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ABSTRACT This study proposes robust convolutional neural network (CNN)-based automatic modulation
classification (AMC) techniques. Traditional AMCs may be classified into two types: those that rely on ML
(maximum likelihood-based AMCs) and those that rely on features. Numerous studies have been conducted
on feature-based automatic modulation classification techniques. The current feature-based AMCs lack
generalization capability and frequently target a small group of modulation techniques. The current paper
develops three different CNN-based AMCs, each with a different classification layer (CL). The adopted
classification layers are mean absolute error-based CL, a sum of squared errors-based CL, and crossentropy-
based CL. The developed techniques can classify the received signals without feature extraction, where they
can learn the features from the transmitted signals automatically during the offline training process, thus
eliminating the necessity for feature extraction. A comparison study was done for the proposed CNN-based
AMCs with three optimization algorithms at two signal-to-noise ratios. The proposed AMCs attain a true
classification accuracy of up to 100% depending on the optimizer and loss function-base CL.

INDEX TERMS Modulation classification, deep learning, convolutional neural network, wireless signal.

I. INTRODUCTION
Signal modulation is an essential process in wireless commu-
nication systems.Modulation recognition tasks are frequently
used in signal detection and demodulation. Appropriate
demodulation of the received signal is essential for its sub-
sequent processing. However, as wireless communication
methods develop and more sophisticated needs emerge, the
number of modulation schemes and parameters used in wire-
less communication systems increases dramatically. There-
fore, the difficulty of correctly identifying and categorizing
modulation techniques is growing. Recognizing the type of
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approving it for publication was Amjad Ali.

modulation used in transmitted signals is essential for demod-
ulating and recovering the originally sent signals, which is
what automatic modulation classifier (AMC) is all about
[1]. Therefore, studying modulation recognition is crucial in
studying receiver technologies for non-cooperative commu-
nication networks.Modulation classification is often a crucial
communication problem in civilian and military applications
such as spectrum management, signal identification, elec-
tronic warfare, and threat analysis. To create highly efficient
jamming signals, it is critical in military communication
systems to detect the modulation type [2].

Traditional modulation classification techniques fre-
quently require a separate control channel since they rely on
the user’s prior knowledge of signal and transmission channel
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parameters [3]. Therefore, automatic modulation classifica-
tion is necessary for wireless communication systems, where
modulation schemes are likely to shift often due to environ-
mental changes. For this reason, innovative techniques for
detecting and classifying the modulation scheme are under
consideration.

Likelihood-based (LB) [4], [5] and feature-based (FB) [6]
algorithms are the two main types of conventional AMC
methods. Theoretically, LB-based AMC techniques can find
the optimal solution, but they are computationally intensive
and necessitate background knowledge from transmitters.
However, FB-based AMC techniques [7] do not require
prior knowledge and can generate subpar solutions with
significantly lower processing costs. The two most crucial
components of FB methods are the feature extractor and the
classifier. Traditionally the features extractor and classifier
are separately built for an AMC system. For example, the
envelope amplitude of the signal, the power spectral vari-
ance of the signal, and the mean of absolute value signal
frequency were extracted in [8] to describe a signal from
several different aspects. Yang and Soliman used the phase
probability density function for AMC [9]. Meanwhile, tradi-
tional methods usually combine instantaneous and statistical
features. Shermeh used the fusion of high-order moments
and cumulants with instantaneous features for AMC [10].
The features can describe the signals using both absolute
and relative levels. In addition, the high-order features can
eliminate the effects of noise. The eighth statistic is widely
used in several methods. Panagiotou et al. considered AMC
as a multiple-hypothesis test problem and used decision
theory to obtain the results [11]. They assumed that the
phase of AWGN was random and dealt with the signals
as random variables with a known probability distribu-
tion. Finally, the generalized or average likelihood ratio test
was used to obtain the classification results by the thresh-
old. The classifiers were then used in the AMC system.
In [12], shallow neural networks and SVM were used as
classifiers. In [13], modulation modes were classified using
CNNs with high-level abstract learning capabilities. How-
ever, the traditional classifiers are let down either by their
capacity for feature representation or by requiring complete
prior knowledge, e.g., clock frequency offset. This approach
has led to negative influences on the classification perfor-
mance. Many different aspects have been investigated and
implemented in AMC algorithms. For instance, in a time
domain, instantaneous amplitude, frequency, and phase were
utilized to extract instantaneous characteristics [14], [15].
Transformation-based feature extraction was computed using
Fourier and wavelet transforms [16], [17]. Several types of
nonlinear classifiers are utilized in AMC, such as neural
networks [18] and support vector machines (SVM) with
kernels [19]. SVM is believed to offer advantages and can
also provide improved generalization capability when the
number of samples is limited [20]. Therefore, in recent
years, SVM has become the preferred classifier for AMC

