
Received 23 August 2023, accepted 4 September 2023, date of publication 7 September 2023,
date of current version 14 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3313001

Heterogeneous Defect Prediction Based on
Federated Prototype Learning
AILI WANG 1, (Member, IEEE), LINLIN YANG 1, HAIBIN WU 1,
AND YUJI IWAHORI 2, (Member, IEEE)
1Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
2Department of Computer Science, Chubu University, Kasugai, Aichi 487-8501, Japan

Corresponding author: Haibin Wu (woo@hrbust.edu.cn)

This work was supported in part by the Reserved Leaders of Heilongjiang Provincial Leading Talent Echelon of 2021, in part by the High
and Foreign Expert’s Introduction Program under Grant G2022012010L, and in part by the Key Research and Development Program
Guidance Project under Grant GZ20220123.

ABSTRACT Software defect prediction is used to identify modules in software projects that may have
defects. Heterogeneous Defect Prediction (HDP) establishes a cross project defect prediction model based
on different software defect datasets. However, due to the heterogeneity of multi-source data, the model
performance is usually not ideal. In addition, the project data holder is unwilling to disclose the data due
to privacy regulations and other reasons, resulting in data islands. This paper presents a federal prototype
learning based on prototype averaging (FPLPA), which combines federated learning (FL) with prototype
learning for heterogeneous defect prediction. Firstly, the client used one-sided selection (OSS) algorithm
to remove noise from local training data, and applied Chi-Squares Test algorithm to select the optimal
subset of features. Secondly, the client constructed the convolution prototype network (CPN) to generate
their own local prototypes. CPN are more robust to heterogeneous data than convolutional neural networks
(CNN), while avoiding the deviation effect of class imbalances in software data. The prototype is used as
the communication subject between the clients and the server. Because the local prototype is generated in
an irreversible way, it can play a role of privacy protection in the communication process. Finally, the local
CPN network is updated with the loss of local prototype and global prototype as regularization. We have
verified on 10 projects in three public data sets (AEEEM, NASA and Relink), and the experimental results
show that FPLPA is superior to other HDP solutions.

INDEX TERMS Heterogeneous defect prediction, federated learning, prototype learning, data islands.

I. INTRODUCTION
Software systems have been widely used in various areas of
life. A software defect is commonly defined as a deviation
between the programmed results and requirements, which can
lead to serious consequences [1], [2], [3], [4]. In the devel-
opment life cycle of a software project, the later the internal
defects are detected, the higher cost of repairing the defects.
Therefore, the project leader hopes to detect as many inherent
defects as possible before software deployment by means
of software quality assurance such as software testing or

The associate editor coordinating the review of this manuscript and

approving it for publication was Chengpeng Hao .

code review. But if we focus on all the program modules,
it will consume a lot of manpower and material resources.
The software quality assurance department hopes to identify
program modules with potential defects as early as possible,
and then allocate sufficient testing resources to them.

Software defect prediction is one of the feasible methods.
According to the historical software development data and
the defects found, the potential defective program modules in
the software project can be predicted by means of machine
learning and other methods. Modern software development
systems include many programming languages and mea-
surement element methods, which are vast and complex.
Common development languages such as C, C++ and JAVA

98618
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-9118-230X
https://orcid.org/0009-0003-9823-1295
https://orcid.org/0000-0002-2453-3691
https://orcid.org/0000-0002-6421-8186
https://orcid.org/0000-0001-9643-1099

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

are used. Metric elements include Line of Code (LOC),
McCabe, Halstead and so on [5], [6], which can view software
components from multiple perspectives.

Current software defect prediction can be divided into
Within-Project Defect Prediction (WPDP) and Cross-Project
Defect Prediction (CPDP) [7], [8], [9], [10], [11]. Software
defect prediction within a project refers to building a model
and forecasting on the limited data of the same project.

Manymetric modesmake it very complex to build software
defect prediction models. Choosing a quantum set of metrics
to improve the performance of software defect prediction
methods is a challenging problem. On the other hand, a large
amount of training data is necessary to establish a good defect
prediction model [12], [13]. In reality, it is difficult to collect
enough training data, and most historical software defect data
sets are unbalanced [14], [15], [16]. The trained model will
over fit, resulting in lack of generalization performance in
other projects. Therefore, the CPDP method has been pro-
posed to build a software defect predictionmodel based on the
historical data of other projects (i.e. source projects), and then
conduct defect prediction on the current project (i.e. target
projects) [17], [18], [19].

Some studies show that building software defect prediction
models across projects can indeed improve the generalization
performance of models, including using subspace learning
and other methods. But the data distribution between the
source project and the target project is very different in
most cases. Heterogeneous defect prediction of data het-
erogeneity exists between the source project and the target
project [20], [21], [22], [23], [24]. This leads to the predic-
tion model built on the source project is often difficult to
have a satisfactory prediction effect on the target project.
Due to industry competition, business privacy and other
reasons, software enterprises are usually reluctant to share
local data [25]. The training method of centralizing multiple
project data in a single third-party node is difficult to achieve.
The ‘‘data island’’ arises from this reason. Therefore, on the
premise of meeting the increasingly strict provisions of the
privacy regulatory authority, narrowing the data distribution
difference between the source project and the target project
and solving the data island problem in the software defect
prediction field are the urgent problems that researchers are
facing in designing CPDP prediction methods.

FL [26] is a training method that uses data sets distributed
among multiple clients to build a global model coopera-
tively. FL integrates multi-party data information through
homomorphic encryption, differential privacy and other pri-
vacy protection technologies. The client can exchange model
parameters, model structure, and parameter gradients dur-
ing the model training process. Data can be plaintext, data
encryption, adding noise, etc. But the local training data will
not leave the local participants. This exchange method will
not expose local user data, reducing the risk of data leakage.
The trained FL model can be shared and deployed among
all data clients. Prototype learning [27] is a strategy that can
eliminate data redundancy, discover the internal structure of

data, and improve data quality. By finding a prototype set to
reduce the data in the source sample space, prototype learning
can enhance the data availability and improve the execution
efficiency of the machine learning algorithm.

This paper proposes a federated prototype learning based
on prototype averaging (FPLPA). In order to make the model
have better generalization performance for heterogeneous
data, we introduce prototype learning into FL. Firstly, FPLPA
uses OSS to remove the noise of clients’ local training data,
then uses Chi-Squares Test to select the optimal feature
(metric) subset, and finally generates class prototype through
CPN. CPN retains and optimizes local data while learning
heterogeneous data. FPLPA uses the class prototype gener-
ated by CPN as the communication agent of FL, rather than
the gradient used in most FL architectures. Therefore, CPN
can avoid the bias effect of unbalanced data on traditional
convolutional networks. Prototypes can play a privacy pro-
tection role as communication entities, as the prototype data
generated by CPN is irreversible. The server collects and
averages local prototypes from clients to get global proto-
types, and then sends the global prototype back to all clients.
The client uses the global prototype to regularize the training
of the local personalized model.

The main contributions of this paper can be summarized as
follows:

1) We propose FPLPA by introducing federated prototype
learning into the field of HDP which allows multiple
clients to train personalized local models without dis-
closing local data, to solve the problem of data islands
in the field of CPDP.

2) Local data is preprocessed using OSSwhich helps class
prototypes better cover instances of the same class by
reducing noise data and Chi-Squares Test is used to
search for an optimal subset of features.

3) FPLPA can protect the privacy of local data without
introducing noise, which prevents malicious attacks
from obtaining sensitive information from the commu-
nication process.

4) We tested FPLPA performance on three public datasets,
NASA, AEEEM and Relink. Experimental results
show that FPLPA performs better than other advanced
software defect methods.

The rest of this paper is organized as follows. Section II
describes the work related to software defect prediction.
Section III introduces the implementation principle of our
proposed FPLPA algorithm in detail. Section IV gives the
details of the experimental design and discusses our exper-
imental results. The last section summarizes the conclusions
and future work.

II. RELATED WORKS
A. SOFTWARE DEFECT PREDICTION METHODS
As mentioned earlier, software defect prediction is divided
into WPDP and CPDP. The training data adopted by WPDP
is the data information of software modules in the historical

VOLUME 11, 2023 98619

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

version of the project, The distribution of training data and
test data is basically the same. To solve the metrics sub-
set selection problem, Huda et al. [28] proposed two novel
hybrid models which embed the metric selection and training
processes as a single process. Different wrapper approaches
are combined with support vector machines and artificial
neural network to identify a subset of significant metrics.

