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ABSTRACT Zernike radial polynomials (ZRP) play a significant role in application areas such as optics
design, imaging systems, and image processing systems. Currently, there are two kinds of numerical schemes
for computing the ZRP automatically with computer programs: one is based on the definition in which the
factorial operations may lead to the overflow problem and the high order derivatives are troublesome, and the
other is based on recursion which is either unstable or with high computational complexity. In this paper, our
emphasis is focused on exploring the balanced binary tree (BBT) schemes for computing the ZRP: firstly
an elegant formulae for computation is established; secondly the recursive and iterative algorithms based-on
BBT are proposed; thirdly the computational complexity of the algorithms are analyzed rigorously; finally
the performance of BBT schemes by testing the running time is verified and validated. Theoretical analysis
shows that the computational complexity of balanced binary tree recursive algorithm (BBRTA) and iterative
algorithm are exponential and quadratic respectively, which coincides with the running time test very well.
Experiments show that the time consumption is about 1 ∼ 10 microseconds with different computation
platforms for the balanced binary tree iterative algorithm (BBTIA), which is stable and efficient for real-
time applications. In the sense of STEM education, the connection of the BBT and ZRP exhibits the beauty
and applications of discrete mathematical structure behind the engineering problem, which is worthy of
introducing to the college students, computer programmers and optics engineers.

INDEX TERMS Optics design, Zernike radial polynomials (ZRP), high-precision computation, balanced
binary tree (BBT), recursion and iteration, computational complexity, real-time application.

I. INTRODUCTION
The Zernike radial polynomials (ZRP), named after Frits
Zernike, are important for atmospheric turbulence analy-
sis [1], aberration analysis in imaging system and optics
design [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], and
image processing [13]. Mathematically, ZRP are a sequence
of orthogonal polynomials which are defined on the unit disk
and derived from the pupils of imaging system. Generally, for
the radial degree n ∈ Z+ = {0, 1, 2, · · ·} and azimuthal order
m ∈ Z such that |m| ≤ n and n − m is even, the ZRP with
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double indices ⟨n,m⟩ are denoted by [9], [10], [11]

Rmn (ρ) =
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and the coefficients cs can be expressed by
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)
, 0 ≤ s ≤ k (3)
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where (
α

i

)
=

α(α − 1) · · · (α − i+ 1)
i!

=

i−1∏
t=0

α − t
i− t

(4)

is the binomial coefficient. The symmetry characterized by

Rmn (ρ) = R−mn (ρ) = R|m|n (ρ) (5)

implies that it is sufficient to consider the non-negative m for
computing the value of Rmn (ρ). It is easy to find that it is not
wise for us to compute Rmn (ρ) directly based on the definition
with the equation (1) since the factorial operations may lead
to the overflow problem and the high order derivatives are
troublesome in practical computations and/or implementa-
tions with computer programs.

In the past decades of exploring the indirect computa-
tion methods for Rmn (ρ), there are several recursive methods
to compute Rmn (ρ). In 1976, Kintner [14] proposed the
n-recursive formulae

Rmn (ρ) =
1
k1

[
(k2ρ2

+ k3) Rmn−2(ρ)+ k4 R
m
n−4(ρ)

]
, n ≥ 4

(6)

where
k1 = K1(n,m) = (n+ m)(n− m)(n− 2)/2,
k2 = K2(n,m) = 2n(n− 1)(n− 2),
k3 = K3(n,m) = −m2(n− 1)− n(n− 1)(n− 2),
k4 = K4(n,m) = −n(n+ m− 2)(n− m− 2)/2.

(7)

However, the stopping condition is unknown at that time and
the formula is singular when k1 = 0. In 1989, Prata andRusch
[15] proposed the following recursive scheme

Rmn (ρ) = ρL1 R
m−1
n−1 (ρ)+ L2 R

m
n−2(ρ), n ≥ 2 (8)

with the coefficients

L1 =
2n

m+ n
, L2 =

m− n
m+ n

= 1− L1. (9)

and stopping condition

Rmn (ρ) =
{

ρ, n = 1;
1, n = 0.

(10)

There are two significant points for the stopping condition:
• it has significant impacts on the time complexity and
space complexity of the computation;

• the choice of stopping condition is not unique, which
leads to different performance for the numeric schemes
adopted for the objective of computation.