problems. Standard signal processing, sophisticated signal
processing [21], and a machine learning approach [22] were
all used to address AMC.

An intelligent communication concept has been proposed
recently. It is envisaged that a smart receiver can decode the
message data and locate the appropriate signal for every given
application [23]. Deep Learning Neural Networks (DLNNs)
are a successful type of machine learning due to their supe-
rior categorization abilities [24]. There are several fields
where DLNNs have been put to use, including image clas-
sification [25], [26] and natural language processing [27].
DLNNs are used in communications systems because they
have many benefits. First of all, communications systems
have the big data that DLNNs require because there are so
many communications devices with very high data rates [28].
Second, DLNNs can extract features independently, avoiding
the time-consuming effort of manual feature selection. Third,
because DL is continuously developing, it has excellent
potential in communications fields.

Deep learning has recently emerged as a novel area of
application in the realm of wireless communication systems.
One of the most used DLNN architectures, the Convolu-
tional Neural Network (CNN), is used to classify different
modulation types.

Recently, accompanied by a probabilistic-based output
layer, sparse autoencoders based on deep neural networks
(DNNs) were introduced for AMC [29]. These methods
showed the promising potential of the deep learning model
for the AMC task. The advantage of CNNs is achieved
with local connections and tied weights followed by some
form of pooling which results in translation-invariant fea-
tures. Furthermore, another benefit is that they have fewer
parameters than fully connected networks with the same
number of hidden units. In [30], Oshea et al. created a
dataset with 24 different types of modulation, known as
RadioML 2018.01A, and achieved high classification perfor-
mance using convolutional neural networks specifically using
residual connections within the network (ResNet). In [31], the
authors treated the communication signal as 2-dimensional
data, similar to an image, and took it as a matrix to a narrow
2D CNN for AMC. They also studied the adaptation of
CNN to the time domain in-phase and quadrature (IQ) data.
A 3D CNN was used to process video information in [32].
The result showed that CNN multi-frames were considerably
more suitable than a single-frame network for video cogni-
tion. Recently, Zhang et al. applied a one-two-one network
to compression artifact reduction in remote sensing [33].
This motivates us to solve the AMC problem. CNN is fed
modulated signals by converting them into grid-like topo-
logical data, such as images of constellation diagrams [34],
[35], [36]. Then the trained CNN is used to recognize radio
modulation [37].

This article presents three automatic modulation classi-
fiers based on convolutional neural networks. Each CNN-
based AMC architecture employs one of three proposed
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FIGURE 1. The block structure of the suggested receiver system.

classification layers (CL): mean absolute error-based CL,
sum of squared errors-based CL, and crossentropyex-based
CL. The performance of the proposed CNN-basedAMCswill
be investigated using three optimization algorithms, namely:
Stochastic Gradient Descent with Momentum (SGdm),
Adaptive Moment Estimation (Adam), and Root Mean
Square Propagation (RMSProp).

The primary contributions of this paper can be summarized
as follows:

1- The paper briefly reviews traditional AMC methods,
where the underlying idea of likelihood-based and feature-
based approaches is presented. Accordingly, their inherent
drawbacks are pointed out for discussion.