Subsequently, Huda et al. [29] proposed a software defect
prediction ensemble model. which used a combination
of random oversampling, Majority Weighted Minority
Oversampling Technique, and Fuzzy-Based Feature-Instance
Recovery to build an ensemble classifier for minimizing the
effect of imbalance distribution of classes in the training data.
Zhao et al. [30] proposed Siamese dense neural networks,
which integrates similarity feature learning and distance met-
ric learning into a unified approach. Siamese networks are
powerful for learning a few instances and have been perfectly
used in other fields.

However, when it is necessary to predict the defects of a
new project or a project lacking historical data, The method
based on WPDP is no longer feasible. Researchers pro-
pose to use the historical data of other projects to build a
CPDP classifier and predict new projects. Jing et al. intro-
duce canonical correlation analysis (CCA) into CPDP to
make the distributions of source and target datasets similar,
and then proposed CCA+ [31] cross-project heterogeneous
defect prediction method. The unified metric representation
(UMR) is formed to alleviate the data heterogeneity between
source and target projects. Gong et al. [32] mapped the data
of source and target projects into a UMR and validated the
effectiveness of this method on 18 common projects across
4 datasets. Nam et al. proposed TCA+ [33] which is an
improvement of transfer component analysis (TCA) [34].
Thismethod assumes that the source project and target project
have the same feature set. The prediction performance of
cross project model can be enhanced to some extent by
improving the feature distribution similarity between source
project and target project. Sun et al. [35] proposed a cross-
project semi-supervised defect prediction method using a
generative adversarial networks [36] called as Discriminating
Opponent Feature Learning (DAFL). Ma et al. [37] proposed
a method called as Kernel Canonical Correlation Analysis
plus (KCCA+). Combining the kernel method and transfer
learning techniques, this method improves the performance
of the predictor with more adaptive ability.

The above research has made certain achievements in the
selection of metrics set and the treatment of class imbalance,
especially the pioneering cross-project research. However,
more robust methods are still needed in scenarios with highly
heterogeneous data.

B. FEDERATED LEARNING
The core concept of FL is data availability and invisibility
which ensures that all clients can build a training model
cooperatively without leaving the local client.

Federated averaging (FedAvg) [38] is one of the first fed-
erate learning frameworks proposed. This method obtains the
global model by averaging model parameters from different
clients. The recent research work based on FLmainly focuses
on data heterogeneity, privacy protection and communication
efficiency between clients and servers. FedProx [39] can be
seen as the generalization and reconstruction of FedAvg.
In the case of heterogeneity, FedProx shows more stable and
accurate convergence than FedAvg. Li et al. [40] proposed
using local batch normalization before averaging model
parameters to reduce feature offset and solve the problem of
relying on identically distributed features. Its performance is
superior to classic FedAvg and FedProx.

In the FL framework, each client has its own sen-
sitive data and model parameters. Once these parame-
ters are used by the attacker, Privacy information will be
exposed. At present, differential privacy and homomorphic
encryption are the mainstream methods for privacy protec-
tion in FL. Madi et al. [41] proposed a secure framework
relying on Homomorphic Encryption and Verifiable Compu-
tation, and conducted experiments on the FEMNIST dataset.
Wang et al. [42] proposed a federated reinforcement learning
method based on gradient clustering (FRLGC). FRLGC adds
Gaussian noise to the data of local clients to achieve data level
privacy protection.

However, the privacy protection methods based on homo-
morphic encryption or differential privacy will introduce
noise. The noise of homomorphic multiplication will increase
explosively as the number of calculations increases. This
means that when the noise increases to a certain extent,
ciphertext cannot be decrypted. Differential privacy directly
adds noise to the gradient. It will inevitably reduce the upper
performance limit and convergence speed of the model.

Some researchers believe that personalized local models
can better adapt to the data distribution of each client. There-
fore, many personalized FL frameworks based on adaptive
technology have been proposed. Li et al. [43] proposed a
novel self-adaptive federated learning framework in hetero-
geneous systems that adaptively selects clients with larger
local training loss in each training round to accelerate the
convergence of the global model. Chai et al. [44] proposed a
tier-based FL system that groups clients into tiers based on
training performance. This algorithm alleviates performance
issues caused by data heterogeneity by optimizing accuracy
and training time.

In terms of improving the communication efficiency
between clients and servers, Model distillation can accel-
erate the convergence speed of local model and achieve
more efficient update speed by reducing the param-
eters. Wang et al. [45] proposed a federated peer-to-
peer network architecture, which called heterogeneous
defect prediction based on federated transfer learning via
knowledge distillation (FTLKD). Leveraging unlabeled aux-
iliary data (FEDAUX) [46] is an extended version of
federated distillation. This method proposes to conduct

98620 VOLUME 11, 2023

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

FIGURE 1. Overall framework of FPLPA. which is carried out under the framework of FL. It mainly includes data
preprocessing, local model training, local prototype aggregation and personalized local model testing.

unsupervised pre-training on auxiliary data to find an
initialization model. FEDAUX shows excellent perfor-
mance on convolutional neural networks and transformer
models.

C. PROTOTYPE LEARNING
The CPDP method was originally proposed to solve the
problem of insufficient effective data faced by WPDP. How-
ever, cross-project also brings challenges to heterogeneous
data. Since prototype learning can generate new data with
commonalities in the source domain. It maximizes the com-
putational efficiency of FL and protects sensitive information
of each client.

Prototype learning is often referred to as subset selec-
tion or core set construction. Suppose a source set S =
{s1, s2, · · · , sm} and a target set T = {t1, t2, · · · , tn} contain
m and n instances respectively. Prototype learning aims to
find a prototype set � ⊆ S from the source set S, so that
� can retain the information contained in the target set T
to the greatest extent, and all instances in � have the least
overlapping information.

Prototype learning can be regarded as a fine-grained clus-
tering problem. From a local perspective, each element in the
prototype set can contain public information to the greatest
extent. It can replace target set to describe complex events.
This is very beneficial for the communication phase of FL.
Prototypes can be obtained in two ways. One way is to select
representative data from the source set to form a prototype
set, which is called the selection method. Another way is
to regenerate a set of representative points in the source set,
called the generation method.

The earliest prototype learning method is K-nearest-
neighbor (K-NN) [47]. To reduce the storage space burden
and computing requirements of K-NN, Kohonen proposed
learning vector quantization [48], which is another near-
est neighbor prototype classifier. It can be regarded as a
two-layer neural network model, and each node in the out-
put layer has a weight vector. By gradually converging the
boundaries between weight vectors to the boundaries of
Bayesian classification, the most representative prototypes
can be found.

The representativeness of the prototype can be signif-
icantly improved by CNN [49]. Yang et al. [50] proposed
robust classification with convolutional prototype learning,
which is the first attempt to use a deep convolution network
to generate prototypes. Elhamifar et al. [51] also proposed a
supervised prototype selection framework. It combines deep
representation learning with prototype selection, and effec-
tively applies it to any video summarization task. Pang et al.
proposed a unified framework for (DisP+V) [52] face recog-
nition. Experiments on real world face data sets show that
DisP+V model performs well. Zarei Sabzevar’s builds a
highly interpretable prototype [53]. The neuron’s function-
ality is interpreted as calculating the distance difference
between positive and negative prototypes, which successfully
explains the function of the deep neural network.

Prototypes can help models learn better domain invari-
ant features. Therefore, prototypes are also widely used
in the field of multi-source heterogeneous domain adapta-
tion. Tan et al. [54] applied prototype learning to FL for the
first time. Zhou et al. [55] proposed a new prototype-based
multisource domain adaptation. Through the inherent class

VOLUME 11, 2023 98621

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

prototype and domain prototype, the corresponding class
prototype is constructed, and the semantic class information
of the source domain is transformed into the target domain
with no label. Li et al. proposed a multi-instance alignment
model based on global class prototype [56]. The consistency
of predictions is improved by minimizing the cross-entropy
loss of class distributions calculated based on global class
prototypes.

III. PROPOSED METHOD
Fig.1 shows the design framework of FPLPA, which is carried
out under the framework of FL, and mainly includes data pre-
processing, local model training, local prototype aggregation
and personalized local model testing.

In the data preprocessing phase, the clients use the
OSS method of unilateral selection to remove abnormal
instances from metric element (feature) data. Secondly, the
Chi-Squares Test method is used to filter the feature data to
obtain the optimal feature subset. In the personalized local
model training phase, the clients input the optimal feature
subset into the CPN to obtain the prediction tag and generate
the local prototype. CPN is the fusion of CNN and prototype
learning. The convolution layer of CPN is used to extract
deep features, and the end uses the assigned prototype to
represent classes. It can better handle the continuous hetero-
geneous data in the incremental learning task and can retain
or integrate most of the previously learned knowledge while
learning new knowledge.