For computing the Rmn (ρ), Chong et. al. proposed a simple
stopping condition for recursive process in 2003 [13]

Rmn (ρ) =
{

ρm, n = m;
ρm[(m+ 2)ρ2

− (m+ 1)], n = m+ 2.
(11)

In 2013, Shakibaei and Paramesran [11] reformulated the
recursive relation in (8) by

Rmn (ρ) = ρL1 R
|m−1|
n−1 (ρ)+ L2 Rmn−2(ρ) (12)

and derived an alternative recursive scheme

Rmn (ρ) = ρ
[
R|m−1|n−1 (ρ)+ Rm+1n−1 (ρ)

]
− Rmn−2(ρ), n ≥ 2

(13)

with the stopping condition

Rmn (ρ) =


0, n < m;
ρ, n = 1;
1, n = 0;

(14)

via the properties of Chebyshev polynomials of the second
kind. However, the computation process is rather slow with
this recursive method. Chong et al. [13] proposed the follow-
ing m-recursive scheme

Rm−4n (ρ) =
(
h2 +

h3
ρ2

)
Rm−2n (ρ)+ h1 Rmn (ρ), m ≥ 4

(15)

in which h1, h2 and h3 are functions of n and m. This
m-recursive scheme is more efficient than the other recursive
schemes for computing Rmn (ρ). However, ρ = 0 is a singular
point in (15) although Rmn (ρ) is regular for all ρ ∈ [0, 1]. Thus
the computation will be unstable if ρ is small enough.
In computer science, we know that the essence of recursion

lies in two facts: there must be a stopping condition for
the recursive procedure/function which calls itself; the recur-
sion depth should not be large otherwise the computational
complexity will be too large due to the massive memory
consumption and long time consumption caused by the push-
pop stacking processes. For the available recursive schemes
of computing Rmn (ρ) at present, for large n and difference of
n−m, the computation complexity of these recursive schemes
is rather high which limits their applications. Generally, for
the recursive problem with single integer as argument, it is
easy to convert the recursive formulae to a more efficient iter-
ative counterpart. However, for the Rmn (ρ) with two integers
n and m as arguments, there is a lack of feasible method to
convert the recursive formula to iterative versions. Although
Kintner’s n-recursive formula (6) can be reformulated as an
iterative formula, it is limited for n ≥ 4; Chong’sm-recursive
scheme (15) can be converted to its iterative version, however
the singular point ρ = 0 will still exist. For the coupled
recursive formulae (8) (or (12) equivalently) and (13), their
iterative implementations are still to be explored.

For the computational complexity of the recursive algo-
rithms available, Shakibaei and Paramesran [11] considered
the time complexity by counting the number of addition
and multiplication operations. However, their conclusion is
arguable for some reasons: the space complexity of com-
putation is ignored, the running time is not tested and the
complexity just depends on the radial index n instead of the
double indices n and m. It should be noted that the space
complexity of recursive algorithm is usually exponential or
more higher. In consequence, the recursive schemes are not
suitable for real-time applications.

In this paper, our objective is to explore an elegant for-
mula to compute Rmn (ρ) stably and propose novel recursive

106568 VOLUME 11, 2023



H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

and iterative schemes with the help of balanced binary tree
(BBT) structure. Our main contributions lie in the following
perspectives:

• A novel formula for computing the ZRP is proposed,
which stimulates the recursive and iterative schemes for
the numerical computation.

• The BBT structure of the novel formula is discovered,
which deepens the understanding of the ZRP.

• Both the recursive and iterative algorithms for com-
puting the ZRP are designed, which refreshes the
state-of-the-art of the computational complexity.

The rest of this paper is organized as follows: Section II
deals with the preliminaries for developing objective algo-
rithms; Section III discusses the BBT recursive scheme;
Section IV concerns the BBT iterative scheme; Section V
focuses on the verification and validation; finally Section VI
gives the conclusion for our work.

II. PRELIMINARIES
A. A SPECIAL KIND OF DIFFERENCE EQUATION
For the discrete difference equation

Gp = αGp−2 + β, p = 2, 4, 6, · · · (16)

with initial value G0 where α, β are constants and α ̸= 1, its
solution is

Gp = α
p
2−1G0 +

β

α − 1

(
α
p
2−1 − 1

)
, p = 2, 4, 6, · · ·

(17)

This formula will be used in analyzing the computational
complexity of computing Rmn (ρ).