2- The paper presents three automatic modulation clas-
sifiers based on convolutional neural networks. Each
CNN-basedAMCarchitecture employs one of three proposed
classification layers (CL): mean absolute error-based CL,
sum of squared errors-based CL, and crossentropyex-based
CL.

3- The collection of modulations studied in this paper
is more intricate and includes a total of 11 different types,
in contrast to most current approaches, which only identify a
small number of modulation types.

4- The proposed AMCs achieve true classification accu-
racy that reaches 100% depending on the optimizer and loss
function-base CL.

5- The numerical results show that the true classification
accuracy increases as the SNR increases.

6- The presented results demonstrate the importance of
studying the effect of using different optimizers and loss
functions on the performance of CNN-based AMCs.

7- Finally, the paper highlights several challenging issues
and future research directions on the topic of AMC.

The article continues as follows. Section II details the
model’s foundations and our proposed methodology, while
Section III presents simulation results and discussion.
Then, the paper is summarized and afterward concluded in
Section IV.

II. METHODS
AMC is a process performed by the receiver between signal
detection and demodulation. Figure 1 illustrates the entire
structure of the proposed AMC technique compared to the
conventional AMC approach.

As depicted in Figure 1, the intermediate frequency (IF)
signals are sampled and quantized during the pre-processing

FIGURE 2. A CNN-based modulation classifier’s architecture.

stage. The techniques within the dashed frame, such as
feature extraction, feature selection, and classifier, are sub-
stituted by the mentioned CNN. Prior to implementation,
CNNs are pre-trained offline using a sufficient sample size.
Moreover, CNN has the ability to learn features that adjust to
the situation as long as the SNR range of the communication
channel is known.

A. MODEL OF THE SIGNAL
In this article, signals are processed in IF and are corrupted
by AWGN [38]. The received signal is then written by.

r(t) = s(t) + n(t) (1)

where r(t) is the received signal, s(t) is the transmitted signal
of different modulation types, n(t) is AWGN, and SNR is
defined as qn/qs (qs stands for the signal power and qn stands
for the noise power). This study’s modulation set consists
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of the following: BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM,
4-PAM, GFSK, CPFSK, B-FM, DSB-AM, SSB-AM signals.

B. CONVOLUTIONAL NEURAL NETWORK
In simple terms, a CNN is a type of neural network in
which at least one layer conducts a convolution instead of
a matrix multiplication. The typical CNN structure includes
three types of layers: convolutional, pooling, and fully con-
nected. A supplementary softmax regression layer also serves
as a classifier in the final CNN layer, specifically used for
supervised learning purposes. [39].

1) CONVOLUTIONAL LAYER
In this research, a CNN is introduced, comprising six con-
volutional layers and one fully connected layer [40]. Except
for the last, each convolution layer is preceded by a batch
normalization layer, a rectified linear unit (ReLU) activation
layer [41], and amax pooling layer. However, in the final con-
volution layer, an average pooling layer is employed instead
of the max pooling layer, and the output layer is activated
using the softmax function.

2) MAX-POOLING AND GLOBAL AVERAGE POOLING
The pooling layer is an integral part of CNN and holds
significant importance. As mentioned earlier, the convolu-
tional layer conducts multiple convolutions to produce a
sequence of outputs. Subsequently, each of these outputs
undergoes processing by a nonlinear activation function
(ReLU) defined as:

Zout = 0max(0, ωZin + γ ) (2)

In this equation, Zin, Zout , ω, and γ represent the input
and output of the function, weight, and bias, respectively.
After this activation step, the layer’s output undergoes further
adjustments through a pooling function.

A pooling function substitutes the output at a specific
position in the network with a summary statistic derived from
related outputs [42]. In this research, the pooling technique
utilized is max pooling, which selects the highest output
within a pooling window. Following the last convolutional
layer, global average pooling [43] is employed. This method
calculates the average of each feature map, and the resulting
output vector is directly fed into the softmax layer.