The local prototype is obtained by averaging the embed-
ded vectors of similar instances. All clients send the local
prototype to the server. In the local prototype aggregation
stage, the server again averages the local prototype to obtain
the global prototype, and sends the global prototype back
to the clients. Clients use the global prototype to regularize
the local model parameters and obtain personalized local
models. When the client’s local model converges or reaches
the maximum communication round, the local model update
stops. In the personalized local model testing phase, the
shortest Euclidean distance between the embedded vector of
the test instance and the global prototype is used to obtain
the classification results. By observing the Euclidean distance
between the embedding vector of the test sample and two
global prototypes (positive and negative), which global pro-
totype has the smallest distance from the embedding vector,
the sample is determined as this class.

A. ONE-SIDED SELECTION FOR REMOVING NOISE DATA
From the perspective of defect dataset distribution, the defect
data set has many negative noises and most of them are
distributed in the boundary area as shown in Fig.2 The exis-
tence of noise in supervised learning makes the prediction in
actual data more complex, which easily leads to over-fitting
of the classifier on the training set. We use OSS [57] to
delete negative noise instances and negative instances in
the Tomek links to obtain a clean dataset, which can effec-
tively suppress the interference of abnormal instances on

FIGURE 2. OSS algorithm theory, OSS algorithm theory, which is used to
remove noisy instances on classification boundaries.

model training. Tomek links are paired on the boundary
area but do not belong to the same class. Compared with
other noise filtering technologies, OSS uses different noise
handling strategies for instances located in different areas.
It can delete noise instances more conservatively, effectively
avoid over-eliminating noise instances, and help protect the
diversity of instances in the dataset.

The specific steps of the OSS algorithm are as follows:
1) Assume S as the original training set.
2) Set C is defined as all positive instances and one ran-

domly selected from negative instances.
3) Use all the instances in the set C to reclassify S

through 1-NN classification principle, and compare
the assigned labels with the original labels. Move all
misclassified instances into the set C , which became
smaller than set S.

4) Delete all negative instances participating in Tomek-
Link fromC . In this way, the negative instances that are
considered as boundary and noises are removed, while
all the positive instances will be retained and the final
set T is obtained.

The Euclidean distance formula is as follows:

d (x1, x2) =

√√√√ u∑
i=1

(pi − qi)2 (1)

where, d is the distance between two instances, u is the feature
number of instances, pi is the dimensional feature value of
instance x1, qi is the dimensional feature value of x1. In this
way, negative instances that are considered as edges or noises
are removed, and a software defect training dataset with less
noise is obtained.

B. CHI-SQUARE TEST FOR SELECTING OPTIMAL FEATURE
SUBSET
The software system is quite large and complex, includ-
ing many related metrics. It is very important to select a
degree quantum set that can improve the performance of

98622 VOLUME 11, 2023

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

FIGURE 3. The structure of CPN, which is a combination of convolutional neural networks and prototype
theory. Its output results include classification labels and local prototype vectors.

software defect prediction methods. Different historical soft-
ware project in the dataset uses different metric elements, for
example, some of them use 61 metric elements to measure
software modules, while others use 26 metric elements.

However, these historical software project data are high-
dimensional data. At the same time, when building a CPDP
model using FL, the number of features of each client should
be aligned to keep the local model structure of each client
the same. We use the Chi-Squares Test to select the optimal
feature subset of historical software project data and can be
extended to high-dimensional data sets of software modules.
Chi-Squares Test can be used to test the correlation between
the two groups. For software defect prediction, first calculate
the Chi-Squares value of each feature. The Chi-Squares value
of feature f and class c is calculated as follows:

chi (f , c) =
n∑
i=1

(f − c)2

c
(2)

where n is the number of instances, chi (f , c) indicates the
correlation between the feature and the class. Filtering feature
selection method can reduce the difficulty of model learning
while removing redundant and useless features, which can
speed up the training of local models under the FL framework
and can effectively avoid over fitting.

C. CPN AND FEDERATED COMMUNICATIONS
In the FL paradigm, each client has its own independent local
model. However, in the increasingly complex heterogeneous
data scenario, the optimal model parameters of each client are
different, which means that gradient-based communication
cannot effectively provide each client with information that
can alleviate the heterogeneity of data. Therefore, establish-
ing a robust FL framework will be a challenge. In our FPLPA,
each client has a CPN as their local model, which is the
combination of CNN and prototype learning. The convolution
layer of CPN is used to extract the depth feature of defect data.
The model output result will specify a prototype to represent
a class. Because the same label space allows different clients
to share the same embedded space, CPN processes unknown
heterogeneous data in the learning task in a regularized way,

while preserving or integrating previously learned knowl-
edge. Therefore, class prototypes can efficiently exchange
information between heterogeneous clients.

D. CPN AND FEDERATED COMMUNICATIONS
In the FL paradigm, each client has its own independent local
model. However, in the increasingly complex heterogeneous
data scenario, the optimal model parameters of each client are
different, which means that gradient-based communication
cannot effectively provide each client with information that
can alleviate the heterogeneity of data. Therefore, it is a
challenge to establish a strong FL framework. Each client
has a CPN as their local model in FPLPA, which is a com-
bination of CNN and prototype learning. The convolution
layer of CPN is used to extract the depth feature of defect
data. The model output result will specify a prototype to rep-
resent a class. CPN processes unknown heterogeneous data
in learning tasks in a rule-based manner while preserving or
integrating previously learned knowledge, as the same label
space allows different clients to share the same embedding
space. Therefore, class prototypes can efficiently exchange
information between heterogeneous clients.

For the software defect data of a given client, the fea-
ture data is put into the CPN after data preprocessing. CPN
uses vectors in low dimensional subspaces to approximate
the most representative prototype. When the Softmax layer
is discarded, the convolutional prototype network is more
robust than the traditional CNN network in terms of data
heterogeneity.

Heterogeneous data will lead to model parameter ωi with
different forms and sizes for any client. When the total num-
ber of clients is m and data heterogeneity exists, the training
goal is to minimize the loss of client i. At present, most
FL frameworks optimize global model parameters by simply
averaging model parameters ωi. Specifically:

argmin
ω1,ω2,··· ,ωm

m∑
i=1

|Di|
N

LS (Fi (ωi; x) , y) (3)

where LS is defined as a loss function of supervised learning.
Fi (ωi; x) is the prediction label for local model i, x is the

VOLUME 11, 2023 98623

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

model input, and y is the real label. However, this brutal
approach does not really solve the heterogeneity problem and
cannot create a personalized model suitable for each local
data distribution. Therefore, the communication and aggre-
gation process of FPLPA is proceeded by prototype manner.

CPN is responsible for extracting the deep features of
software defect framework to generate class prototypes and
output prediction labels. For each class, the CPN network
generates only one class prototype, which can well contain
the common information of all similar instances. But the pro-
totype does not belong to any of the original instances. Fig.3
shows the structure of convolution neural network in CPN.
First, the feature is reshaped as input to CPN, which contains
two convolution layers, two maximum pooling layers, and
two linear layers. Then, the output embedded vector v (ϕ; x)
of the first Linear layer will pass through two branches.
v (ϕ; x) is mapped from the feature space to the label space
through the Dropout layer, Linear layer, and Softmax classi-
fier of the first branch to get the prediction label F (ω; x).
The second branch averages the embedded vector v (ϕ; x)
to get prototypes of different classes, and this operation is
irreversible. For software defect prediction that belongs to the
two-classifier task, CPN network will output one prototypes
for each class.

The prototype is defined as P(j) to represent the class j
in class set C . For client i, the prototype is the average of
the embedded vector vi (ϕi; x) of the feature data in class
j, and P(j)

i represents the prototype of class j from client
i, Because P(j)

i is obtained by averaging low dimensional
embedding vectors which is mathematically irreversible and
no information related to training data can be obtained.

