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ABSTRACT In Brazil’s wholesale electricity market, long-term contract prices are negotiated between
power generators and large consumers. Unlike traditional markets, pricing is not driven by market forces
but rather determined by complex computational models known as Hydrothermal Dispatch Optimization
Models. These models calculate the Difference Settlement Price (DSP), serving as the short-term market
price for electricity. The Brazilian market is divided into four interconnected submarkets: the Southeast,
Northeast, North, and South. This study fills an existing research gap by examining the multifractality of
these submarkets by applyingMultifractal Detrended Fluctuation Analysis over a deseasonalized price return
time series. Specifically, it aims to characterize the multifractal features of electricity prices, identify the
underlying causes of this multifractality, and assess market efficiency indices over time. Our analysis of
historical electricity prices revealed that all submarkets demonstrated anti-persistent behavior–also known
as mean-reversion–and multifractality. This finding aligns with similar observations in global markets. The
South submarket displayed the highest level of multifractality and the lowest market efficiency. Conversely,
the North submarket had the lowest multifractality and the highest efficiency. Through sliding-window
analysis, we investigated temporal variations in the Hurst exponent and Long Memory Magnitude, an index
to compute market inefficiency. We found consistent anti-persistent behavior across all submarkets, with
the South submarket showing greater volatility in its inefficiency index. While preliminary and requiring
further in-depth analysis and consideration of other factors, these findings offer valuable insights for
decision-makers and regulators pursuing new market arrangements to boost efficiency.

INDEX TERMS Brazilian electricity market, multifractal detrended fluctuation analysis, generalized hurst
exponent, anti-persistence, singularity spectrum, market efficiency.

I. INTRODUCTION
The Brazilian electricity market consists of two commer-
cial environments: (i) the regulated contracting environment
(RCE) and the free contracting environment (FCE). In the
RCE, distributors purchase electricity through public auc-
tions to meet the demands of their captive consumers. Long-
term contracts and fixed price structures govern this process.
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On the other hand, the FCE allows producers and large
consumers to negotiate the terms of their supply contracts,
where prices are influenced by factors such as supply and
demand, cost of production, and risk evaluation [1]. The
Chamber of Electric Energy Trading (CCEE in Portuguese)
conducts a monthly settlement of agents’ transactions in the
short-term market (or spot market). It calculates the differ-
ence between what has been produced or consumed and what
was initially contracted. These differences, or imbalances, are
reconciled at the Difference Settlement Price (DSP). TheDSP
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is an integral adjustment mechanism, ensuring equilibrium
between supply and demand. Its dynamic nature provides
invaluable insights into the efficiency and operational dynam-
ics of the Brazilian electricity market, positioning it as a
critical element in market analysis [2].

For over 20 years, the DSP was established every week
by sophisticated computational models that considered tech-
nical information provided by the National Electric System
Operator (ONS). Unlike other majority countries, Brazil’s
model is a tight-pool type, where the DSP is determined
by the Operational Marginal Cost (OMC) without requiring
generator bids. The OMC is calculated from a complex chain
of hydrothermal dispatch optimization models, which aim to
minimize the expected total operational cost while consider-
ing a series of constraints, as described by [3]. The DSP is
calculated for each submarket (North, Northeast, South, and
Southeast) and load level. The DSP is subject to a maximum
and a minimum price, which the regulatory agency defines
annually and applies to each settlement period. Since the DSP
was calculated in advance (a week ahead), the models’ input
data are based on forecasts available before the system’s real
operation. These forecasts include values such as the declared
generation availabilities and the anticipated demands for each
submarket, detailed by [4] and [5].
In January 2021, Brazil officially implemented the hourly

pricing system, calculated one day in advance (day-ahead)
for every 24 hours of the following day. This significant
transition was made possible by intense technical discussions
between market entities and agents in 2017. The DESSEM
model was chosen as the official model for calculating
hydrothermal power plant dispatch, considering short-term
network constraints for large-scale systemswith very detailed
hydroelectric, thermal, and network constraints, as outlined
in [6]. From April 2018 to December 2020, a shadow oper-
ation was implemented to preview the potential impacts of
the new hourly pricing system on the market. This significant
trial period allowed the ONS, CCEE, and market agents to
test the new model in real time. Furthermore, this phase
enabled them to assess the impact on very short-term price
formation and propose various adjustments to the calculation
methodology.

Despite the progressive refinement of the pricing system
in the Brazilian electricity sector, the link between price and
the model chain continues to generate many discussions.
In 2019, the Ministry of Mines and Energy (MME) estab-
lished aWorkingGroup to develop proposals formodernizing
the Brazilian electricity sector. Among the various topics
covered, the subgroup responsible for the ‘‘Price Formation
Mechanisms’’ topic explored existing literature and interna-
tional experiences to seek alternatives to the pricing model
currently in effect in Brazil, as reported in [5]. However,
implementing such a significant market change requires an
in-depth understanding of the dynamics of spot electricity
prices in Brazil.

Electricity price time series exhibit several stylized facts,
including seasonality, mean reversion, price spikes, and mul-
tifractality. Seasonality in prices is an intrinsic statistical
property in some markets, where the price may vary accord-
ing to the hours of the day, days of the week, and seasons
of the year (for example, higher prices in winter than in
summer due to the use of energy resources for heating). Mean
reversion or anti-persistence is a characteristic of spot prices
in some countries, where upward (downward) movements
are more likely to be followed by downward (upward) price
movements. When upward and downward movements are
more likely to be followed by the same type of movement,
these series display persistence or long memory. The type of
persistence in a time series can be characterized by the Hurst
coefficient (H2) that measures whether a series is random
or does not display temporal correlation (H2 = 0.5), anti-
persistent (0.0 < H2 < 0.5) or persistent (0.5 < H2 < 1.0).
Price spikes are one of the main features of spot electricity
prices in various markets worldwide, characterized by a sub-
stantial increase and fall in price within a short period, [7].
Many studies connect price spikes to the fact that electricity
is a non-storable commodity, implying more complex char-
acteristics than other markets.

Multifractality in time series is recognized by a com-
plex and heterogeneous distribution of self-similar behaviors,
or fractals, manifested across various scales. This multifractal
heterogeneity translates into various degrees of regularity and
irregularity emerging in different segments of the same time
series, reflecting the presence of multiple scaling exponents.
Multifractal analysis has been used to decode the intricate
scales’ inherent complexities in unbalanced dynamic sys-
tems. Such systems span a wide range of domains, including,
but not limited to, biological, geological, and hydrological
fields, as well as various economic markets, such as financial
markets, commodity markets, cryptocurrency markets, and
electricitymarkets. In contrast to amonofractal analysis, mul-
tifractal analysis requires consideration of multiple scaling
exponents to comprehensively capture the latent behaviors
in a dynamic system, as revealed by its time series. In the
literature, an excellent review of this methodology applied to
financial and electricity markets can be found in [8].

Among the various methods used for multifractal analysis
of time series, Multifractal Detrended Fluctuation Analysis
(MFDFA) stands out, [9]. MFDFA is a sophisticated yet
easy-to-implement statistical technique used to analyze the
scaling behavior of non-stationary time series. The aim is to
reveal and understand complex patterns typically hidden in
these data sets. With this method, it is possible to calculate
generalized Hurst exponents (Hq) and singularity spectrum,
which reveal the series’ multifractality. The existence of
multiple Hurst exponents and a broader, asymmetrical shape
of the singularity spectrum indicate that the time series is
multifractal, showing an underlying complexity that includes
multiple correlation regimes and intrinsic heterogeneity.
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Numerous studies establish a significant correlation
between multifractality and the efficient market theory.
A higher degree of multifractality in market price returns
indicates more significant inefficiency in that market. When
evaluated through a sliding window technique, the indicators
associated with market efficiency (or inefficiency) provide
an effective means of quantifying the influence of external
events on market efficiency. Such an approach allows for
continuous monitoring of changes in market efficiency over
time rather than a point analysis based on fixed periods,
enabling a better understanding of the dynamic behavior of
markets.

