates the desired
object with minimal error. This is reflected in lower values of
False Positive and False Negative, affirming the efficacy of
the segmentation method.

B. SENSITIVITY
The evaluation of segmentation algorithms often relies on the
sensitivity metric, which is widely utilized to assess their per-
formance. In the context of segmentation, sensitivity assesses
the algorithm’s ability to detect true positive pixels, indicating
its accuracy in outlining the target object. The sensitivity
metric is calculated as:

Sensitivity =
TP

TP + FN
(7)

C. SPECIFICITY
In addition to sensitivity, specificity is another important
metric for evaluating the performance of segmentation algo-
rithms. Specificity measures the algorithm’s accuracy in
identifying true negative pixels, reflecting its capacity to
exclude non-target pixels. The Specificitymetric is calculated
as:

Specificity =
TN

TN + FP
(8)

D. HAUSDORFF DISTANCE
The Hausdorff distance (HD) is another metric to evalu-
ate segmentation performance. To evaluate how well the
algorithm maintains the morphology of the object’s edges,
HD evaluates the distance between the borders of the ground
truth (A1) object and the segmented object (A2). HD specifi-
cally calculates the greatest separation between the furthest
point on one object and the nearest point on the other.
A higher HD value indicates a greater distance between the
boundaries of the ground truth object and the segmented
object, indicating poorer segmentation accuracy. The HD
metric is particularly useful in cases where segmentation
errors are concentrated along the object boundaries. HD is
calculated using the following formula:

HD(A1,A2) = max(h(A1,A2), h(A2,A1)) (9)

where A1 is the ground truth object, A2 is the segmented
object, and h(A1,A2) and h(A2,A1) are the directed euclidean
distance from A1 to A2 and from A2 to A1, respectively.
The 95th-percentile bidirectional Hausdorff Distance (HD) is
employed as a metric in this paper to quantify the accuracy of
segmentation.

E. ABSOLUTE VOLUME DIFFERENCE
The Absolute Volume Difference (AVD) calculates the abso-
lute difference between the volume of the segmented region
and the volume of the ground truth. This difference is then
divided by the volume of the ground truth and multiplied by
100 to express the result as a percentage. The AVD provides
an assessment of how closely the segmented volume aligns
with the ground truth, enabling a quantitative evaluation of
the accuracy of the segmentation algorithm. Since the seg-
mented region’s volume is more closely matched to the actual
data, a lower AVD indicates better segmentation accuracy.

IV. EXPERIMENTAL RESULTS
We conducted our assessment using lung nodules sourced
from the benchmark Lung Image Database Consortium
and Image Database Resource Initiative (LIDC-IDRI)
dataset [40], a publicly available resource for research
purposes. The LIDC-IDRI database comprises a curated com-
pilation of CT scans, produced by a diverse array of scanner
manufacturers including GE, Philips, Siemens, and Toshiba.
These scans were acquired under varying x-ray tube current
settings, ranging from 40 to 627 mA, and tube voltage values
of 120, 130, 135, and 140 kV. The dataset also encompasses a
range of slice thicknesses, spanning from 0.6 to 5.0 mm, with
corresponding reconstruction intervals varying from 0.45 to
5.0mm. These CT scans have beenmeticulously annotated by
four radiologists from seven research organizations and eight
companies. For the annotation process, each nodule under-
went a comprehensive assessment process, which involved
collaborative discussions among the radiologists to determine
the final grading, segmentation boundaries, and clinical fea-
tures. Notably, the nodules were graded using a discrete scale
ranging from 0 to 5, signifying different levels of severity.
A grade of 0 indicates the least severe malignancy status.

To construct our dataset, we worked closely with our med-
ical collaborators and focused on selecting nodules with a
minimum diameter of 3 mm. We placed emphasis on nodules
that demonstrated a satisfactory level of agreement among
the radiologists. It is important to emphasize that the final
assessment of nodules relies on subjective grading rather than
biopsy confirmation. To establish the ultimate grade for each
nodule, we computed the average grading assigned by the
four radiologists. Nodules with an average grade of less than
3.5 were classified as benign, while those with an average
grade of 3.5 or higher were classified as malignant. This
meticulous criterion led to the curation of a well-balanced
dataset comprising 679 nodules, with 364 (53.6%) classified
as benign and 315 (46.4%) classified as malignant.