P(j)
i =

1∣∣Di,j∣∣
∑

(x,y)∈Di,j

vi (ϕi; x) (4)

Di,j is a subset of the local dataset Di and consists of training
instances belonging to class j. The server aggregates local
prototypes from multiple clients to generate a global proto-
type, specifically:

P̄(j)
=

1∣∣Nj
∣∣ ∑
i∈Nj

∣∣Di,j∣∣
Nj

P(j)
i (5)

Nj is a collection of clients with class j examples. In the
optimization objective of FPLPA, minimize the total loss sum
of all clients’ local learning tasks. Fi (ωi; x) is the prediction
label of the model. N is the total number of instances on all
clients. LS and OPTS are defined as the optimization objec-
tive of local and global supervised learning, respectively.
Specifically:

OPTS = argmin
{P̄(j)}

|P|
j=1

m∑
i=1

|Di|
N

LS (Fi (ωi; x) , y) (6)

The mean square error (MSE) loss function is used to calcu-
late the loss of supervised learning for each client. yk is the

Algorithm 1 FPLPA
Initialize: ωi, i = 1, · · · ,m for each client,
Input:Di, ωi, Number of usersm, Number of communication
rounds T , Local update rounds E , Local learning rate µ,
Local dataset Ci
Server executes:
1: Initialize global prototype matrices {P̄(j)} for all classes.
2: for each communication round t = 1, . . . ,T do
3: for each client i ∈ {1, 2, . . . ,m} in paralled do
4: Pi←Local Update {i, P̄i}
5: end for
6: Server selects a local prototype subset.
7: {P(j)s } ← Random{P(j)m }
8: Selected clients update global prototype.
9: P̄(j)← {P(j)s }
10: Clients update local prototype Pi with prototype in
{P̄(j)}

11: end for
Local Update (i, P̄i):
1: for each local epoch e = 1, 2, . . . ,E do
2: for each (xi, yi) ∈ Di do
3: Client i collects local embedded vectors
4: Fi(ωi; x), vi(ϕi; x)← CPNi
5: Client i generates the prototype for class j.
6: P(j)i ← vi(ϕi; x)
7: Client i computes loss by using local prototypes.
8: L(Di, ωi)← LS (Fi(ωi; x), y)+ λ · LR(P̄i,Pi)
9: Client updates local model according to the loss L (Di, ωi).
10: end for
11: end for
12: returnPi

real label of instance k . Fi,k (ωi; x) is the prediction label. n
is the total number of instances for the client i. The MSE loss
function is expressed as:

MSE
(
yk ,Fi,k (ωi; x)

)
=

∑n
k=1

(
yk − Fi,k (ωi; x)

)2
n

(7)

Secondly, the sameMSE loss function is used tominimize the
loss of each client’s local prototype and global prototype LR,
which will be used as the regularization item of supervised
learning. OPTR is the global optimization objective of proto-
type learning. Nj is the number of instances belonging to the
class j on all clients. The specific implementation formula is
written as follows:

OPTR =

|p|∑
j=1

m∑
i=1

∣∣Di,j∣∣
Nj

LR
(
P̄(j)i ,P(j)i

)
(8)

Then, the global optimization objective OPT of FPLPA can
be expressed as:

OPT = argmin
{P̄(j)}

|P|
j=1

m∑
i=1

|Di|
N

LS (Fi (ωi; x) , y)

98624 VOLUME 11, 2023

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

TABLE 1. Statistics of items used in the experiment.

+ λ ·

|P|∑
j=1

m∑
i=1

∣∣Di,j∣∣
Nj

LR
(
P̄(j),P(j)

i

)
(9)

λ is the regularization weighting factor. When the client
updates the local model, to generate consistent class proto-
types between clients, the regularization item is added to the
local loss function. The local prototype P(j)

i can approach
the global prototype P̄(j)

i while minimizing the classification
error. The loss function is defined as follows:

L (Di, ωi) = LS (Fi (ωi; x) , y)+ λ · LR
(
P̄i,Pi

)
(10)

When the local optimization goal of the client converges, the
local model will enter the test stage. In the implementation,
the MSE loss function uses L2 as the distance between the
embedded vector obtained from the instance and the local
class prototype. The output of the test set is calculated as:

ŷ = argmin
j

∥∥∥vi (ϕi; x)− P(j)
∥∥∥
2

(11)

where vi (ϕi; x) is the embedded vector obtained from feature
data of the test instance x. In Algorithm 1, we show the
principle and process of FPLPA specific to each client.

IV. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTAL SETTINGS
1) DATASETS DESCRIPTION
We used NASA, AEEEM [58] and Relink [12] datasets
widely used in software defect prediction to evaluate the
performance of FPLPA algorithm. NASA datasets come
from 13 actual software projects. Each project contains sev-
eral modules from different software projects, ranging from
125 modules to 17186 modules. It is composed of LOC,
McCabe, Halstead and other types of metrics and defective
class labels.

The AEEEM data set was compiled by D’Ambros et al.
Each item in AEEEM contains 61 features, of which 17 are
related to source code, 5 are related to previous prediction,
5 are related to code change entropy, 17 are related to source
code entropy and 17 are related to source code decay.

The Relink dataset was collected and collated byWu et al.,
and the defect information in the dataset was confirmed

FIGURE 4. Impact of the number of filtering features on prediction
performance. (a) AUC. (b) G-mean.

TABLE 2. Confusion matrix.

manually. They use the Understand tool to analyze three
projects (such as Apache, Safe and ZXing), and extract
important software feature indicators from the source code.
Relink dataset has 26 complexity features, which are mainly
based on code complexity and abstract syntax tree and can be
generally divided into two classes: features based on program
complexity and features based on quantity. Table 1 shows the
statistics of the items used in the experiment.

2) EXPERIMENTAL ENVIRONMENT AND EVALUATION
METRICS
In this paper, the programme software used in the experiments
is Pycharm 2018 and Pytorch 1.4.1 to build the FPLPA frame-
work, and all experiments are carried out on NVIDIA GTX
GeForce 1650 Ti.

In software defect prediction, defective instances are usu-
ally called positive class, and defect-free instances are called
negative class, and the model evaluation index is Area
Under Curve (AUC), which is defined as the area enclosed
by receiver operating characteristic curve and coordinate
axis, which can make a more reasonable evaluation of the
classifier.

The G-mean index is a geometric mean, which can con-
sider the classification performance of the software defect

VOLUME 11, 2023 98625

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

TABLE 3. Randomly select local prototype subsets from 5 clients for aggregation.

TABLE 4. Randomly select local prototype subsets from 6 clients for aggregation.

prediction models for positive and negative classes, defined
as Eq.12.

G−mean =

√
TP

FN + TP
∗

TN
TN + FP

(12)

G-mean can be calculated by the confusion matrix as shown
in Table 2, if the classifier is biased toward one of the classes,
the correctness of the other will be affected. The larger
the value of the G-mean index, the higher the classification
accuracy of positive and negative classes, and the better the
performance of the model.

AUC and G-mean have the following advantages com-
pared to Accuracy. AUC has strong robustness to class
imbalance problems. Accuracy may experience biases when
dealing with datasets with imbalanced classes, while AUC
is not sensitive to changes in class distribution. It provides
a comprehensive measure that can provide a more compre-
hensive and fair model evaluation in cases of imbalanced
classes.

G-mean performs equally well in dealing with class imbal-
ance issues. It can comprehensively evaluate the performance
of themodel on different classes by considering the geometric

mean of classification accuracy and recall for each class.
G-mean focuses more on the Accuracy of classification for
smaller classes, which is very useful for important but small
sample classes.

B. FEATURE SELECTION ANALYSIS
Different defect datasets use different metrics, which reflects
the heterogeneity of software defect data. For example,
AEEEM uses 61 metric elements to analyze the character-
istics of software modules. NASA uses 37 metric elements.
Relink uses the least 26 metric elements. These datasets
are high-dimensional data. FL requires that the number of
features between different clients should be aligned to keep
the local model structure of each client the same. Chi-square
algorithm can maintain the fidelity of training data after pro-
cessing the mixed attribute data of defect data. It is a reliable
method for digital discretization and feature selection, which
can eliminate irrelevant or redundant features of defect data
and improve model accuracy.

Therefore, we used Chi-Squares Test to verify the effect
of the number of features on federated training, as shown in
Fig.4 where NASA and Relink datasets are used as clients.
F is the number of features.

98626 VOLUME 11, 2023

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

TABLE 5. Randomly select local prototype subsets from 8 clients for aggregation.

TABLE 6. Comparison results with other methods when NASA and AEEEM are used as datasets.

After calculating the Chi-square values of all features and
arranging them in descending order, the size of the best
feature subset is selected as the hyperparameters.

We set the parameters for feature selection to 9, 16, and
25 to construct tensor inputs for the convolutional network.
When selecting 25 optimal features as feature subsets, the
convergence time is shorter and the convergence curve is
smoother compared to 9 and 16. This shows that when 9 and
16 features are selected as feature subset, some useful features
have been eliminated, which will significantly reduce the
performance of the model. When the number of features is
25, the defect information of local data from different clients
can be retained to the greatest extent.