In our search in academic databases, such as Scopus and
Web of Science, we did not identify studies investigating the
multifractality of the electricity spot price in Brazil. This gap
in the literature indicates that this particular aspect of the
Brazilian market is yet to be adequately explored, creating
a significant opportunity for future contributions in this study
area.

Over the last 20 years, there has been a scarcity of studies
focused on analyzing the behavior of the DSP. This gap in
the literature can be partially justified by the reduced size of
the weekly price series, which only surpassed the thousand
value mark in 2021. The limited sample size can present
a challenge, as depending on the type of analysis applied,
small samples can lead to imprecise conclusions due to the
insufficiency of statistical significance of the data. Therefore,
it is essential to consider the limitations imposed by the
sample size in interpreting the analysis results.

Therefore, in this work, we use MFDFA to probe the
complexity of the Brazilian electricity market, using return
series on deseasonalized spot market prices. This study offers
an innovative contribution to the literature on the efficiency
of electricity markets by analyzingmultifractality in a distinct
context - a market in which prices are generated from math-
ematical models rather than being exclusively determined by
traditional supply and demand forces. This paper proposes a
differentiated look and provides relevant insights about price
dynamics in a less conventional market formation scenario.

We organize the article as follows: in section II, we present
a bibliographic review that encompasses (i) the electricity
market in Brazil, (ii) works on spot price evaluation in Brazil,
and (iii) multifractality in electricity markets. In section III,
we show the spot electricity price by submarket, its descrip-
tive statistics, and probability distributions. In section IV,
we present the MFDFA method. This section explains the
algorithm and the necessary procedures and steps for its
application. We discuss the two sources of multifractality:
the presence of long-tail in the probability distribution of the
time series values and the different long-range correlations
of small and large fluctuations. We describe two widely
used methods to identify these sources of multifractality.
Moreover, we address the relationship between multifractal-
ity and efficient market theory, discussing how multifractal
behaviors can impact market efficiency and the indexes used
to measure it. In section V, we present the results of the

application of MFDFA on the time series. We explain how
to identify multifractality and its possible origins through
various graphs. At the end of the section, we present a tem-
poral evaluation of two indicators that help understand the
evolution of multifractality over time. Finally, we present our
conclusions in section VI.

II. BIBLIOGRAPHIC REVISON
A. BRAZILIAN ELECTRICITY MARKET
Electricity prices fundamentally depend on the balance
between supply and demand, regardless of the model applied.
High volatility of the spot price and price peaks are associated
with the inability to store electricity and inelastic demand,
as cited in [10] and [11]. However, the ongoing integration of
intermittent renewable sources has increasingly affected the
dynamics of price formation in the spot market over recent
years. Alongside uncertainties about supply (hydrological
variation and fuel prices) and demand (economic growth and
temperature variation), intermittent plants have introduced
new uncertainties tied to climatic factors such as wind direc-
tion, wind strength, and solar irradiance. Several studies,
including [12], [13], [14], indicate that these sources lead to
a reduction in prices in the spot market due to their near-zero
or zero marginal cost. These studies also note an increase in
spot market volatility, as wewill observe low spot pricesmore
frequently when renewable resources are abundant. However,
price peaks will occur when these resources become scarce.

In Brazil, the federal government has been encouraging
the implementation of intermittent plants (wind and solar)
since the beginning of the 2010s, reducing the prominence of
hydroelectricity. Hydroelectric power represented over 90%
of the installed capacity in 2001 and currently accounts for
less than 70%, according to [15]. Like other countries, the
increase in energy production from intermittent sources has
led to increased uncertainties in the operation of the electrical
system and price formation in themarket, as discussed in [16].
The formation of electricity prices in the market is linked

to the system’s operation coordinated by the National Elec-
tric System Operator (ONS). The Electric Energy Trading
Chamber (CCEE) is responsible for calculating the spot
price, known as the DSP, using the same mathematical mod-
els the operator uses for optimizing hydrothermal dispatch,
as explained in [3]. A series of models use dynamic program-
ming to optimize hydrothermal dispatch in the medium term
(up to five years), short term (up to two months), and very
short term (up to seven days).

Since Brazil’s electric sector relies predominantly on
hydroelectric power, the flows and stored volumes in the
power plants’ reservoirs play an essential role in the system’s
stochasticity. The medium and short-term models calculate
the future value of water, indicating the intrinsic cost of water
for the system’s operation. Future periods more likely to lack
this resource have higher future water values, consequently
making the system operation more costly due to the dispatch
of thermal power plants with high unit variable costs. On the
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other hand, when there is an abundant water supply in the
future, the future water value will be lower, reducing thermal
dispatch and the Marginal Operation Cost (MOC).

The future value of water is passed along the chain of
models, from long/medium-term to short and very short-
term, ensuring that models with less stochasticity (short term)
or deterministic (very short term) consider this uncertainty
source. After the problem converges, the MOC is given by
the Lagrange multiplier associated with demand constraints,
according to [3], [6], and [17]. The DSP value for each
submarket equals the MOC, limited by a maximum and
minimum price defined by the regulator and valid for each
verification period. Thus, the spot price in Brazil does not
form through a competitive process between supply and
demand but is calculated through the complex chain of math-
ematical models previously explained. For about 20 years
(from 2001 to December 2020), the DSPwas calculated every
week per submarket (Southeast, South, Northeast, and North)
and per load level (representing light, medium, and heavy
loads), as discussed in [18] and [19]. The price began to be
calculated one day ahead for the next 24 hours on January 01,
2021, as shown in [6], [20], and [21].

B. BRAZILIAN ELECTRICITY SPOT PRICES
The behavior and main stylized facts characterizing the DSP
have been relatively unexplored over the past 20 years.
Queiroz et al. [22] proposed a neural network model to sim-
ulate monthly spot electricity prices in Brazil. According to
the authors, this model could replace the official model (opti-
mizing hydrothermal dispatch using stochastic dual dynamic
programming) with advantages in terms of computational
effort without yielding deviations that would compromise
risk analysis algorithms.

Oliveira et al. [23] introduced a methodology to estimate
the prices of options contracts for electricity markets
in Brazil. As per the authors, a significant theoretical
contribution made in the work was demonstrating that
a mean-reversion stochastic process (Ornstein–Uhlenbeck
Vasicek) accurately represents the spot price in Brazil when
compared to geometric Brownian models.

Gontijo et al. [24] used Dynamic Time Scan Forecast-
ing (DTSF) for predicting spot electricity prices in Brazil,
a methodology initially formulated for predicting wind and
power generation in industrial plants. The method involves
scanning a time series and identifying past patterns (called
‘‘matches’’) similar to the latest available observations.
Future values are predicted from the most similar matches
using aggregation functions such as the median. The authors
compared the results obtained with DTSF to eight other
methodologies from the M4-Competition. According to
them, DTSF surpassed all other methodologies in perfor-
mance except when dividing the price series into seasons.

Daglish et al. [25] analyzed the impact of the 2004 elec-
tricity sector reform on the volatility of spot electricity prices
in Brazil. They fit a Markov Switching model to the monthly

price time series sampled from January 2000 toOctober 2016.
The authors considered the Markov Switching ideal to model
spot prices in Brazil because the prices behave in two distinct
volatility regimes.