For accurate segmentation, the final boundaries of the
nodules were determined by identifying the common areas
among the four segmentation boundary annotations provided
by the radiologists. These refined segmentation boundaries
represent the ground truth segmentation which are used for
a comprehensive assessment of our proposed lung nodule
segmentation approach. Finally, to ensure a robust evaluation,
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FIGURE 5. Schematic illustration of evaluation metrics calculations. On the right, the use of the 95th-percentile
bidirectional Hausdorff Distance is depicted, with A1 representing the ground truth object and A2 the segmented object.
H(A1, A2) and H(A2, A1) denote the directed Euclidean distances between these objects. On the left, accuracy metrics
including true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) are detailed.

TABLE 1. The incorporated dataset categorized (Five categories) based on
the median diameter of the whole nodule and the malignancy status.

we partitioned the dataset into two subsets: 452 subjects were
allocated for training and validation, while the remaining
227 subjects were reserved for testing. Table 1 summarizes
and groups the dataset based on the median diameter and the
malignancy staus.

Figures 6, 7, and 8 provides visual examples of the segmen-
tation results obtained using the proposed approach with the
LAFCE loss function on three subjects with different nodules
types (i.e., solid, cavity, and lung wall). The segmentation
results show that our approach achieved accurate and con-
sistent segmentation of the nodules, which are marked with
red boundaries compared to the blue-marked ground truth.
The segmentation results show that our approach achieved
good performance in accurately identifying the boundaries
of nodules with different types, even in cases where the
nodules were irregularly shaped or had low contrast with the
surrounding tissues.

The approach was quantitatively evaluated in terms of the
aforementioned evaluation metrics, i.e., accuracy, Dice score,
specificity, sensitivity, HD95, HD, and AVD.

We first performed segmentation using Net-2 along with
the proposed loss function (LAFCE). Then, for comparison,
we experimented with two standard loss functions (i.e., LCE
and LFCE) to obtain the optimization of results. To further val-
idate the generalization abilities of the proposed model with

the novel loss function (LAFCE), it was externally tested on
a locally acquired dataset (with obtained Informed Consent)
of 50 CT scans. These results are tabulated at Table 2.
Our model trained with the LCE loss function achieved an

accuracy of 95.34% ± 5.57% on the LIDC/IDRI database.
The Dice score was 62.57% ± 24.71%, indicating the
degree of overlap between the predicted segmentation and
the ground truth. The specificity, measuring the ability to
correctly identify the background, reached 99.59% ± 0.76%,
while the sensitivity, capturing the capability to detect lung
nodules, was 53.20% ± 25.00%. The HD and 95th-HD, rep-
resenting the maximum and 95th percentile of the Hausdorff
distance, were 6.06 mm± 4.46 mm and 5.39 mm± 4.25 mm,
respectively. The AVD, indicating the average volume differ-
ence between the predicted and ground truth segmentations,
was 21.36% ± 29.48%.

Using the LFCE loss function, themodel achieved improved
performance across multiple metrics. The accuracy increased
to 95.58% ± 3.95%, while the Dice score significantly
improved to 81.71% ± 20.92%. The specificity remained
high at 97.92% ± 1.37%, and the sensitivity improved to
77.58% ± 23.69%. The HD and 95th-HD were 6.16 mm ±

4.67 mm and 3.12 mm ± 2.46 mm, respectively. The AVD
decreased to 12.99

Our proposed LAFCE loss function further enhanced the
performance of the model. The accuracy reached 95.81% ±

2.78%, while the Dice score significantly improved to
93.64% ± 5.20%. The specificity was 95.99% ± 2.90%, and
the sensitivity achieved remarkable accuracy of 93.30% ±

07.72%. The HD and 95th-HD were reduced to 4.41 mm ±

2.05 mm and 1.22 mm ± 0.58 mm, respectively. The AVD
was substantially reduced to 5.47% ± 3.03%. To further val-
idate the generalizability of our model, we conducted testing
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FIGURE 6. Lung nodules segmentation results for a solid nodule subject: original image cross-sections (first column),
extracted lungs (second column), ROIs (third column), and final segmentation (fourth column) with color-coded edges (blue
for ground truth, red for output). Visualized in 2D axial (first row), coronal (second row), and sagittal (third row) views.