B. COMPUTING POWERS OF REAL NUMBER
WITH SQUARING
For any n ∈ Z+ and real number x ∈ R, the power xn can be
computed fast by squaring, which is based on the following
recursive formulae

xn =


xn−1 · x, n ≥ 1, 2 ∤ n;
x
n
2 · x

n
2 , n ≥ 1, 2 | n;

1, n = 0.
(18)

With this formulae, for n ≥ 1 the power xn can be computed
fast with the time complexity ofO(log2 n) since only

⌈
log2 n

⌉
times of multiplicative operation is required. However, for
n = 0, xn is always 1, thus the complexity will be O (1).
The notations O(·), SProcName (·), T + (·), T ∗ (·), T Alg (·),
TF(·), TAlg(·), TFAlg(·), SAlg (·) and so on about the compu-
tational complexity are introduced in the appendix, please see
Appendix B for more details.

The iterative algorithm for computing xn is shown in
Algorithm 1.

Obviously, the time complexity of Algorithm 1 is

T CalcPower (n) =
{

O (1) , n = 0;
O

(
log2 n

)
, n ≥ 1.

(19)

Algorithm 1 Compute the power xn with squaring method in
an iterative way

Input: variable x ∈ R, variable n ∈ Z+
Output: the value of power xn

1: function CalcPower(x, n)
2: prod← 1;
3: while n ≥ 1 do
4: if 2 ∤ n then
5: prod← prod · x;
6: end if
7: x ← x · x;
8: n← n/2;
9: end while
10: return prod;
11: end function

For the purpose of computing the generalZRP Rmn (ρ), it is
necessary to investigate the functions Rmm(ρ) and Rmm+2(ρ)
since they can be used to generate formulae for Rmn (ρ) as
stopping/initial conditions for recursive/iterative processes.
In the recursive tree, there are two types of leaf nodes: one
is type A specified by Rmm(ρ), another is type B specified by
Rmm+2(ρ).Algorithm 2 andAlgorithm 3 are used to compute
the leaf nodes of type A with Rmm(ρ) and type B with Rmm+2(ρ)
respectively.

Algorithm 2 Compute the value of a leaf node of type A with
Rmm(ρ) = ρm where m ∈ Z+.
Input: Radius ρ ∈ [0, 1], integer m ∈ Z+
Output: The value of Rmm(ρ) = ρm.
1: function CalcLeafNodeTypeA(ρ,m)
2: return CalcPower(ρ,m);
3: end function

Algorithm 3 Compute the value of a leaf node of type B with
Rmm+2(ρ) = (m+ 2)ρm+2 − (m+ 1)ρm where m ∈ Z+.
Input: Radius ρ ∈ [0, 1], integer m ∈ Z+
Output: The value of Rm+2m (ρ) = ρm[(m+ 2)ρ2

− (m+ 1)].
1: function CalcLeafNodeTypeB(ρ,m)
2: return CalcPower(ρ,m) · ((m+ 2)ρ2

− (m+ 1));
3: end function

The time flops for the leaf nodes of type A is given by

T (CalcLeafNodeTypeA) = T ∗ (CalcPower(ρ,m))

=

{
0, m = 0;⌈
log2 m

⌉
, m ≥ 1

(20)
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As a comparison, the time flops for the leaf nodes of type B
can be expressed by

T (CalcLeafNodeTypeB)

= T (CalcPower(ρ,m))+ 1+ T
(
(m+ 2)ρ2

− (m+ 1)
)

=

{
3, m = 0;
3+

⌈
log2 m

⌉
, m ≥ 1.

(21)

Therefore, the computational complexity for the leaf nodes of
type A and type B is always O

(
log2 m

)
for m ≥ 1 or O (1)

for m = 0 when computing Rmm(ρ) and Rmm+2(ρ) with index
m and radius ρ (or Rn−2n (ρ) with index n and radius ρ).

III. RECURSIVE SCHEME FOR RADIAL POLYNOMIALS
A. COMPUTING THE RADIAL POLYNOMIALS RECURSIVELY
Our novel recursive formulae is a combination of the recur-
sive schemes in [11] and [15]. The trick of the exploring is
to reduce the difference of the up-down scripts appearing
on the right hand side in (12) and (13) with a common
constant so as to get a balanced result, see TABLE 1. The
larger the difference of the up-down scripts in Rmn (ρ) is, viz.
n − m, the faster the recursive process is. For the two terms
ρL1 R

|m−1|
n−1 (ρ) and L2 Rmn−2(ρ) in the right hand side of (12),

the reductions of the difference, namely (n′ −m′)− (n−m),
are 0 and 2 where Rm

′

n′ (ρ) is in the right hand side of recursive
formula. Obviously, the reductions are not equal. Similarly,
for the three terms in the right hand side of (12), the reductions
of the difference are 0, 2 and 2 respectively. These quantities
are also not balanced. It should be noted that if the reduction
of difference is 0, then it is slow for the recursive process to
satisfy the stopping condition.