In the feature selection process with NASA and Relink
as data sets, the models perform well when each client uses
25 features as the 5× 5 input of the CPN.

C. AGGREGATION ANALYSIS OF RANDOMLY SELECTED
CLIENTS
The FL system assumes that all client model information
participates in aggregation. However, the data from different

clients is heterogeneous. The training performance of local
models is also uneven. The aggregation of local models
directly on the server side has problems such as reduced
accuracy of aggregation models. The prototype considers
the difference of clustering structure between clients due to
the difference of data distribution, and avoids introducing
greater heterogeneity through prototype subset in each round
of update. The exchange of information between prototypes
achieves the purpose of mutual learning, allowing clients
with heterogeneous data to benefit from each other, while
minimizing harmful interference.

To explore the impact of different local prototype subsets
on local model optimization in FPLPA when aggregating
global prototypes, we set up a random sampling in the proto-
type set to aggregate global prototypes. It is important to note
that this subset selection strategy does not permanently freeze
unselected local prototypes. Members of the prototype subset
are refreshed at each global update, which means that all local
prototypes have an opportunity to be aggregated objects.

Five different projects in NASA and AEEEM are used
as client sources for HDP and experimental results of the

VOLUME 11, 2023 98627

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

TABLE 7. Comparison results with other methods when NASA and relink are used as datasets.

TABLE 8. Comparison results with other methods when aeeem and relink are used as datasets.

proposed FPLPA are shown in Table 3. As the size of the local
prototype subset increases, the local model performs best
when 3 of 5 local prototypes are randomly selected.When the
average AUC and G-mean reach 0.6947 and 0.5631 respec-
tively, the model is in the best state.

In each round of training, when a large subset of local
prototypes participates in the aggregation, greater data het-
erogeneity will be introduced, and the generated global
prototypes are unfavorable to the regularization of local
models. At the same time, the global prototype obtained by
aggregating a small subset of local prototypes cannot better
describe the global distribution of the same class of samples,
and the regular items will be more likely to deviate to a single
client. Therefore, when the total number of clients is 5, the
best selection parameter is 3.

In addition, as the size of the local prototype sub-
set changes, the time for training is comparable, about
104 seconds. The FPLPA algorithm is aggregated in the form
of local prototype subsets. When the total number of clients is
fixed, the change in the number of the local prototype subset
will not affect the final training time.

To explore the generalization of the randomly chosen pro-
totype subset method with different total number of clients,
we set the total number of clients to 6 and 8 as shown in
Table 4 and 5. After the total number of clients increased
from 5 to 6 and 8, the training time also increased for the

number of the local clients has increased. When the number
of clients changed from 5 to 6, 1458 instances were added for
training and testing, which increased the training time from
104s to 223s. Similarly, when the number of clients increased
from 6 to 8, the 3359 additional instances for training and
testing increased the training time from 223s to 369s.

It is worth noting that when the total number of clients is
fixed to 6 and 8, and different local prototype subset sizes
are used for aggregation, the training time is still comparable.
In Table 4 and Table 5, the best performance of model is to
select 4 and 6 local prototypes when there are 6 and 8 clients.
Changing the size of a local prototype subset will not change
the final training time.

Considering the training time and performance of the
model together, it is best to set the total number of clients
and the local prototype subset to 5 and 3 with less training
time and good prediction performance. Therefore, our next
experiment will be carried out according to this setting.

These results show that in heterogeneous CPDP scenarios,
with the increase of the total number of clients, the stray
problem will become more serious, and the training time
will also increase. However, aggregation can be achieved by
randomly selecting a subset of local prototypes, which can
mitigate the stray caused by data heterogeneity. However, the
deviation caused by data heterogeneity can be mitigated by
selecting a subset of local prototypes of appropriate size.

98628 VOLUME 11, 2023

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

FIGURE 5. Convergence trend of different projects in NASA and AEEEM with the increase of
communication rounds. (a) AUC. (b) G-mean.

FIGURE 6. Convergence trend of different projects in NASA and Relink with the increase of
communication rounds. (a) AUC. (b) G-mean.

FIGURE 7. Convergence trend of different projects in AEEEM and Relink with the increase of
communication rounds. (a) AUC. (b) G-mean.

D. COMPARISON WITH THE ADVANCED SOFTWARE
DEFECT PREDICTION METHODS
To verify the advantages of FPLPA over other methods in
predicting heterogeneous software defects, we used CCA+,
KCCA+, FedAvg, FTLKD and FRLGC as comparative
methods.

Table 6 shows the experimental results of five projects in
NASA dataset and AEEEM dataset with different clients,
namely PC3, PC4, MW1, JDT and LC. The AUC of all
clients in the FPLPA method is 0.6360∼0.8098, the G-mean
is 0.5384∼0.6030, and the average values are 0.7571 and
0.5836 respectively. Taking the average value as the com-
parison object, it is higher than CCA+, KCCA+, FedAvg,
FTLKD and FRLGC (0.2585, 0.0821), (0.2487, 0.0844),

(0.2089, 0.0686), (0.1990, 0.0744) and (0.1820, 0.0770)
respectively.

In this group of experiments, except that the G-mean
of project MW1 is lower than the comparison experiment,
the prediction performance of other projects is superior to
other methods. MW1 has the same number of features com-
pared to PC3 and PC4. But the dataset collection is based
on different project than PC3 and PC4. We believe that
the reason why MW1 is not as high as the comparative
experiment is because the local prototype of MW1 has a
large intra cluster spacing compared to other client proto-
types, which is very unfavorable for MW1.The experimental
results show that when FPLPA processes complex hetero-
geneous data, CPN can well handle the classification of

VOLUME 11, 2023 98629

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

multi-source heterogeneous data, thus improving the robust-
ness of FPLPA.

Table 7 shows the experimental results of five projects
in NASA dataset and Relink dataset with different clients,
namely PC3, PC4,MW1,Apache and Safe. AUC of all clients
in FPLPA is 0.6434∼0.8500, G-mean is 0.5404∼0.6146, and
the average values are 0.7449 and 0.5796 respectively. Com-
pared with CCA+, KCCA+, FedAvg, FTLKD and FRLGC,
they were higher (0.2120, 0.0707), (0.1955, 0.0631), (0.2199,
0.0720), (0.1840, 0.0671) and (0.1696, 0.0669) respectively.

In this group of experiments, AUC and G-mean of all items
were higher than those of other methods. The experimental
results also show that CPN is updated in a regular way, which
avoids the bias effect on traditional convolutional network
when learning new knowledge from other clients.

Table 8 shows the experimental results of five projects
in the AEEEM dataset and Relink dataset as different
clients, respectively EQ, JDT, LC, Apache and Safe. AUC
of all clients in FPLPA is 0.6429∼0.7644, and G-mean is
0.5345∼0.5860. The average values were 0.6945 and 0.5589,
respectively. Taking the average value as the comparison
object, it is higher than CCA+, KCCA+, FedAvg, FTLKD
and FRLGC (0.1644, 0.0485), (0.1585, 0.0446), (0.1662,
0.0499), (0.0947, 0.0331) and (0.0677, 0.0183) respectively.
In this group of experiments, except that AUC and G-mean
of LC project are lower than other methods, Apache’s AUC
and Safe’s G-mean are also lower than other methods. The
prediction performance of other projects is higher than that
of other methods. FPLPA reduces the difference in local
data distribution among multiple clients by averaging local
class prototypes. The global class prototype helps the feature
extraction network to obtain more accurate features. The
experimental results show that the prototype can solve the
heterogeneity of multi-party software defect data. Compared
with other software defect methods, FPLPA has obvious
advantages.

E. THE CONVERGENCE ANALYSIS
To explore the change trend of prediction performance of
each client as the number of communication rounds increases,
Fig. 5, Fig. 6 and Fig. 7 take NASA and AEEEM, NASA and
Relink, AEEEM and Relink as the data sets of clients, respec-
tively, to observe the change of AUC and G-mean evaluation
indicators as the number of communication rounds increases.
Obviously, with the increase of rounds, most clients show
stable convergence.

In Fig. 5, AUC and G-mean increase by 0.2386 and
0.0774 on average after the model converges compared with
that without federated communication. In 0< Rounds<5,
PC3, PC4, JDT and LC showed a stable growth trend and
reached convergence. In 0< Rounds<10, MW1 has achieved
convergence despite slow growth. It can be seen from the
curve on the figure that 4 of the 5 clients have a relatively
compact prototype distribution, resulting in a rapid upward
trend. The prototype distribution of MW1 is more remote
from the other four.