on the independent dataset using the LAFCE loss function. The
results remained consistent, with an accuracy of 95.79% ±

3.11% and a Dice score of 94.09% ± 04.16%. The speci-
ficity, sensitivity, HD, 95th-HD, and AVD were 95.80% ±

3.28%, 94.18% ± 05.59%, 5.52 mm ± 4.22 mm, 1.43 mm ±

1.14 mm, and 6.46% ± 04.74%, respectively.
The results demonstrate the effectiveness of our proposed

approach in accurately segmenting lung nodules. The LAFCE
loss function significantly improved the accuracy, Dice score,
and other performance metrics, indicating its superiority in
accurately delineating lung nodules.

V. DISCUSSION
In this study, we present a novel approach that combines
advanced deep learning techniques with connectivity analysis
to achieve precise and reliable segmentation of lung nodules
in CT images. Our method addresses the challenges posed by
complex nodule shapes and concave boundaries, providing
accurate results.

Our proposed approach leverages the power of deep learn-
ing algorithms, specifically a Fully Convolutional Network
(FCN), which allows for efficient and effective extraction of
relevant features. By focusing on the ROI centered on the
identified lung nodules, our approach captures the intricate
details necessary for accurate segmentation.

Segmentation of lung nodules is inherently challenging
due to their variability in size, shape, and texture. Our study

employed a state-of-the-art 3D U-Net architecture, known
for its ability to capture spatial dependencies in medical
images. Furthermore, we introduced a novel adaptive loss
function, tailored specifically for lung nodule segmentation,
to optimize the training process and enhance the accuracy
of our model. This loss function takes into account both the
specificity and sensitivity performance metrics, allowing for
better separation between nodular and non-nodular regions.

The experimental results obtained from the LIDC/IDRI
database and the locally acquired dataset validate the effec-
tiveness of our proposed approach. The segmentation results
showcased in Figures 6, 7, and 8 demonstrate the capability
of our model to accurately delineate lung nodules, as indi-
cated by the blue contours representing the ground truth
annotations and the red contours representing the predicted
segmentations.

Quantitative evaluation of our approach revealed promis-
ing results. The LAFCE loss function outperformed the other
tested loss functions, achieving an accuracy of 95.81% ±

2.78% on the LIDC/IDRI database and a Dice score of
93.64% ± 5.20%. These results highlight the ability of our
model to accurately capture the nodular regions while main-
taining a high specificity of 95.99%± 2.90%. The sensitivity
of 93.30% ± 07.72% further demonstrates the model’s pro-
ficiency in detecting lung nodules. The performance metrics
of HD, 95th-HD, and AVD also provide valuable insights into
the accuracy and robustness of our approach of accurately
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FIGURE 7. Lung nodules segmentation results for a cavity nodule subject: original image cross-sections (first column),
extracted lungs (second column), ROIs (third column), and final segmentation (fourth column) with color-coded edges (blue
for ground truth, red for output). Visualized in 2D axial (first row), coronal (second row), and sagittal (third row) views.

TABLE 2. Quantitative evaluation results on the LIDC/IDRI database and the locally-acquired dataset in terms of accuracy, Dice score, specificity,
sensitivity, HD95, HD, and AVD. The evaluation involves two variants: LAFCE and LAFCE Test, both employing the proposed Adaptive Focal Cross Entropy
loss function. In contrast, LCE and LFCE employ traditional loss functions. (Cross Entropy and Focal Cross Entropy, respectively.)

delineating the nodules from both volumetric andmorpholog-
ical aspects. The reduced HD and 95th-HD values of 4.41 mm
± 2.05 mm and 1.22 mm ± 0.58 mm, respectively, indicate
that our model can closely approximate the boundaries of
the lung nodules. The low AVD of 5.47% ± 3.03% signi-
fies the minimal volume difference between the predicted
and ground truth segmentations. Importantly, our approach
exhibits strong generalizability as demonstrated by the con-
sistent results on an independent dataset using the LAFCE loss
function. The accuracy, Dice score, specificity, and sensitivity
metrics remained consistently high, validating the reliability
of our model across different datasets.