3) BATCH NORMALIZATION
The batch normalization (BN) layer expedites the training of
deep networks by mitigating the issue of internal co-variate
shift [44], [45]. In training, the internal co-variate shift refers
to the alterations in the distribution of each layer’s output,
often induced by imbalanced nonlinear mapping (e.g., ReLU
activation).

4) SOFTMAX REGRESSION
In the context of supervised learning, the last layer of a CNN
is a softmax regression layer. Illustrated in Figure 2 and

detailed in Table 1, the softmax regression serves as a multi-
class classifier, operating similarly to logistic regression and
providing probability distributions for the different classes.

III. NUMERICAL RESULTS AND DISCUSSION
The data set that was used in this study was initially created.
The data set has 10,000 frames for each type of modulation
that is studied. The data set is split into three parts: The pro-
posed DNN-based AMCs utilize 80% of frames for training,
10% for validation, and the remaining 10% for testing. During
the training phase of DNN, the training and validation frames
are used. Test frames are used to figure out the accuracy of the
final classification. Each frame has 1024 samples and runs at
a rate of 200 kHz. In digital modulation types, one symbol
is composed of eight samples. The network makes decisions
based on a single frame instead of a series of frames. Assume
that the center frequency of the digital and analogue types
of modulation is 900 MHz and 100 MHz, respectively. The
parameters of modulation are shown in Table 2

In this section, a comparative study will be conducted for
the three proposedCNN-basedAMCs. The architecture of the
three classifiers is the same, except for the final classification
layer. Each classification layer is based on a different loss
function. The adopted CLs are novel mean absolute error-
based CL, a sum of squared errors-based CL; and the most
used crossentropyex-based CL. The loss function can be
expressed as follows [46]:

crossentropyex = −

N∑
i=1

c∑
j=1

xij(k)log(X̂ij(k)) (3)

SSE =

N∑
i=1

c∑
j=1

(Xij(k) − X̂ij(k))2 (4)

MAE =

N∑
i=1

c∑
j=1

∥∥Xij(k) − X̂ij(k)
∥∥ /N (5)

where N is the sample number, c is the class number, Xij is
the ith transmitted data sample for the jth class and X̂ij is the
CNN-based AMC response for sample i for class j. In order
to figure out which CNN-based AMC is the strongest.
Using three optimizers, the performance of the proposed
CNN-based AMCs will be investigated in terms of classifica-
tion accuracy. Stochastic Gradient Descent with Momentum
(SGdm), Adaptive Moment Estimation (Adam), and Root
Mean Square Propagation are these optimizers (RMSProp).
This experiment will be conducted at SNRs of 10 dB and
30 dB. In the scope of results analysis, we have used:

1- Confusion matrices for CNN-based AMCs using differ-
ent optimizers, and loss functions-based classification layers.

2- Classification accuracy for all investigated CNN-based
AMCs using different optimizers and loss functions-based
classification layers. While in the scope of the validation of
the results we have followed:

1-Accuracy validation curves obtained during the training
process.
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TABLE 1. CNN’s organization.

TABLE 2. Modulation parameter.

2- Loss validation curves obtained during the training
process.

A. RESULTS AT SNR = 10 dB
At SNR = 10 dB, the suggested CNN-based AMCs are used
to directly classify signals. Figures 3-5, show the normalized
classification accuracy of each modulated signal including
16QAM, 64QAM, 8PSK, B-FM, BPSK, CPFSK, DSB-AM,
GFSK, PAM4, QPSK, SSB-AM using the 9 CNN-based
AMCs at SNR= 10 dB. The y-axis represents the true class of
the modulated signals, and the x-axis represents the predicted
class gotten from the examined CNN-based AMCs. The true
classification accuracy is indicated by the diagonal values.
Table 3 collects all classification accuracy for more comfort
tracking.