Lauro et al. [26] proposed a methodology for simulating
the decision-making process for energy contracting from a
hydroelectric power plant, considering uncertainties about
the spot price, forward contract prices, and generation scal-
ing factor. The authors considered the monthly prices and
two-stage stochastic dynamic programming to model the
uncertainty in forward prices.

With the initiation of hourly price publication in 2021, new
research on the price of electricity in the Brazilian market has
emerged. Marchetti and Rego [20] demonstrated the impact
of adopting the new price formation methodology (weekly
to hourly) on the fair value of a generic wind and solar
plant. According to the authors, the adoption of hourly prices
negatively impacted the fair value of a wind farm. Some
projects showed a depreciation of about 9% of the total value
of the enterprise due to the trading of contracts with flat
seasonality andmodulation. Solar plants experienced positive
impacts in the Southeast but without significant impacts in
the Northeast. Nametala et al. [21] used the hourly prices
for the year 2021 (arithmetic mean of all submarkets) and
investigated statistical aspects of the time series, such as
regime-switching characterization and the sources of price
spike formations. In addition, they investigated the price
relationship with exogenous variables and finally compared
electricity markets from other countries. Gontijo et al. [27]
applied DTSF for hourly price forecasting in Brazil. They
considered hourly prices from 2019, taking into account the
testing period until the end of 2021. The DTSF methodology
had already been applied in the other paper by the same
authors for the forecasting of weekly electricity prices in
Brazil, [24]. DTSF showed better predictive performance
and less variability when compared to statistical models and
machine learning.

C. FRACTAL AND MULTIFRACTAL BEHAVIOR OF
ELECTRICITY MARKETS
Fractal and multifractal systems can be found across various
fields, including physics, geology, hydrology, biology, social
sciences, psychology, economics, and computer science.
Fractals are geometric structures that exhibit self-similarity,
meaning their complex structure repeats across all scales.
People often describe this character as a fractal dimension,
which can be considered a measure of the fractal’s roughness
or complexity [28].

Thoughwe can apply these concepts to objects and images,
in this study, we are particularly interested in observing
fractal and multifractal behaviors in time series. A time
series’ self-similarity can manifest through the power law
describing the relationship between the series’ fluctuations at
different time scales. This means that a single scaling expo-
nent, which measures the time series’ roughness, irregularity,
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or complexity, links the variance or other series statistics
measured at various time scales by a power law. Mandelbrot,
besides introducing the concept of fractal geometry, also
published the pioneer studies applying fractal analysis to time
series, as presented in [29] and [30].

The concept of multifractality emerged when the French
mathematician was studying turbulence and noticed that a
single scaling exponent could not adequately describe this
phenomenon, as is typical of regular fractal objects. Instead,
he observed that turbulence displayed a distribution of fractal
dimensions across a range of scales, as noted in [31]. Mul-
tifractal time series show different autocorrelations of large
fluctuations from the autocorrelation of small fluctuations,
requiring more than one scaling exponent to describe their
behavior fully.

Complex systems like the electricity market can be
described by analyzing price, return, or volatility time series
that present stylized facts such as seasonality, long memory,
price spikes, and multifractality. Using the Rescaled Range
(R/S) method, Weron and Przybyłowicz [32] assessed the
daily return series of the electricity markets in California and
Switzerland. They calculated the Hurst coefficients for both
markets and concluded that both exhibit mean reversion. The
Hurst coefficient of CalPX (H2 = 0.4193) is lower than
that of the Swiss market (H2 = 0.4391), leading Weron
and Przybyłowicz to conclude that the former has more pro-
nounced anti-persistence compared to the latter. In addition,
they confirmed a conclusion from another paper [11], where
they modeled the spot electricity price return in California
(CalPX) as a mean reversion process.

Simonsen [33] applied the Average Wavelet Coefficient
(AWC) method to data from the Nordic Spot Electricity
Market from 1992 to 2000, concluding that hourly spot
prices approximate an anti-persistent (mean-reverting) pro-
cess, characterized by a Hurst coefficient of 0.41. The pres-
ence of crossover near the 1-day scale indicates multiple
scaling exponents, leading the author to consider evaluating
the Nordic market using methods that allow for estimating
multiple exponents (multifractality), such as the continuous
wavelet transform. The price exhibits a persistent process for
scales less than one day, with H2 > 0.5, and anti-persistence
appears for scales larger than one day.

Norouzzadeh et al. [34] analyzed the return on the hourly
price of the Spanish electricity market using Multifrac-
tal Detrended Fluctuation Analysis (MFDFA), obtaining a
Hurst coefficient H = 0.16 ± 0.01, indicating strong anti-
persistence.

Serletis and Bianchi [35] used the Detrended Moving
Average (DMA) method to analyze the informational effi-
ciency of the Alberta electricity market and check whether
power exchange transactions (energy flows between markets)
are becoming increasingly significant in electricity markets.
The results showed that the Alberta electricity market is
highly inefficient (anti-persistent), and cross-border elec-
tricity trade between Alberta and neighboring jurisdictions

helps predict price dynamics in the Alberta electricity
market.

Erzgräber et al. [36] analyzed system prices in the Nordic
market using different techniques to estimate the Hurst expo-
nent. They concluded that the observed variation in Hurst
exponents could be considered a signal of multifractality in
electricity prices.

Uritskaya and Serletis [37] applied the DFA method at
different scales to confirm the presence of multiple Hurst
coefficients (multifractality) in the daily electricity prices in
the Alberta (Canada) andMid-Columbia (United States) mar-
kets, as well as in the Alberta natural gas market. Using the
DFA results for the three markets, Uristkaya et al. analyzed
market efficiency, considering those that exhibited longmem-
ory, H2 = 0.5 (fGn) and H2 = 1.5 (fBm), to be less
efficient. They confirmed the anti-persistence and consequent
inefficiency of the Alberta and Mid-Columbia markets, with
H2(Alberta) = 1.22 ± 0.01 and H2(Mid − C) = 1.32 ±

0.05.
Malo [38] proposed modeling the dynamics of Nordpool’s

spot and future prices using Copula-MSM (Markov Switch-
ing Multifractal). Although the proposal of this article is
outside our objective, Malo did analyze the scale exponents
(Hurst exponent) of the Nord Pool’s daily closing prices
for spot contracts between March 1998 and January 2006.
He used several methods to calculate the exponent, and the
average value found was H = 0.32.

Serinaldi [39] conducted a study on the precautions to take
when applying the methodology for calculating the Hurst
coefficient, especially concerning the signal nature: fBm
(Fractional Brownian Motion) or fGn (Fractional Gaussian
Noise). In addition to financial series, Serinaldi used price
series from four electricity markets: daily average price for
Alberta (persistent, H2 > 0.5) and Mid-Columbia (anti-
persistent, H2 < 0.5), hourly prices for Alberta (persistent,
H2 > 0.5), hourly prices for Ontario (persistent, H2 > 0.8),
and hourly prices for the Italian market (persistent,H > 0.5).

Qian et al. [40] proposed a modification to the MFDFA
algorithm, replacing the process of removing local trends
using a degree m polynomial with Empirical Mode Decom-
position (EMD). To prove its effectiveness, they applied the
proposed method to the Shanghai Stock Exchange Compos-
ite index, with a frequency of 1 minute, and to the daily
prices of the Australian Electricity Market, confirming anti-
persistence.

Rypdal and Løvsletten [41] introduced twomean-reversion
models based on the multifractal random walk (MRW). The
first model describes the anti-persistence of Norway’s (Nord-
pool) spot electricity prices through exponential decay of cor-
relations (damped MRW), while the second model describes
the decay of correlations by power law (fractional MRW).
The data set consisted of the hourly spot price measured
in Norwegian Kroner (NOK) from May 4, 1992, to August
27, 2011. The authors presented maximum likelihood meth-
ods for estimating the parameters of these models. They
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concluded that the damped MRW model is more suitable
for forecasting spot prices than the fractional MRW model.
However, the multifractal models more effectively exploit
memory effects in volatility for future price prediction.