Let 
F1 = F1(n,m) =

2n
n− m

,

F2 = F2(n,m) = −
n+ m
n− m

= 1− F1,
(22)

by multiplying L1 with (13) and eliminating the term
ρL1 R

|m−1|
n−1 (ρ) in (12), we immediately have

Rmn (ρ) = ρF1 R
m+1
n−1 (ρ)+ F2 R

m
n−2(ρ), n− m ≥ 2,m ≥ 0.

(23)

Evidently, the differences of up-down scripts in Rm+1n−1 (ρ) and
Rmn−2(ρ) are the same, i.e.,

(n− 1)− (m+ 1) = (n− 2)− (m) = n− m− 2. (24)

In this way, we can reduce the difference n−m to 0 or 2 step by
step with a common difference d = 2, and then the stopping
condition (11) can be applied naturally. In conclusion, we can
obtain the following complete recursive scheme
Rmn (ρ)=R

|m|
n (ρ), m < 0;

Rmn (ρ)=ρF1 R
m+1
n−1 (ρ)+ F2 R

m
n−2(ρ), m ≥ 0, n− m≥4;

Rmn (ρ)=ρm, m ≥ 0, n− m=0;
Rmn (ρ)=ρm[(m+ 2)ρ2

− (m+ 1)], m≥0, n− m = 2;
(25)

Algorithm 4 Compute the radial function Rmn (ρ) recursively
Input: Born-Wolf double indices ⟨n,m⟩, variable ρ ∈ [0, 1]
Output: the value of Rmn (ρ)
1: function CalcRadiPolyBBTRA(n, m, ρ)
2: m← |m|; // Rmn (ρ) = R−mn (ρ).
3: p← n− m; // p = 0, 2, 4, 6, · · ·
4: switch p do
5: case 0 // for the leaf node Rmm(ρ) = ρm.
6: return CalcLeafNodeTypeA(ρ,m);
7: end case
8: case 2 // for the leaf nodes Rmm+2(ρ).
9: return CalcLeafNodeTypeB(ρ,m);

10: end case
11: default // for the node Rmn = Rmm+p(ρ), p ≥ 4
12: F1← 2n/(n− m),F2← 1− F1;
13: return ρ · F1 · CalcRadiPolyBBTRA(n −

1,m+ 1, ρ)+ F2 · CalcRadiPolyBBTRA(n− 2,m, ρ);
14: end default
15: end switch
16: end function

For practical computation, we can always set m with |m| at
first. Before proceeding further, we give some interpretations
about this recursive scheme:

• the recursive process corresponds to a BBT as shown in
FIGURE 1;

• the stopping conditions consists of two kinds of leaves:

– type A, which corresponds to Rmm(ρ) for n = m;
– type B, which corresponds to Rmm+2(ρ) for n = m+

2;

• the root node corresponds to the objective polynomial
Rmn (ρ);

• computing the values of the leaf nodes with type A and
type B can be easily and fast performedwith the stopping
condition (11);

• for n ̸= m ≥ 0, the computation of Rmn (ρ) corresponds
to traversing the BBT and computing the value for each
node in the tree according to (22) and (23) dynamically;

• the number of levels of the nodes in the binary tree is
equal to the parameter k in (2);

• the number of nodes in the i-th level is 2i−1 for
i ∈ {1, 2, · · · , k} and the total number of nodes is
k∑
i=1

2i−1 = 2k − 1.

B. BALANCED BINARY TREE RECURSIVE
ALGORITHM (BBTRA)
For the given recursive formulae and stopping condition, gen-
erally it is easy to design a recursive algorithm. With the help
of the preceding two procedures CalcLeafNodetypeA and
CalcLeafNodetypeB specified by the stopping condition (11),
we can design the balanced binary tree recursive algorithm
(BBTRA) as listed in Algorithm 4.
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TABLE 1. Reduction of n − m for the up-down scripts of Rm
n (ρ) in recursive relations.

FIGURE 1. Principle of Recursive scheme for computing Rm
n (ρ) with BBT when n ̸= m ≥ 0.

It should be noted that p = n − m is the difference odd
integers or even integers, which implies that p = 0, 2, 4, · · · .
Therefore, there is no ‘‘case 1’’ in Algorithm 4.