For 16-QAM modulation, CNN(SGdm,MAE) achieves a
classification accuracy of 86.5% while CNN(Adam,MAE),
CNN(RMSProp,MAE) and other CNN-based automatic mod-
ulation classifiers (AMCs) failed to classify 16-QAM
modulated signal correctly. For 64-QAM modulation,
CNN(RMSProp,MAE) achieves accuracy of 94.0%, also
CNN(Adam,MAE) provides a reasonable classification with
86.1% accuracy, but CNN(SGdm,MAE) failed to classify cor-
rectly the 64-QAM modulated signal. For 8-PSK mod-
ulation, CNN(Adam,Crossentropyex) achieves an accuracy of
74.4%. For B-FM modulation, CNN(SGdm,Crossentropyex),
CNN(Adam,Crossentropyex), and CNN(RMSProp,Crossentropyex) pro-
vide classification accuracy of 99.7%, 99.5%, and 99.3%
respectively. Also, the rest of investigated CNN-based
AMCs provide satisfactory performance. For BPSK mod-
ulation, CNN(RMSProp,MAE), CNN(Adam,Crossentropyex), and
CNN(RMSProp,Crossentropyex) achieve classification accuracy
of 90.7%, 90.4% and 90.0% respectively. For CPFSK
modulation, all examined classifiers provide a competi-
tive classification performance of accuracy in the range of
89% to 98.2%. For DSB-AM modulation CNN(SGdm,MAE)
and CNN(Adam,MAE) failed to correctly classify, while
CNN(RMSProp,MAE) peaks all 100% accuracy. For GFSK

FIGURE 3. Confusion matrices for CNN-based AMCs using SGdm
optimizer and at SNR = 10dB: (A) crossentropyex-based CL, (B)
Steady-state Embedding (SSE)-basedCL and (C) Mean absolute error
(MAE)-based CL.

modulation, all examined classifiers provide approxi-
mately 99% classification accuracy. For PAM4 modulation,
CNN(RMSProp,MAE) and CNN(SGdm,MAE) failed to classify
correctly, while its peers provide competitive performances
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TABLE 3. Classification accuracy for all investigated CNN-based AMCs using different optimizers and loss functions-based CLs at SNR = 10dB.

FIGURE 4. Confusion matrices for CNN-based AMCs using Adam
optimizer and at SNR = 10dB: (A) crossentropyex-based CL, (B) SSE-based
CL and (C)MAE-based CL.

of accuracy in the range of 84.1% to 89.6%. For QPSK
modulation CNN(SGdm,MAE) and CNN(SGdm,MAE) achieve
modulation accuracies of 77.0% and 78.3%, respectively.
For SSB-AM modulation, CNN(RMSProp,MAE) failed to

FIGURE 5. Confusion matrices for CNN-based AMCs using RMSProp
optimizer and at SNR = 10dB: (A) crossentropyex-based CL, (B)SSE-based
CL, and (C)MAE-based CL.

correctly classify, while CNN(SGdm,MAE) and CNN(Adam,MAE)
achieve modulation accuracies of 99.9% and 100%,
respectively.
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TABLE 4. Classification accuracy for all investigated CNN-based AMCs using different optimizers and loss functions-based CLs at SNR = 30dB.

FIGURE 6. Confusion matrices for CNN-based AMCs using SGdm
optimizer and at SNR = 10dB: (A) crossentropyex-based CL, (B) SSE-based
CL, and (C) MAE-based CL.

B. RESULTS AT SNR = 30 dB
In this subsection, signals are directly classified by proposed
CNN-based AMCs, at SNR = 30 dB. Figures 6-8 show the
normalized classification for each modulated signals using

FIGURE 7. Confusion matrices for CNN-based AMCs using Adam
optimizer and at SNR = 10dB: (A) crossentropyex-based CL, (B) SSE-based
CL and (C) MAE-based CL.

the developed CNN-based AMCs. Table 4, lists all true
classification accuracies at SNR = 30dB.
For 16-QAM modulation, CNN(RMSProp,MAE),

CNN(SGdm,MAE) provides classification accuracies of 99.4%
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TABLE 5. Advantages and disadvantages of proposed CNN-based AMCs in comparison to the traditional all AMCs.