In Fig. 6, AUC and G-mean increased by 0.2399 and
0.0780 on average after the model converges compared with
that without federated communication. In 0< Rounds<5,
PC3, PC4, MW1 and Safe show a stable growth trend
and reach convergence. Apache reaches convergence when
Rounds = 10. The upward trend of these 5 curves is
very rapid, which indicates that the prototype distribution
between these 5 clients is more compact than that of the 5
in Fig. 6.

In Fig. 7, AUC and G-mean increased by 0.1812 and
0.0592 on average after the model converges compared with
that without federated communication. In 0<Rounds<5, EQ,
JDT, and Safe grow rapidly and converge, while LC and
Apache converge when Rounds = 10 and 15 respectively.

In general, we propose that FPLPA has better prediction
performance than CCA+, KCCA+, FedAvg, FTLKD and
FRLGC. FPLPA combines the advantages of FL and proto-
type learning, that is, FL realizes cross project construction of
software defect prediction, and prototype ensures consistency
between heterogeneous clients. FPLPA allows to use a small
amount of local software defect data to build a more effec-
tive prediction model, which is more successful in balancing
generalization and personalization.

V. CONCLUSION
This paper proposes FPLPA for heterogeneous defect pre-
diction. FPLPA uses multiple nodes with limited data sets
to build an efficient personalized software defect prediction
model. First, clients use OSS technology to remove noise
instances from private data, and use Chi-Squares Test tech-
nology to filter out the optimal feature subset of local datasets.
The CPN built by prototype learning and CNN is used to
generate local prototypes, which are obtained from depth
features. The prototype is used as the communication sub-
ject between the clients and the server, replacing the model
parameters used in the traditional FL architecture. Because
the local prototype is generated in an irreversible way, the pri-
vacy information of the local data will not be exposed during
the communication process. Secondly, the server aggregates
subsets of local prototypes to generate global prototypes,
which can avoid the stray problem caused by heterogene-
ity and better characterize the global distribution of same
class data. Finally, the local CPN network is updated with
the loss of local prototype and global prototype as regu-
larization, which can ensure the integrity of the original
knowledge while continuously learning other heterogeneous
data, thus establishing a local model that is robust to new
data. In the test phase, CPN abandoned CNN’s Softmax and
adopted the Euclidean distance between the low-dimensional
embedded vector and the local prototype as the classification
criterion.

We have verified on 10 projects in three public data sets
(AEEEM, NASA and Relink). Compared with other meth-
ods, AUC and G-mean are up to 0.2585 and 0.0844 higher.
The experimental results show that FPLPA is superior to other
HDP solutions.

98630 VOLUME 11, 2023

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

REFERENCES
[1] M. B. R. Pandit and N. Varma, ‘‘A deep introduction to AI based soft-

ware defect prediction (SDP) and its current challenges,’’ in Proc. IEEE
Region Conf. (TENCON), Kochi, India, Oct. 2019, pp. 284–290, doi:
10.1109/TENCON.2019.8929661.

[2] L. Qiao, G. Li, D. Yu, and H. Liu, ‘‘Deep feature learning to quantitative
prediction of software defects,’’ in Proc. IEEE 45th Annu. Comput., Softw.,
Appl. Conf. (COMPSAC), Madrid, Spain, Jul. 2021, pp. 1401–1402, doi:
10.1109/COMPSAC51774.2021.00204.

[3] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, ‘‘On the value of static analysis for fault detection in soft-
ware,’’ IEEE Trans. Softw. Eng., vol. 32, no. 4, pp. 240–253, Apr. 2006,
doi: 10.1109/TSE.2006.38.

[4] X. Cai, Y. Niu, S. Geng, J. Zhang, Z. Cui, J. Li, and J. Chen, ‘‘An under-
sampled software defect prediction method based on hybrid multi-
objective cuckoo search,’’ Concurrency Comput., Pract. Exper., vol. 32,
no. 5, Mar. 2020, doi: 10.1002/cpe.5478.

[5] M. D’Ambros, M. Lanza, and R. Robbes, ‘‘Evaluating defect prediction
approaches: A benchmark and an extensive comparison,’’ Empirical Softw.
Eng., vol. 17, nos. 4–5, pp. 531–577, Aug. 2012, doi: 10.1007/s10664-011-
9173-9.

[6] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007, doi: 10.1109/TSE.2007.256941.

[7] Q. Yu, J. Qian, S. Jiang, Z. Wu, and G. Zhang, ‘‘An empiri-
cal study on the effectiveness of feature selection for cross-project
defect prediction,’’ IEEE Access, vol. 7, pp. 35710–35718, 2019, doi:
10.1109/ACCESS.2019.2895614.

[8] W. Wen, B. Zhang, X. Gu, and X. Ju, ‘‘An empirical study on combining
source selection and transfer learning for cross-project defect prediction,’’
inProc. IEEE 1st Int. Workshop Intell. Bug Fixing (IBF), Hangzhou, China,
Feb. 2019, pp. 29–38, doi: 10.1109/IBF.2019.8665492.

[9] S. Herbold, A. Trautsch, and J. Grabowski, ‘‘A comparative study
to benchmark cross-project defect prediction approaches,’’ IEEE
Trans. Softw. Eng., vol. 44, no. 9, pp. 811–833, Sep. 2018, doi:
10.1109/TSE.2017.2724538.

[10] F. Wu, X.-Y. Jing, Y. Sun, J. Sun, L. Huang, F. Cui, and Y. Sun, ‘‘Cross-
project and within-project semisupervised software defect prediction:
A unified approach,’’ IEEE Trans. Rel., vol. 67, no. 2, pp. 581–597,
Jun. 2018, doi: 10.1109/TR.2018.2804922.

[11] T. Jiang, L. Tan, and S. Kim, ‘‘Personalized defect prediction,’’ in
Proc. 28th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Silicon
Valley, CA, USA, Nov. 2013, pp. 279–289, doi: 10.1109/ASE.2013.
6693087.

[12] Y. Huang and X. Xu, ‘‘Two-stage cost-sensitive local models for
heterogeneous cross-project defect prediction,’’ in Proc. IEEE 46th
Annu. Comput., Softw., Appl. Conf. (COMPSAC), Los Alamitos, CA,
USA, Jun. 2022, pp. 819–828, doi: 10.1109/COMPSAC54236.2022.
00132.

[13] E. Kim, J. Baik, and D. Ryu, ‘‘Heterogeneous defect prediction through
correlation-based selection of multiple source projects and ensemble learn-
ing,’’ in Proc. IEEE QRS, Hainan, China, Dec. 2021, pp. 503–513, doi:
10.1109/QRS54544.2021.00061.

[14] S. Wang and X. Yao, ‘‘Using class imbalance learning for software defect
prediction,’’ IEEE Trans. Rel., vol. 62, no. 2, pp. 434–443, Jun. 2013, doi:
10.1109/TR.2013.2259203.

[15] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah,
‘‘MAHAKIL: Diversity based oversampling approach to alleviate the
class imbalance issue in software defect prediction,’’ in Proc. 40th Int.
Conf. Softw. Eng. (ICSE), Gothenburg, Sweden, May 2018, p. 699, doi:
10.1145/3180155.3182520.

[16] M. Tan, L. Tan, S. Dara, and C. Mayeux, ‘‘Online defect pre-
diction for imbalanced data,’’ in Proc. IEEE/ACM 37th IEEE Int.
Conf. Softw. Eng., Florence, Italy, vol. 2, May 2015, pp. 99–108, doi:
10.1109/ICSE.2015.139.

[17] Y. Ma, G. Luo, X. Zeng, and A. Chen, ‘‘Transfer learning for cross-
company software defect prediction,’’ Inf. Softw. Technol., vol. 54, no. 3,
pp. 248–256, Mar. 2012, doi: 10.1016/j.infsof.2011.09.007.

[18] S. Hosseini, B. Turhan, and D. Gunarathna, ‘‘A systematic litera-
ture review and meta-analysis on cross project defect prediction,’’
IEEE Trans. Softw. Eng., vol. 45, no. 2, pp. 111–147, Feb. 2019, doi:
10.1109/TSE.2017.2770124.

[19] X.-Y. Jing, F. Wu, X. Dong, and B. Xu, ‘‘An improved SDA based defect
prediction framework for both within-project and cross-project class-
imbalance problems,’’ IEEE Trans. Softw. Eng., vol. 43, no. 4, pp. 321–339,
Apr. 2017, doi: 10.1109/TSE.2016.2597849.