Liu et al. [42] investigated the feasibility of applying
multifractal theory to analyze electricity price fluctuations.
They used hourly price series from the Pennsylvania-New
Jersey-Maryland (PJM) electricity market to demonstrate the
effectiveness of the proposed VaR estimation method for
assessing short-term electricity price volatility risk.

Ghosh et al. [43] analyzed the multifractal behavior of
energy bid prices in five different areas of India, sampled at
15-minute intervals, using the MFDFA method. The analysis
was done monthly from April 2012 to March 2014, confirm-
ing the multifractality of prices estimated by the width of
the singularity spectrum, 1α. The multifractal analysis used
prices, not returns.

Ali et al. [44] investigated and compared the overall multi-
fractality, time-varying, and efficiency of four electric regions
in the United States. They applied the MFDFA method to
the daily logarithmic return of electricity prices from the
MASS Hub, Mid-C, Palo Verde, and PJM West markets,
sampled from 2001 to 2021. The efficiency of the markets
was estimated using the MLM (Magnitude of LongMemory)
index, also known as MDM (Market Deficiency Measure).
As a result, they showed that all markets exhibited anti-
persistence (H (q = 2) < 0.5) and multifractal behavior
estimated through the strength of multifractality 1h, with
PJM West showing the highest strength and Mass Hub the
lowest. MLM confirms PJM West as the least efficient mar-
ket and Mass Hub as the most efficient. They used sliding
window analysis overH2, 1H , and MLM. All markets main-
tained anti-persistence behavior overall period.

Han et al. [45] analyzed the time series of electricity
prices in Germany and Austria indexed on the European
market (EPEX), focusing specifically on day-ahead hourly,
intraday hourly, and intraday 15-minute market prices. They
used MFDFA to confirm strong anti-persistence in the price
series for time scales larger than 12 hours (H2 ∼ 0.16).
For time scales shorter than 12 hours, both intraday hourly
and day-ahead hourly prices showed persistence, with H2 ∼

0.63 and H2 ∼ 0.61, respectively. In contrast, the 15-minute
intraday prices remained anti-persistent with H2 ∼ 0.31. The
strength of multifractality, calculated through 1α, was more
intense for the smallest time scales in all price series. Finally,
they found that long-term behavior is strongly influenced by
the evolution of large-scale weather patterns, with a typical
time scale of four days.

Cramer et al. [46] suggested using multifractal analy-
sis (MFDFA) as an additional validation method for more
complex features in scenarios generated by generative mod-
els. Synthetic series produced by Generative Adversarial
Networks (GANs), Wasserstein GANs (WGANs), and Vari-
ational Autoencoders (VAEs) trained with time series of gen-
eration from photovoltaic and wind power plants in Germany
(between 2013 and 2015), and intraday electricity price time

series from the European Energy Market (between 2017 and
2019) underwent various types of validation, including multi-
fractal features such as the width of the singularity spectrum.
Čuperk [47] explored the maturity of the Czech intraday

electricity market during the COVID-19 pandemic, using
multifractal analysis (MFDFA) on intraday hourly average
prices and the Magnitude of Long Memory (MLM) index.
They observed a nonlinear relationship between the Czech
government’s COVID-19 policy and the Hurst exponent at
long time scales, the width of the singularity spectrum, and
the MLM index at short time scales, indicating that flexible
anti-COVID policies are associated with a more mature mar-
ket and vice versa.

III. DATA
This article uses the weekly spot prices of the four sub-
markets: Southeast, South, Northeast, and North. Data are
available on the CCEE website [48], as of June 30, 2001.
Until 2021, the price was calculated based on the Marginal
Cost generated by DECOMP and measured in BRL/MWh.
As of January 1, 2021, with the publication of hourly prices
calculated using the DESSEM model, [6] the weekly price is
the arithmetic mean of the hourly price values throughout the
operating week, which begins on Saturday and ends on the
following Friday. Electricity purchase and sale transactions
in the Brazilian market are settled monthly, hence the need to
maintain weekly and monthly price calculations.
The analyses carried out a historical series of average

weekly prices per submarket, covering the period from June
30, 2001, to the last operational week of 2022, which covered
the period from December 24 to 30, 2022. The graphs (A1),
(B1), (C1), and (D1) of Figure 1 present the behaviors of these
series.
In Brazil, excess production capacity and low demand

influence the price of electricity, characterizing it by long
periods of low prices. A good example is the period that
started in 2002 and lasted about five years, resulting from a
20% decreased demand during the energy rationing. The need
for consumers to adapt to this reduction led many to invest
in more efficient processes, influencing the post-rationing
demand recovery.
In 2008, there was an imbalance between supply and

demand due to problems related to the availability of natural
gas, which resulted in a new escalation of prices, reaching its
peak in January of that year. A new period of an unfavorable
hydrological regime began in 2013, and prices gradually
escalated, reaching their maximum value in 2014, about R$
800.00/MWh.
In January 2015, political and regulatory interference led

to an artificial price reduction due to the regulatory agency’s
implementation of a new ceiling price calculation method.
Between 2015 and 2021, the price exhibited high volatility
due to hydrological issues. From November 2020 to April
2021, the country faced the worst drought since flow data
began to be recorded (1931), affecting the regions with large
hydroelectric plant reservoirs. As a result, prices remained
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FIGURE 1. Historical time series of weekly difference settlement price and log return of adjusted seasonal price.

high for an extended period until the 2021/2022 rainy sea-
son, when there was a significant increase in the amount of
energy stored in the reservoirs. Additionally, the market was
still recovering from the impact of the COVID-19 pandemic.
These combined factors led to a drastic price reduction, reach-
ing their lowest value in 2022 and remaining at that level.

Table 1 presents the descriptive statistics of the weekly
price series. Each series consists of 1127 values, cover-
ing more than 20 years of operation in Brazil’s electricity
market. When analyzing the probability distribution density
function of the four submarkets, we can observe a positive
asymmetry, which is visually evidenced in the histograms
of Figure 2 and also confirmed by the relation Mode <
Median < Mean in Table 1. Approximately 60% to 70%
of the sample values are below BRL 150/MWh, while the
rest of the sample is distributed in a price range that varies
from 150 to 822.30 BRL/MWh, as shown in Table 2 of the
percentiles of weekly prices.

We used the formulation that computes their strengths to
analyze the unobserved trend and seasonality components,
as described in Hyndman and Athanasopoulos [49]. The
decomposition was applied to the logarithm of the prices
employing the Seasonal-Trend Decomposition using LOESS
(STL) approach, as described in Cleveland et al. [50] and
implemented in Seabold and Perktold [51]. STL and other
time series decomposition methods are described in detail
in a recent survey article, [52]. We considered the annual
seasonality, which has a period of 54 weeks, in order to
capture the seasonal patterns in the data. Decomposition
into trend and seasonality is a powerful tool for describing
and understanding the behavior of energy prices over time.
We can isolate the seasonal effect of prices and analyze the
behavior of the underlying trend more clearly, contributing to
a better understanding of the factors affecting energy prices.

The strength of seasonality and trend are presented in
Table 1 in the ‘‘Season’’ and ‘‘Trend’’ lines, respectively.
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FIGURE 2. Histogram of weekly spot price by submarket.

TABLE 1. Descriptive statistics of weekly electricity price time series for
each submarket (Prices are measured in BRL/MWh).