FIGURE 8. Confusion matrices for CNN-based AMCs using RMSProp
optimizer and at SNR = 10dB: (A) crossentropyex-based CL, (B) SSE-based
CL, and (C) MAE-based CL.

and 97.8%, respectively. For 64-QAM modulation,
CNN(Adam,MAE) achieves an accuracy of 98.8%. For 8-PSK

modulation, CNN(Adam,MAE) achieves an accuracy of 96%.
For B-FM modulation, all examined classifiers provide
a competitive performance while CNN(SGdm,Crossentropyex)
and CNN(Adam,Crossentropyex) peak all with a classification
accuracy of 99.9%. For BPSK modulation, CNN(Adam,MAE)
failed to classify correctly, while the rest of investi-
gated classifiers provide competitive classification perfor-
mance and CNN(Adam,Crossentropyex) outperforms all at 100%
accuracy. For CPFSK modulation, all examined classi-
fiers provide a competitive classification performance of
accuracies in the range of 99% to 99.8%. For DSB-AM
modulation, all examined classifiers provide a competi-
tive classification performance of accuracies in the range
of 86.7% to 96.3%. For GFSK modulation, all exam-
ined classifiers provide approximately 100% classifica-
tion accuracy. For PAM4 modulation, CNN(RMSProp,MAE)
failed to classify correctly, while its peers provide compet-
itive performances and CNN(Adam,Crossentropyex) peaks all at
100% accuracy. For QPSK modulation, CNN(Adam,SSE) and
CNN(Adam,Crossentropyex) achieve classification accuracies of
93.1% and 93.3%, respectively. For SSB-AMmodulation, all
presented classifiers provide reasonable performances in the
range of 90% - 94.6% by CNN(SGdm,SSE). At SNR = 10 dB,
CNN(Optimizer,MAE) failed to classify the modulated signals of
16-QAM, 64-QAM, 8PSK, BPSK, PAM4, QPSK, DSB-AM,
and SSB-AM. At SNR = 30 dB, CNN(Optimizer,MAE) failed to
classify the modulated signals of 16-QAM, 64-QAM, 8PSK,
BPSK, PAM4, and QPSK.
In traditional machine learning techniques such as a sim-

ple artificial neural network, most of the applied features
need to be identified by a domain expert to reduce the
complexity of the data and make patterns more visible
for learning algorithms to work. The biggest advantage of
deep learning algorithms is that they try to learn high-level
features from data in an incremental manner. This elimi-
nates the need for domain expertise and hard-core feature
extraction. Finally, we will make a comparison between
the proposed AMC models and the more traditional peers
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in terms of advantages and disadvantages as shown in
Table 5.

IV. CONCLUSION
In this paper, deep learning CNN-based AMCs have been
proposed and two new loss functions-based classification
layers have been adopted to be used as the last layer. Finally,
the developed classifiers’ performance has been studied using
three different optimizers: SGdm, Adam, and RMSProp.
In total, 11 different modulation types have been used to
train and test the proposed classifiers at SNR = 10 and
30 dB. The numerical results show that the true classifica-
tion accuracy increases as the SNR increases. Furthermore,
the proposed AMCs achieve a true classification accuracy
that reaches 100% depending on the optimizer and loss
function-base CL. The highest true classification accuracy
(in the range of 90%-100%) at SNR = 10 dB, and 30 dB
have been achieved by CNN(RMSProp,MAE,Crossentropyex,SSE),
and CNN(Adam,Crossentropyex,SSE,MAE), respectively. The cur-
rent study highlights the significance of investigating using
various optimizers and loss functions and their effects
on the performance of CNN-based AMCs. In subsequent
research endeavors, the performance of the proposed AMC
can be investigated using other optimization algorithms
such as Adaptive Gradient (AdaGrad), Stochastic Gradi-
ent Descent momentum and Nesterov (SGdm+n), Adap-
tive Delta (AdaDelta), and Nesterov-accelerated Adaptive
Moment Estimation (Nadam), and loss functions-based
classification layers.
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