[20] J. Nam,W. Fu, S. Kim, T.Menzies, and L. Tan, ‘‘Heterogeneous defect pre-
diction,’’ IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 874–896, Sep. 2018,
doi: 10.1109/TSE.2017.2720603.

[21] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella, ‘‘Multi-objective cross-project defect prediction,’’ in Proc.
ICST, Luxembourg, 2013, pp. 252–261, doi: 10.1109/ICST.2013.38.

[22] Z. Li, X.-Y. Jing, X. Zhu, and H. Zhang, ‘‘Heterogeneous defect prediction
through multiple kernel learning and ensemble learning,’’ in Proc. IEEE
Int. Conf. Softw. Maintenance Evol. (ICSME), Shanghai, China, Sep. 2017,
pp. 91–102, doi: 10.1109/ICSME.2017.19.

[23] J. Chen, Y. Yang, K. Hu, Q. Xuan, Y. Liu, and C. Yang, ‘‘Multiview
transfer learning for software defect prediction,’’ IEEE Access, vol. 7,
pp. 8901–8916, 2019, doi: 10.1109/ACCESS.2018.2890733.

[24] H. Chen, X.-Y. Jing, and B. Xu, ‘‘Heterogeneous defect prediction through
joint metric selection and matching,’’ in Proc. IEEE 21st Int. Conf. Softw.
Qual., Rel. Secur. (QRS), Hainan, China, Dec. 2021, pp. 367–377, doi:
10.1109/QRS54544.2021.00048.

[25] Z. Li, X.-Y. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying, ‘‘On the multiple
sources and privacy preservation issues for heterogeneous defect predic-
tion,’’ IEEE Trans. Softw. Eng., vol. 45, no. 4, pp. 391–411, Apr. 2019,
doi: 10.1109/TSE.2017.2780222.

[26] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, ‘‘Federated learning:
Challenges, methods, and future directions,’’ IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020, doi: 10.1109/MSP.2020.2975749.

[27] P. Zhu, W. Hu, C. Yuan, and L. Li, ‘‘Prototype learning using metric learn-
ing based behavior recognition,’’ in Proc. 20th Int. Conf. Pattern Recognit.,
Istanbul, Turkey, Aug. 2010, pp. 2604–2607, doi: 10.1109/ICPR.2010.638.

[28] S. Huda, S. Alyahya, M. M. Ali, S. Ahmad, J. Abawajy, H. Al-Dossari,
and J. Yearwood, ‘‘A framework for software defect prediction and
metric selection,’’ IEEE Access, vol. 6, pp. 2844–2858, 2018, doi:
10.1109/ACCESS.2017.2785445.

[29] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari,
and S. Ahmad, ‘‘An ensemble oversampling model for class imbal-
ance problem in software defect prediction,’’ IEEE Access, vol. 6,
pp. 24184–24195, 2018, doi: 10.1109/ACCESS.2018.2817572.

[30] L. Zhao, Z. Shang, L. Zhao, A. Qin, and Y. Y. Tang, ‘‘Siamese dense neural
network for software defect prediction with small data,’’ IEEE Access,
vol. 7, pp. 7663–7677, 2019, doi: 10.1109/ACCESS.2018.2889061.

[31] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, ‘‘Heterogeneous cross-company
defect prediction by unified metric representation and CCA-based transfer
learning,’’ in Proc. 10th Joint Meeting Found. Softw. Eng., Bergamo, Italy,
Aug. 2015, pp. 496–507.

[32] L. Gong, S. Jiang, Q. Yu, and L. Jiang, ‘‘Unsupervised deep
domain adaptation for heterogeneous defect prediction,’’ IEICE
Trans. Inf. Syst., vol. E102.D, no. 3, pp. 537–549, Mar. 2019, doi:
10.1587/transinf.2018EDP7289.

[33] J. Nam, S. J. Pan, and S. Kim, ‘‘Transfer defect learning,’’ in Proc.
35th Int. Conf. Softw. Eng. (ICSE), San Francisco, CA, USA, May 2013,
pp. 382–391.

[34] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, ‘‘Domain adaptation via
transfer component analysis,’’ IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199–210, Feb. 2011, doi: 10.1109/TNN.2010.2091281.

[35] Y. Sun, X.-Y. Jing, F. Wu, J. Li, D. Xing, H. Chen, and Y. Sun,
‘‘Adversarial learning for cross-project semi-supervised defect pre-
diction,’’ IEEE Access, vol. 8, pp. 32674–32687, Feb. 2020, doi:
10.1109/ACCESS.2020.2974527.

[36] J. Liu, C. Wang, H. Su, B. Du, and D. Tao, ‘‘Multistage GAN for fabric
defect detection,’’ IEEE Trans. Image Process., vol. 29, pp. 3388–3400,
2020, doi: 10.1109/TIP.2019.2959741.

[37] Y. Ma, S. Zhu, Y. Chen, and J. Li, ‘‘Kernel CCA based transfer learning
for software defect prediction,’’ IEICE Trans. Inf. Syst., vol. E100.D, no. 8,
pp. 1903–1906, 2017, doi: 10.1587/transinf.2016EDL8238.

[38] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. 20th Int. Conf. Artif. Intell. Statist. (AISTATS), 2016,
pp. 1273–1282.

[39] T. Li, A. K. Sahu,M. Zaheer,M. Sanjabi, A. Talwalkar, andV. Smith, ‘‘Fed-
erated optimization in heterogeneous networks,’’ 2018, arXiv:1812.06127.

VOLUME 11, 2023 98631

http://dx.doi.org/10.1109/TENCON.2019.8929661
http://dx.doi.org/10.1109/COMPSAC51774.2021.00204
http://dx.doi.org/10.1109/TSE.2006.38
http://dx.doi.org/10.1002/cpe.5478
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1109/TSE.2007.256941
http://dx.doi.org/10.1109/ACCESS.2019.2895614
http://dx.doi.org/10.1109/IBF.2019.8665492
http://dx.doi.org/10.1109/TSE.2017.2724538
http://dx.doi.org/10.1109/TR.2018.2804922
http://dx.doi.org/10.1109/ASE.2013.6693087
http://dx.doi.org/10.1109/ASE.2013.6693087
http://dx.doi.org/10.1109/COMPSAC54236.2022.00132
http://dx.doi.org/10.1109/COMPSAC54236.2022.00132
http://dx.doi.org/10.1109/QRS54544.2021.00061
http://dx.doi.org/10.1109/TR.2013.2259203
http://dx.doi.org/10.1145/3180155.3182520
http://dx.doi.org/10.1109/ICSE.2015.139
http://dx.doi.org/10.1016/j.infsof.2011.09.007
http://dx.doi.org/10.1109/TSE.2017.2770124
http://dx.doi.org/10.1109/TSE.2016.2597849
http://dx.doi.org/10.1109/TSE.2017.2720603
http://dx.doi.org/10.1109/ICST.2013.38
http://dx.doi.org/10.1109/ICSME.2017.19
http://dx.doi.org/10.1109/ACCESS.2018.2890733
http://dx.doi.org/10.1109/QRS54544.2021.00048
http://dx.doi.org/10.1109/TSE.2017.2780222
http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1109/ICPR.2010.638
http://dx.doi.org/10.1109/ACCESS.2017.2785445
http://dx.doi.org/10.1109/ACCESS.2018.2817572
http://dx.doi.org/10.1109/ACCESS.2018.2889061
http://dx.doi.org/10.1587/transinf.2018EDP7289
http://dx.doi.org/10.1109/TNN.2010.2091281
http://dx.doi.org/10.1109/ACCESS.2020.2974527
http://dx.doi.org/10.1109/TIP.2019.2959741
http://dx.doi.org/10.1587/transinf.2016EDL8238

A. Wang et al.: Heterogeneous Defect Prediction Based on Federated Prototype Learning

[40] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, ‘‘FedBN: Feder-
ated learning on non-IID features via local batch normalization,’’ 2021,
arXiv:2102.07623.

[41] A. Madi, O. Stan, A. Mayoue, A. Grivet-Sébert, C. Gouy-Pailler,
and R. Sirdey, ‘‘A secure federated learning framework using homo-
morphic encryption and verifiable computing,’’ in Proc. RDAAPS,
Hamilton, ON, Canada, 2021, pp. 1–8, doi: 10.1109/RDAAPS48126.2021.
9452005.

[42] A. Wang, Y. Zhao, G. Li, J. Zhang, H. Wu, and Y. Iwahori, ‘‘Hetero-
geneous defect prediction based on federated reinforcement learning via
gradient clustering,’’ IEEE Access, vol. 10, pp. 87832–87843, 2022, doi:
10.1109/ACCESS.2022.3195039.