We observed a significantly higher trend strength than
seasonality, suggesting long-term factors may substantially
influence prices. These factors may include structural
changes in energy supply and demand, energy policies,
or macroeconomic aspects. However, seasonality under-
scores the importance of seasonal patterns in energy prices.

We obtain the return series rt+1 by applying the logarithmic
difference to the prices after removing the seasonal compo-
nent, as described in equation (1). The graphs (A2), (B2),
(C2), and (D2) in Figure 1 illustrate the variations of the
returns for each submarket. Throughout the article, we will
use the term ‘‘return’’ or ‘‘return series’’ to refer to this
measure.

rt+1 = log pt+1 − log pt (1)

IV. METHODOLOGY
One of the goals of this article is to contribute to discussions
about electricity pricing in Brazil through the analysis of

TABLE 2. Percentiles of weekly price time series for each submarket
(BRL/MWh).

spot prices from a perspective that has yet to be approached:
multifractality. The multifractal analysis of historical price
return series allows for the verification of self-similarity
of the underlying stochastic process; that is, it allows for
analyzing the behavior of the series at different scales.
In this article, we investigate the multifractal properties in
the time series of deseasonalized weekly spot price returns
in each submarket. In addition, the relationship between
multifractality and market efficiency will be studied tem-
porally, showing even the impact of adopting hourly prices
from 2021.

Multifractal Detrended Fluctuation Analysis (MFDFA) is
an advanced statistical technique used to analyze the scaling
behavior of non-stationary time series. This approach aims
to reveal and understand complex patterns, such as multifrac-
tality, which are usually hidden in these datasets. Developed
by Kantelhardt et al. [9] as a generalization of the Detrended
Fluctuation Analysis proposed by Peng et al. [53], MFDFA
calculates the generalized Hurst exponentH (q) and the Rényi
exponent τ (q) for different moments q. These exponents
capture the statistical properties of fluctuations at different
scales, allowing for the separate investigation of the contri-
bution of smaller scales (q < 0) and larger scales (q > 0).
Multifractal analysis using the MFDFA method has been

applied in various areas of knowledge that present long-range
power-law correlations. For a comprehensive review of the
methodologies and application areas of multifractal analy-
sis, we recommend reading the work of Kantelhardt [54].
Moreover, in the context of the financial market, multifractal
analysis has been widely explored, and an excellent resource
for a review on the subject can be found in the article by
Jiang et al. [8].

A. MULTIFRACTAL DETRENDED FLUCTUATION ANALYSIS
According to [9], the MFDFA method consists of 5 steps,
where the first three steps are based on the DFAmethod, [53].
Let pt be a time series where t = 1, · · · ,N being N

the total number of observations. We define the return series
rt+1 by the logarithmic difference of the price, according to
Equation (1).

1) Determine the integrated series Y through the accumu-
lated deviation as per equation 2, where r̄ is the mean of
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the return series r .

Y (i) =

i∑
k=1

[rk − r̄], i = 1, · · · ,N (2)

2) Divide the integrated series into non-overlapping inter-
vals of equal size s, where Ns = ⌊N/s⌋. When N is not
an integer multiple of the scale s, then some points at the
end of the series will not be computed. The integrated
series is divided again from end to start to avoid this loss
of information. This leads to having 2Ns segments.

3) At this step, the removal of local trend in each of the
2Ns segments is done by means of a polynomial fit of
degree m, chosen considering the capability of trend
elimination. For each segment i = 1, · · · , s, the variance
is calculated according to Equation (3), where yv(i) is
the polynomial of degree m calculated through the least
squares method.

F2(s, v) =
1
s

s∑
i=1

Y [(v− 1)s+ i] − yv(i)2 (3)

for any v, v ∈ (1, · · · ,Ns)

F2(s, v) =
1
s

s∑
i=1

Y [N − (v− Ns)s+ i] − yv(i)2 (4)

where v ∈ (Ns + 1, · · · , 2Ns)
4) The fluctuation function of order q for each of the 2NS

segments is given by Equation (5) for any real q different
from zero and by Equation (6) when q = 0.

Fq(s) =

{
1

2Ns

2Ns∑
v=1

[F2(s, v)]
q
2

} 1
q

(5)

F0(s) = exp

{
1

4Ns

2Ns∑
v=1

ln[F2(s, v)]

}
(6)

5) Determine the scaling behavior of the fluctuation func-
tions by analyzing the log-log plot Fq(s) × s for each
value of q. If the series are correlated by the long-range
power law, then Fq(s) increases for large values of s
by the power law as shown in Equation (7), where the
scaling exponent is calculated as the slope of the linear
regression of log Fq(s) against log s, for each q.

Fq(s) ∼ sh(q) (7)

The singularity spectrum, also known as the multifractal
spectrum, provides an alternative way to describe the multi-
fractality of a time series. Kantelhardt et al. [9] demonstrated
that the scaling exponent or Rényi coefficient, τq, can be
obtained via the relationship between box counting formal-
ism and partition function Zq(s), as shown in Equation (8).
This approach delivers a detailed characterization of fluctua-
tions at different scales and allows for a more comprehensive
analysis of the time series multifractal properties.

τ (q) = qh(q) − 1 (8)

Equation (8) illustrates the relationship between the gener-
alized Hurst coefficient h(q) and the scaling exponent τ (q).
This relationship is critical, as it allows the multifractal
formalism to demonstrate a link between τ (q) and the mul-
tifractal spectrum f (α). By applying the Legendre transform
to Equation (8), we obtain f (α):

Singularity Spectrum =

{
α = τ ′(q)
f (α) = qα − τ (q)

(9)

where α is the Hölder coefficient and f (α) is the dimension
of the series subset characterized by α.

Some important points that can be highlighted about the
MFDFA algorithm are:

(a) Degree m polynomials are used to remove order
m− 1 trends in the original series.

(b) The choice of the polynomial degree for local trend
removal should be made by comparing different orders.
In most cases, the trend can be eliminated with degree
3 or less polynomials.

(c) The results obtained by the DFA method are reproduced
for q = 2 in equation (3), which is the quadratic
fluctuation.

(d) By construction, the function Fq(s) is defined only for
values of s ≥ m+ 2.

(e) For very large scales, s > N/4, the function Fq(s)
becomes statistically unreliable due to the limited
number of segments Ns. Therefore, scales larger than
N/4 should be excluded from the fitting procedure to
determine the scaling coefficient h(q).

(f) The scaling coefficient h(q) is also known as the gener-
alized Hurst exponent.

(g) For stationary time series, the exponent h(2) is known
as the Hurst exponent (H2) and ranges between 0 and 1.
The time series is considered uncorrelated when H2 =

0.5, anti-persistent when 0 < H2 < 0.5, and persistent
(long memory) when 0.5 < H2 < 1.

(h) A time series is considered monofractal when the
scaling coefficient h(q) is constant and independent
of q.

(i) A time series is considered multifractal when there is a
strong dependence between h(q) and q. For q > 0, h(q)
describes the scaling behavior of the segments with large
fluctuations, while for q < 0, h(q) describes the scaling
behavior of the segments with small fluctuations.

(j) The MFDFA method only calculates positive general-
ized Hurst exponents, becoming inaccurate for strongly
anti-persistent time series, i.e., when h(q) is close to
zero. In these cases, it is recommended to integrate
the time series before applying the MFDFA algorithm,
resulting in h̄(q) = h(q) + 1 for the new integrated
series.

(k) The accuracy of the MFDFA method depends on the
size N of the time series. Series with fewer than 10,000
values may exhibit apparent multifractality, as discussed
in [55].
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B. SOURCES OF MULTIFRACTALITY
Kantelhardt et al. [9] presented a procedure to analyze two
different types of multifractality: (i) multifractality due to a
broad probability density function for the values of the return
series and (ii) multifractality due to differing long-range
correlations (linear and nonlinear) for small and large fluc-
tuations.