One of the noteworthy aspects of our approach is its abil-
ity to handle various types of lung nodules encountered in
clinical practice, including solid nodules, cavity nodules, and
lung wall nodules. These types of nodules pose challenges
due to their irregular shapes and low contrast compared to
the surrounding tissues. However, our deep learning frame-
work combined with connectivity analysis proved highly

effective in achieving consistent and accurate segmentation,
even in these complex scenarios. This capability sets our
approach apart from traditional deformable models, which
often struggle to accurately segment diverse nodule types.
Additionally, deep learning-based approaches have limita-
tions, and imbalanced data, where the size of lung nodules
is considerably smaller compared to the surrounding tissues,
can pose challenges. To address this limitation, we introduced
the Adaptive Focal Cross-Entropy Loss (LAFCE), a novel
loss function tailored to improve segmentation accuracy.
By incorporating both specificity and sensitivity metrics,
this loss function effectively mitigates problems related to
over- or under-segmentation, resulting in improved segmen-
tation accuracy.

One of the challenges in lung nodule segmentation lies
in accurately separating nodules from vascular connections.
In some cases, our approach may exhibit inclusion of
vascular connections in the segmented nodule, leading to
false positives. It is essential to acknowledge the potential
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FIGURE 8. Lung nodules segmentation results for a wall nodule subject: original image cross-sections (first column),
extracted lungs (second column), ROIs (third column), and final segmentation (fourth column) with color-coded edges (blue
for ground truth, red for output). Visualized in 2D axial (first row), coronal (second row), and sagittal (third row) views.

FIGURE 9. Mis-segmentation of vascular connections as lung nodules: Segmentation results for nine 2D samples from
three different nodules. The first, third, and fifth columns display the ROIs of the three subjects. The second, fourth, and
sixth columns show the final segmentation with color-coded edges, where blue represents the ground truth and red
represents the output.

consequences of considering vascular connections as nod-
ules, these false positives can result in unnecessary interven-
tions or diagnostic confusion, potentially impacting patient
management and treatment decisions. Therefore, it is cru-
cial to continue exploring solutions to improve the accuracy
and reliability of lung nodule segmentation, specifically
addressing the issue of delineating nodules from vascular

structures. To overcome this challenge, further research is
needed to develop advanced algorithms capable of accurately
separating nodules from vascular structures. Algorithms that
leverage not only the intensity information but also con-
sider the spatial relationships and contextual information can
be explored to improve the discrimination between these
structures. For instance, incorporating vessels’ analysis and
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tracking, or other advanced image processing techniques can
enhance the ability to distinguish nodules from vascular con-
nections based on their distinct characteristics.

Figure 9 present an illustrative example where the vascular
connection is incorrectly included as part of the segmented
nodule.

By addressing this challenge, we can improve the relia-
bility and clinical applicability of lung nodule segmentation
algorithms. Advancements in this area will have a significant
impact on early detection, diagnosis, and treatment planning
for lung cancer patients.

Additionally, the field of transfer learning holds promise
for improving the performance of deep learning models in
medical imaging. The pretraining of models on large-scale
datasets, such as ImageNet, followed by fine-tuning on spe-
cific medical datasets, has shown potential in improving both
accuracy and efficiency. Exploring transfer learning tech-
niques could enhance the generalizability of our model and
facilitate its adoption in clinical practice.

VI. CONCLUSION
In this study, we proposed a novel approach for automatic
segmentation of lung nodules using CT images. Our approach
combines a two-level joint MGRF, deep learning, and
connectivity analysis to accurately segment nodules from sur-
rounding tissues, even when nodules have complex shapes or
concave boundaries. We developed a new adaptive loss func-
tion, LAFCE, which helps prevent over/under-segmentation of
the detected lung nodules. The model exhibits high accuracy,
reliability, and generalizability in segmenting lung nodules,
as demonstrated by the superior results on the LIDC/IDRI
database and our locally acquired dataset.

This accurate segmentation should aid clinicians to make
informed decisions regarding treatment strategies, leading
to improved patient management and survival rates. Our
approach holds promise for enhancing patient outcomes and
contributing to ongoing efforts in refining medical imaging
techniques for lung cancer management.
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