[43] L. Li, M. Duan, D. Liu, Y. Zhang, A. Ren, X. Chen, Y. Tan,
and C. Wang, ‘‘FedSAE: A novel self-adaptive federated learn-
ing framework in heterogeneous systems,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Shenzhen, China, Jul. 2021, pp. 1–10, doi:
10.1109/IJCNN52387.2021.9533876.

[44] Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo, Y. Zhou,
H. Ludwig, F. Yan, and Y. Cheng, ‘‘TiFL: A tier-based federated learning
system,’’ in Proc. ACM HPDC, Stockholm, Sweden, 2020, pp. 125–136.

[45] A. Wang, Y. Zhang, and Y. Yan, ‘‘Heterogeneous defect
prediction based on federated transfer learning via knowledge
distillation,’’ IEEE Access, vol. 9, pp. 29530–29540, Feb. 2021, doi:
10.1109/ACCESS.2021.3058886.

[46] F. Sattler, T. Korjakow, R. Rischke, and W. Samek, ‘‘FedAUX: Lever-
aging unlabeled auxiliary data in federated learning,’’ IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 34, no. 9, pp. 5531–5543, Sep. 2023, doi:
10.1109/TNNLS.2021.3129371.

[47] S. M. Weiss, ‘‘Small sample error rate estimation for k-NN classifiers,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 3, pp. 285–289,
Mar. 1991, doi: 10.1109/34.75516.

[48] K. J. Devi, G. B. Moulika, K. Sravanthi, and K. M. Kumar, ‘‘Prediction
of medicines using LVQ methodology,’’ in Proc. Int. Conf. Energy, Com-
mun., Data Anal. Soft Comput. (ICECDS), Aug. 2017, pp. 388–391, doi:
10.1109/ICECDS.2017.8390162.

[49] Y. Li, W. Zhao, and J. Pan, ‘‘Deformable patterned fabric defect
detection with Fisher criterion-based deep learning,’’ IEEE Trans.
Autom. Sci. Eng., vol. 14, no. 2, pp. 1256–1264, Apr. 2017, doi:
10.1109/TASE.2016.2520955.

[50] H.-M. Yang, X.-Y. Zhang, F. Yin, and C.-L. Liu, ‘‘Robust classification
with convolutional prototype learning,’’ 2018, arXiv:1805.03438.

[51] E. Elhamifar, G. Sapiro, and R. Vidal, ‘‘See all by looking at a few:
Sparse modeling for finding representative objects,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 1600–1607, doi:
10.1109/CVPR.2012.6247852.

[52] M. Pang, B. Wang, M. Ye, Y.-M. Cheung, Y. Chen, and B. Wen,
‘‘DisP+V: A unified framework for disentangling prototype and varia-
tion from single sample per person,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 34, no. 2, pp. 867–881, Feb. 2023, doi: 10.1109/TNNLS.2021.
3103194.

[53] R. Zarei-Sabzevar, K. Ghiasi-Shirazi, and A. Harati, ‘‘Prototype-based
interpretation of the functionality of neurons in winner-take-all neu-
ral networks,’’ IEEE Trans. Neural Netw. Learn. Syst., early access,
Mar. 11, 2022, doi: 10.1109/TNNLS.2022.3155174.

[54] Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang, ‘‘FedProto:
Federated prototype learning across heterogeneous clients,’’ inProc. AAAI,
Vancouver, BC, Canada, 2022, pp. 8432–8440.

[55] L. Zhou, M. Ye, D. Zhang, C. Zhu, and L. Ji, ‘‘Prototype-based mul-
tisource domain adaptation,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 10, pp. 5308–5320, Oct. 2022, doi: 10.1109/TNNLS.2021.
3070085.

[56] A. Li, P. Yuan, and Z. Li, ‘‘Semi-supervised object test via multi-instance
alignment with global class prototypes,’’ in Proc. CVPR, Jun. 2022,
pp. 9809–9818, doi: 10.1109/CVPR52688.2022.00958.

[57] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, ‘‘A study of
the behavior of several methods for balancing machine learning train-
ing data,’’ ACM SIGKDD Explor. Newslett., vol. 6, no. 1, pp. 20–29,
Jun. 2004.

[58] Z. Xu, J. Liu, Z. Yang, G. An, and X. Jia, ‘‘The impact of feature selection
on defect prediction performance: An empirical comparison,’’ in Proc.
IEEE 27th Int. Symp. Softw. Rel. Eng. (ISSRE), Ottawa, ON, Canada,
Oct. 2016, pp. 309–320, doi: 10.1109/ISSRE.2016.13.

AILI WANG (Member, IEEE) was born in
Tianjin, China, in 1979. She received the B.S.,
M.S., and Ph.D. degrees in information and signal
processing from the Harbin Institute of Technol-
ogy, Harbin, China, in 2002, 2004, and 2008,
respectively. She joined the Harbin University
of Science and Technology as an Assistant, in
2004 and she became an Associate Professor and
a Master’s Tutor with the Department of Com-
munication Engineering, in 2010. She has been a

Visiting Professor to do search of 3D polyp reconstructionwith the Computer
Science Laboratory, Chubu University, Japan, in 2014. Her research interests
include image super resolution, image fusion, object tracking, software
engineering, and reinforcement learning and federated learning.

LINLIN YANG received the bachelor’s degree
from the School of Electronic and Informa-
tion Engineering, Henan Institute of Technology,
in 2021. He is currently pursuing the master’s
degree with the School of Measurement and Con-
trol Technology and Communication Engineering,
Harbin University of Science and Technology. His
research interests include software engineering,
prototype learning, and federated learning.

HAIBIN WU was born in Harbin, China, in 1977.
He received the B.S. and M.S. degrees from
the Harbin Institute of Technology, Harbin, in
2000 and 2002, respectively, and the Ph.D. degree
in measuring and testing technologies and instru-
ments from the Harbin University of Science and
Technology, Harbin, in 2008. From 2009 to 2012,
he held a post-doctoral position with the Key Lab-
oratory of Underwater Robot, Harbin Engineering
University. From 2014 to 2015, he was a Visiting

Scholar with the Robot Perception and Action Laboratory, University of
South Florida. His research interests include robotic vision, visual measuring
and image processing, medical virtual reality, and photoelectric testing.

YUJI IWAHORI (Member, IEEE) was born in
Japan, in 1959. He received the B.S. degree from
the Nagoya Institute of Technology, in 1983, and
the M.S. and Ph.D. degrees from the Tokyo Insti-
tute of Technology, in 1985 and 1988, respectively.
He joined the Nagoya Institute of Technology,
in 1988. He was a Professor with the Nagoya
Institute of Technology, in 2002. He has also been
a Research Collaborator with IIT Guwahati, since
2010. Since 2010, he has been engaged in research

of endoscopic polyps with Aichi Medical University. His research inter-
ests include computer vision, image recognition, deep learning and neural
networks, pattern recognition and pattern classification, bioinformatics,
biomedical imaging and artificial intelligence applications, and research of
medical images. He serves as a Peer-Reviewer for KES Journals, such as the
IEEE TRANSACTIONSONNEURALNETWORKSANDLEARNING SYSTEMS,Multimedia
Tools and Applications (MTAP) (Springer), and IEEJ.

98632 VOLUME 11, 2023

http://dx.doi.org/10.1109/RDAAPS48126.2021.9452005
http://dx.doi.org/10.1109/RDAAPS48126.2021.9452005
http://dx.doi.org/10.1109/ACCESS.2022.3195039
http://dx.doi.org/10.1109/IJCNN52387.2021.9533876
http://dx.doi.org/10.1109/ACCESS.2021.3058886
http://dx.doi.org/10.1109/TNNLS.2021.3129371
http://dx.doi.org/10.1109/34.75516
http://dx.doi.org/10.1109/ICECDS.2017.8390162
http://dx.doi.org/10.1109/TASE.2016.2520955
http://dx.doi.org/10.1109/CVPR.2012.6247852
http://dx.doi.org/10.1109/TNNLS.2021.3103194
http://dx.doi.org/10.1109/TNNLS.2021.3103194
http://dx.doi.org/10.1109/TNNLS.2022.3155174
http://dx.doi.org/10.1109/TNNLS.2021.3070085
http://dx.doi.org/10.1109/TNNLS.2021.3070085
http://dx.doi.org/10.1109/CVPR52688.2022.00958
http://dx.doi.org/10.1109/ISSRE.2016.13