When we shuffle time series data, we destroy tempo-
ral correlations (short and long-range memories ), with the
probability distribution remaining intact. According to [9],
Equation (10) gives the impact of the correlation on the
apparent multifractality.

hcorr (q) = h(q) − hshuf (q) (10)

where hshuf (q) indicates the generalized Hurst coefficient
for the shuffled series and hcor (q) is the generalized Hurst
coefficient due to the linear and nonlinear correlations of
the series. If only type (i) multifractality is present, then
hcorr (q) = 0 and hshuf (q) = h(q). When hcorr (q) ̸= 0, it indi-
cates the presence of correlations, and if hcorr (q) depends
on q, then we have the presence of type (ii) multifractality.
If only type (ii) correlation exists, then hshuf (q) = 0.5 and
h(q) = 0.5 + hcorr (q). If both types of multifractality are
present, then hcorr (q) and hshuf (q) depend on q.
Other works have shown an equivalent formulation consid-

ering 1h, Equation (13), and 1α, Equation (14), instead of
h(q), as in [8] Section 7.2.

1hcorr = 1h− 1hshuf
1αcorr = 1α − 1αshuf (11)

We employ the method of the Amplitude Adjusted Fourier
Transform (AAFT) [56] to analyze the impact of a broad
probability density function on the multifractality of return
series. However, various methods exist to eliminate the non-
linear component of time series, as discussed in [8]. The
AAFT method involves creating surrogate series, preserv-
ing the temporal correlation structure but eliminating the
nonlinear component. We applied the following procedure:
(i) transforms the original time series into the frequency
domain using the Fourier transform; (ii) shuffled the phases of
these components randomly; (iii) applies the inverse Fourier
transform to obtain the surrogate time series. This technique
preserves the linear statistical characteristics of the original
series, such as mean and variance, while eliminating non-
linear temporal correlation. So, we use surrogate series to
investigate the influence of the probability density function
on the multifractality of the return series. Suppose the surro-
gate series results exhibit less multifractality than the original
series, suggesting that the broad probability density function
plays a significant role in the multifractality of the return
series.

C. EFFICIENCY OF BRAZILIAN ELECTRICITY MARKET
The EfficientMarket Theory, proposed by Fama in 1970 [57],
establishes a relationship between the availability of infor-
mation and market price. In an efficient market, the price

reflects all available information, making it unpredictable,
as it behaves randomly. According to Fama, the price in
an efficient market follows a Markovian stochastic process,
in which the probabilities associated with the process at a
given future time depend only on the present state, indepen-
dent of past events. Therefore, a Markovian process does
not exhibit a temporal correlation between its data and is
considered memoryless.

Recently, studies conducted by Cajueiro and Tabak [58],
[59] analyzed market efficiency using the Hurst coefficient
(H2), calculated over the sampling period in a slidingwindow,
using R/S or DFA methodologies as proxies. However, these
studies adopted monofractal methods to calculate the Hurst
coefficient without considering the possiblemultifractal char-
acteristics of the markets analyzed. By utilizing multifractal
methods, like MFDFA, we can capture additional nuances in
the scale structure of market prices and explore the presence
of multifractality, which can provide valuable insights into
the complexity and efficiency of the electricity market.

Kristoufek and Vosvrda [60] employed the Hurst coeffi-
cient, the fractal dimension, and lag one autocorrelation to
propose a combined measure of market inefficiency given by
Equation (12):

IE =

√√√√ m∑
i=1

(
Mi −M∗

i

Mi,max −Mi,min

)2

(12)

whereMi is the i-thmeasure estimated by the method i,M∗
i is

the theoretical value for uncorrelated series, and the distance
Mi − M∗

i is a market inefficiency index. Several publica-
tions applied this index in various markets, and the results
consistently showed that emerging markets were less effi-
cient. In contrast, developed markets were more efficient, i.e.,
they presented a lower level of inefficiency. This observation
aligns with the Efficient Market Hypothesis, which postu-
lates that prices reflect all available information in efficient
markets, while in less efficient markets, information may
not be fully incorporated into prices, creating opportunities
for arbitrage and potentially resulting in greater inefficiency.
These findings underscore the importance of investigating the
efficiency of financial, commodities, and electricity markets
and their impact on asset prices, providing valuable insights
for investors, regulators, and policymakers.

As seen in section IV-A, h(q) is independent of q for
monofractal time series with compact support. If small and
large fluctuations scale differently, then h(q) shows a strong
dependence on q, characterizing the time series as multifrac-
tal. The variability of h(q) is directly related to the degree of
multifractality that the signal presents and can be measured
by Equation (13), as per [61]:

1h = h(qmin) − h(qmax) (13)

The strength of multifractality, measured through 1h, was
applied to the returns of indices from 32 stock markets in
different countries. In addition to this measure, [61] used
another measure of multifractality strength, based on the
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length of the multifractal spectrum f (α), called 1α, where α

represents the Hölder coefficient, as can be seen in equation
(14). These measures provide a comprehensive assessment
of the multifractality present in stock markets, allowing an
understanding of these time series’ complex and nonlinear
characteristics. By considering different measures of multi-
fractality strength, it is possible to gain a complete perspective
on the structure and dynamics of these markets, contributing
to the understanding of the underlying processes and aiding
in investment decision-making.

1α = α(qmin) − α(qmax) (14)

Numerous articles studied the efficiency of electricity
markets. For a review of articles that addressed this issue,
see [62]. More recently, [44] estimated the efficiency of
the US electricity market (MASS, MIDC, PALO, and PJM)
through the Magnitude of Long Memory index ([63]) given
by Equation (15)

MLM =
1
2

(|h(qmin) − 0.5| + |h(qmax) + 0.5|) =
1
2
1h

(15)

where a market is efficient when the small fluctuations (q =

qmin < 0) and the large fluctuations (q = qmax > 0) follow
Markovian stochastic processes (random walk) and the value
of MLM tends towards zero. The larger the value of MLM ,
the higher the degree of multifractality of the process and the
lower the efficiency of the underlyingmarket. Conversely, the
lower the MLM , the more efficient the market is.

In the Brazilian electricity market, the spot price is not
determined by equilibrium between supply and demand, as in
other markets. Instead, computational models that simulate
this equilibrium by optimizing hydrothermal dispatch calcu-
late the price. The efficiency of this market is related to the
randomness of the marginal cost of operation and, conse-
quently, the settlement price of differences generated by the
models. The further the Hurst coefficient H2 is from 0.5, the
more predictable and less random the price will be.

Unlike the financial market, where the presence of noise
traders can cause irregularities in price fluctuations, in the
Brazilian electricity market, irregularities are related to
extreme events, such as the impact of COVID-19 on demand,
the influence of climatic phenomena like El Niño and La
Niña on renewable energy generation, structural imbalances
between supply and demand due to excess or lack of capacity,
and regulatory interferences, such as the reduction of the
maximum DSP in January 2015. These factors contribute to
the complexity and non-linearity of prices in the Brazilian
electricity market, and analysis of its dynamics represents
a challenging task of great relevance for understanding the
functioning of this market.

V. RESULTS
The algorithms used in this work were written by the authors
in Python (Python Software Foundation. Python Language
Reference, version 3.9. available at http://www.python.org),

FIGURE 3. Flowchart of the major steps to analyze time series with
MFDFA.

based onMFDFA, [9] and its implementation inMatlab avail-
able at [64]. A flowchart delineating the key stages involved
in the assessment of spot price time series in the Brazilian
market through MFDFA is presented in Figure 3.

After conducting a series of tests, we chose a fourth-degree
polynomial (m = 4) to eliminate local trends within the
data. Although the scale set s suggested by [9] is generally
confined to the range 10 ≤ s ≤ ⌊N/4⌋, we heuristically
adjusted this to the range 16 ≤ s ≤ 128. In this context, N =

1127 denotes the total number of observations in our weekly
return series, as outlined in Table 1. Regarding the parameter
q, we followed the recommendations by [9], employing a
range of −5 ≤ q ≤ 5.

A. FLUCTUATION FUNCTIONS ANALYSIS
We analyzed the log-log plot of Fq(s) versus s for each q,
as shown in Figure 4 to determine the scaling behavior of
the fluctuation functions. If the time series xi is long-range
power-law correlated, Fq(s) increases for large values of s by
the power law, according to equation (7).
Although the polynomial fit of orderm used by theMFDFA

method removes trends of order m− 1 in the original series,
it is essential to note that this procedure does not guarantee
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FIGURE 4. MFDFA plots applied to the Brazilian market’s weekly return index of spot electricity prices. The figure presents a set of 4 graphs
for each submarket, showing (1) the scaling behavior of fluctuation functions, (2) the generalized Hurst exponent, (3) the scaling exponent or
Reyni exponent, and (4) the multifractal spectrum. In the fluctuation function graph (1), colors varying from blue to green indicate values of q
ranging from −5 to +5.

the elimination of oscillatory trends, such as seasonality. The
presence of intrinsic seasonal phenomena in the time series
analyzed can result in a nonlinear relationship in the log-log
plot of Fq(s) as a function of s. We should observe this
non-linearity through crossovers that separate regions with
different slopes.

It is crucial to rigorously address seasonal variations
in the data prior to employing MFDFA, as neglecting
to do so could lead to erroneous conclusions about the
time series’ multifractality. In this study, we leverage
the Seasonal-Trend Decomposition using LOESS (STL)

methodology, which was initially proposed by [50] and has
been implemented in [51]. We specifically focus on annual
seasonality, characterized by a 54-week cycle, to effec-
tively isolate seasonal components from long-term trends and
fluctuations.

This pre-processing step is critical for ensuring the accu-
rate application of MFDFA and a reliable assessment of the
time series’ multifractal nature. By meticulously eliminating
seasonal variations, we can better examine the data’s intrinsic
fluctuations and better understand its multifractal character-
istics.
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FIGURE 5. Multifractal spectrum for each submarket.

After analyzing the plots in Figure 4, we observe indica-
tions of multifractality in the return series of the four sub-
markets. However, it is important to approach this conclusion
with caution, considering the small sample size, composed of
only 1127 observations.

According to [55], when applying the MFDFA method
to short and uncorrelated time series, mistaken detection of
multifractality instead of mono fractality may occur (known
as the finite size effect). Therefore, we should consider the
multifractality of the weekly spot price returns as apparent,
subject to this caveat.

Even though we obtained suggestive results of multifrac-
tality, the analysis of time series with a limited size requires
careful interpretation. A larger data set would be needed for a
more robust conclusion about the presence of multifractality,
allowing a more reliable analysis of the statistical properties
of the time series at different scales.

B. GENERALIZED HURST EXPONENTS
In the fluctuation function plots presented in Figure 4, we can
observe the slope coefficients of the lines that best fit the
log2(s) and log2(Fq) points for a givenmoment q. These slope
coefficients correspond to the generalized Hurst exponents
Hq. Analyzing the curves, we can observe that the value
of Hq varies according to the value of q, which indicates
the presence of apparent multifractality in the time series.
The Hurst coefficients are calculated when q = 2 and are
represented by Hq(q = 2) or simply H2.
Although the spot price formation process in the Brazilian

energy market does not follow a traditional market equilib-
rium but is instead a result of hydrothermal dispatch optimiza-
tion models, the Hurst coefficients of the submarkets indicate

TABLE 3. The table displays the results of applying the MFDFA to the
original, shuffled, and surrogate series for each submarket. Each column
represents an indicator (Hurst coefficient, width of the multifractal
spectrum, strength of multifractality, and magnitude of long memory),
and the rows represent the type of series (original, shuffled, and
surrogate). We grouped the types of series by submarkets (Southeast,
South, Northeast, and North). The values corresponding to each indicator
and type of series are filled in the appropriate cells. For example, in the
‘‘hurst_original’’ cell of the Southeast submarket, we have the value of
the Hurst coefficient for the original series; in the ‘‘hurst_shuffled’’ cell,
we have the value of the Hurst coefficient for the shuffled series; and in
the ‘‘hurst_surrogate’’ cell we have the value of the Hurst coefficient for
the surrogate series. We applied the same principles to the other
indicators and types of series.

the presence of anti-persistence or mean reversion (H2 <

0.5). This result corroborates mean reversion as a stylized fact
found in other energymarkets around theworld, asmentioned
in previous studies ([7], [11], [32], [33], [34], [35], [41]).
The ‘‘hurst’’ column in Table 3 presents the H2 values for all
submarkets, measuring the degree of mean reversion in the
analyzed time series.

As seen in the previous section, we calculated the strength
of the apparent multifractality by applying equation (13)
to the generalized Hurst exponents of each submarket. The
delta_h column in Table 3 presents the results indicating
that the South submarket exhibits the highest multifractal-
ity strength (1h = 0.489037), followed by the Northeast
(1h = 0.422751), Southeast (1h = 0.355185), and North
(1h = 0.350836).

C. MULTIFRACTAL SPECTRUM
The plot in Figure 5 presents the singularity spectrum
through the relationship between the Hölder coefficient α and
f (α), the dimension of the subset of the series characterized
by α, according to Equation (9).

The length of the singularity spectrum, represented by
1α according to equation (14), measures the strength of
multifractality in each time series. As observed in Table 3,
the South submarket presents the highest value of 1α =

0.772394, followed by the Northeast (1α = 0.689705),
North (1α = 0.571663), and Southeast (1α = 0.555934).
This relationship indicates that the South submarket has the
highest multifractality among the four Brazilian submarkets,
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FIGURE 6. Graphs displaying the potential causes of multifractality in the return series of spot electricity prices for the four
Brazilian markets through the plots of the generalized Hurst exponent (1), scaling exponent (2), and multifractal spectrum
(3). We used the MFDFA algorithm in the shuffled and surrogate series and extracted the generalized Hurst exponents and
singularity spectra. To minimize the influence of the initial seed for pseudo-random number generation, we carried out
1000 runs of MFDFA (for each type of surrogate series and each submarket), changing the initial seed. The orange
(shuffled) and green (surrogate) curves represent the averages of MFDFA results for each parameter. The blue curves
present the results for the original series.
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FIGURE 7. The graphs present the dynamic behavior of the Hurst coefficient (H2) for the four submarkets using a window of 702 weeks and a unit step.
The dashed vertical line indicates when there was a transition in how the price was calculated, with the introduction of the hourly hydrothermal
dispatch model on January 1, 2021. Before this date, the price was calculated weekly through a weekly hydrothermal dispatch model. From this
landmark, the weekly price started to be obtained by the arithmetic average of the hourly prices throughout the week. The dashed horizontal line
represents the value of H2 calculated for the complete series, as presented in Table 3.

confirming the same conclusion obtained when the 1h mea-
sured the strength of multifractality.

The higher multifractality observed in the South submarket
reflects a more complex system regarding spot price fluctua-
tions. This characteristic can be attributed to the specificities
of this submarket, such as a more variable hydrological
regime and a lower seasonality. Furthermore, the hydro-
electric power plants in this submarket do not have storage
capacity, and their production is directly related to river flow
variations. This more significant variability in hydroelectric
energy production is captured by price formation models,
resulting in a more volatile operating marginal cost and,
consequently, a more volatile spot price.

D. SOURCES OF MULTIFRACTALITY
Intending to investigate the origins of multifractality in the
Brazilian electricity market, we applied the shuffling proce-
dure to the return series, as described in [9] and [65]. As
mentioned in Section IV-B, we eliminate linear and nonlinear
temporal correlations when shuffling the series, preserving
the probability distribution. If the multifractality was exclu-
sively type (ii), then we would expectHshuf (q) to be indepen-
dent of q, with a value of Hshuf (q) = 0.5. However, in the
plots in Figure 6, we can observe that shuffling the series did
not eliminate multifractality, as 1hshuf ̸= 0 and 1αshuf ̸= 0.

This result indicates that both types of multifractality men-
tioned in [9] are relevant to the Brazilian electricity market.

Furthermore, we analyzed type (i) multifractality by apply-
ing the surrogate method to the original series, as described
in [65]. Similarly, the surrogate procedure did not eliminate
the series’ multifractality since 1hsurr ̸= 0 and 1αsurr ̸= 0.
Table 3 presents the values of H2, 1α, 1h, andMLM for the
original, shuffled, surrogate series and by submarket. For all
submarkets, the values of1h and1α of the surrogate weekly
return series are higher than those of the shuffled series.
This result indicates that the multifractality of weekly returns
is more influenced by the long-range correlations between
small and large fluctuations (temporal relation of the data)
than by the broad probability density function.

E. TIME VARYING ANALYSIS
In previous sections, we conducted calculations of various
indices derived from the application of MFDFA in the return
series of deseasonalized spot prices in the four Brazilian
submarkets. The analyses showed that all submarkets present
anti-persistence and multifractal behavior. In this section,
we will use the sliding window technique to investigate the
dynamic behavior of the Hurst coefficient (H2) and the mag-
nitude of long memory (MLM ). This approach, proposed by
Cajueiro and Tabak [59], has been widely applied in the
financial market to analyze the behavior of stock markets
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FIGURE 8. The graphs display the evolution of the multifractal spectrum length for each submarket over the evaluation period. The vertical dashed line
indicates the start of hourly price disclosure from January 1, 2021. The dashed horizontal line marks the 1α value calculated for the complete series and
presented in Table 3.

in different countries. Recently, this technique has also been
applied to the electricity markets in the United States by
Ali et al. [44] and in the Czech Republic by Čurpek [47].

The sliding window technique is commonly used in time
series analysis, signal processing, machine learning, and
other disciplines dealing with sequential data. The basic con-
cept is simple: instead of processing all data at once, a ‘‘win-
dow’’ of fixed size is ‘‘slide’’ along the data, processing only
the data within that window at each point. This technique can
be helpful in various tasks, such as data smoothing, anomaly
detection, calculatingmoving statistics, etc. The ‘‘step’’ in the
sliding window technique refers to how many data points the
window moves each time. A smaller step provides a more
detailed analysis but may have a higher computational cost
when compared to choosing a larger step. Given our small
sample size, we conducted several experiments with window
values between 700 and 800 weeks before settling on the
final value of 702 weeks (equivalent to 13 years) and a step
of one week. Thus, the calculations of the indices begin on
December 19, 2014, and are redone for each week until the
end of the period, keeping the window size fixed.

The graphs in Figure 7 illustrated the evolution of the
Hurst coefficient (H2) for each submarket over the eval-
uation period. The H2 values in all submarkets showed
no significant deviations, and anti-persistence behavior was
maintained. There is an observable upward trend in the Hurst
coefficients for all submarkets following the introduction of

the hourly dispatch model. This trend suggests decreased
anti-persistence and increased randomness in weekly spot
prices. This behavior could be related to the hourly model’s
greater granularity and flexibility, allowing for better adap-
tation to short-term supply and demand conditions. However,
a more thorough study is needed to understand the causes and
implications of this change in the growth rate ofH2 at the end
of 2020. Other factors, such as regulatory changes, alterations
in energy supply and demand, and economic events, can also
influence the behavior of the electricity market and should be
considered in future analyses.

The graphs in Figure 8 showed the evolutions of the mag-
nitude index of longmemory (MLM ) for each submarket over
the evaluation period. Examining the results, we observed
different behaviors in the submarkets. The Northeast and
North submarkets showed a trend of reduction inMLM values
over time. This reduction trend indicates an increase in the
efficiency of these markets, as a lower magnitude of long
memory is associated with higher market efficiency.

In the case of the South submarket, we did not observe
a clear trend, as the MLM values fluctuated strongly
over the evaluation period. However, from 2021 onwards,
we observed an increase in the growth rate of MLM , indi-
cating a possible decrease in market efficiency.

The Southeast submarket presented an interesting behav-
ior. Initially, the growth rate of MLM was negative, indi-
cating an improvement in market efficiency. However, from
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mid-2022 onwards, there was a change in the growth rate,
which became positive, suggesting a possible decrease in
market efficiency.

These results indicate that the submarkets exhibit distinct
dynamics in terms of market efficiency over time. The varia-
tions inMLM values may reflect changes in market structure,
energy supply and demand, and regulatory and climatic fac-
tors. However, it is important to highlight that more in-depth
analyses and consideration of other factors are necessary for
a complete understanding of the trends and implications of
these results on the efficiency of the electricity market in
Brazil.

VI. CONCLUSION
In this study, we presented an analysis of multifractality in the
Brazilian electricity market, using the Multifractal Detrended
Fluctuation Analysis (MFDFA) method on time series of spot
prices for each of the four submarkets. We found that, despite
the atypical price formation process, based on optimization
models of hydrothermal dispatch, the submarkets share an
anti-persistence behavior (or mean reversion) and exhibit
multifractal characteristics. Such results converge with the
stylized facts observed in other global electricity markets,
indicating a universal nature of these attributes.

We detected variations in multifractality and efficiency
among the submarkets attributed to their intrinsic character-
istics. In particular, the South submarket revealed the highest
multifractality and lowest efficiency, possibly due to a more
unstable hydrological regime and lower seasonality. In con-
trast, the North submarket exhibited the lowest multifractality
and highest efficiency. Using the Long Memory Magnitude
(MLM) as an efficiency index, we evidenced a complex
framework of variability and multifractality in the Brazilian
submarkets.

Furthermore, we explored the origin of multifractality
using shuffled and surrogate series techniques. We dis-
covered that the multifractality of weekly returns is more
dominated by long-term correlations among fluctuations of
variable magnitude than by the broad probability density
function.

The investigation of the dynamic behavior of the Hurst
coefficient and the MLM index through the sliding window
technique revealed the constancy of anti-persistence and a
trend of increase in the Hurst coefficient after introducing the
hourly dispatchmodel. These observations suggest a decrease
in anti-persistence and greater randomness in weekly spot
prices, potentially related to the higher granularity and flexi-
bility of the hourly model.

Submarkets exhibited variable dynamics over time in
terms of market efficiency. Changes in H2 and MLM val-
ues may reflect changes in market structure, energy supply
and demand, and economic, regulatory, and climatic factors.
However, it is crucial to highlight the need for more in-depth
analyses and the consideration of other factors for a more
comprehensive understanding of the trends and implications
of these results.

Although our findings suggest a presence of multifractal-
ity, we emphasize that the analysis of time series of limited
size requires caution in the interpretation of the results.
A more extensive data set would be necessary for a more
robust conclusion, such as the hourly prices available from
2021, allowing more precise statistical analysis of the time
series at different scales.

In summary, this study provides a valuable contribution to
understanding the efficiency and dynamics of the Brazilian
electricity market.
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