C. COMPUTATIONAL COMPLEXITY OF BBTRA
For the non-negative double indices n andm such that n−m ∈
{2, 4, 6, · · ·}, the recursive process will stop at the nodes of
leaves when n− m = 2 or n− m = 0.

1) SPACE COMPLEXITY OF BBTRA
The space complexity of computing Rmn (ρ) is determined
by the memories needed. For n = m, we just need one
variable to record the value of Rmn (ρ) once the radius ρ and
integer m is given, thus the corresponding space complexity
is O(1). However, for n ̸= m, all of the nodes in the binary
tree determined by the recursive process will be kept for
computing Rmn (ρ). Hence the storage is determined by the
number of nodes of the BBT. As demonstrated by FIGURE 1,

the number of nodes is

SCalcRadiPolyBBTRA (n,m) = 2k − 1 = O
(
2
n−m
2

)
. (26)

In consequence, the space complexity O
(
2n−m

)
is exponen-

tial, which increases very fast with the difference n − m.
In the sense of space complexity or memory consumption,
the recursive scheme is not recommended for large value of
n − m. Particularly, for n = m and n = m + 2, the space
complexity is O (1).

2) TIME COMPLEXITY OF BBTRA
The crucial result in our development of time complexity will
be the following fundamental equation

T op

(
Rm+1n−1

)
= T op

(
Rmn−2

)
, op ∈ {∗,+} (27)

for the non-leaf nodes of the BBT, which simplifies the
analysis of computational complexity in a surprising way. Let

fop(n,m) = T op
(
Rmn

)
, (28)
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then we have{
f+(n− 1,m+ 1) = f+(n− 2,m), n− m ≥ 4;
f∗(n− 1,m+ 1) = f∗(n− 2,m), n− m ≥ 4.

(29)

According to (20) and (21), for m ≥ 1 we can obtain{
f+(n,m) = 3, m ̸= 0, n− m = 2;
f+(n,m) = 0, m ̸= 0, n− m = 0.

(30)

and{
f∗(n,m) = 3+

⌈
log2 m

⌉
, m ̸= 0, n− m = 2;

f∗(n,m) =
⌈
log2 m

⌉
, m ̸= 0, n− m = 0.

(31)

For m = 0, simple algebraic calculations show that{
f+(n,m) = 3, m = 0, n− m = 2;
f+(n,m) = 0, m = 0, n− m = 0.

(32)

and {
f∗(n,m) = 3, m = 0, n− m = 2;
f∗(n,m) = 0, m = 0, n− m = 0.

(33)

For the addition operations, equation (25) implies that

T +
(
Rmn

)
= T +

(
ρF1 R

m+1
n−1

)
+ T +

(
F2 Rmn−2

)
+ 1

= T +
(
Rm+1n−1

)
+ T +

(
ρ

2n
n− m

)
+ T + (1− F1)+ T +

(
Rmn−2

)
+ 1

= 2 T +
(
Rm+1n−1

)
+ 3 (34)

Thus

f+(n,m) = 2f+(n− 1,m+ 1)+ 3, n− m ≥ 4 (35)

Let

G+p = f+(n,m) = f+(n− m), p = n− m ∈ {0, 2, 4, · · ·}
(36)

then

G+p−2 = f+(n− 1,m+ 1) = f+(n− 2,m), (37)

hence we have the discrete difference equation

G+p = 2G+p−2 + 3, G+2 = 3,G+0 = 0. (38)

According to (16) and (17), the solution to (38) must be

G+p = 2
p
2−1G+2 + 3(2

p
2−1 − 1)

= 3(2
p
2 − 1), p = 0, 2, 4, · · · (39)

Hence we have time flops for the addition operation

f+(n,m) = T +
(
Rmn

)
= 3(2

n−m
2 − 1), n− m = 0, 2, 4, · · ·

(40)

Similarly, for the multiplication operations, we have

T ∗
(
Rmn

)
= T ∗

(
Rm+1n−1

)
+ T ∗

(
Rmn−2

)
+ T ∗ (ρF1)+ T ∗ (F2)+ 2

= 2 T ∗
(
Rm+1n−1

)
+ 5. (41)

In this way, we immediately obtain the following discrete
difference equation

G∗p = 2G∗p−2 + 5, p = 2, 4, 6, · · · (42)

and the initial value

G∗2 =
{ ⌈

log2 m
⌉

, m ≥ 1;
3, m = 0.

(43)

With the help of (16), (17), (42) and (43), we can deduce
that

G∗p = 2
p
2−1G∗2 + 5

(
2
p
2−1 − 1

)
=

{
8 · 2

n−m
2 −1 − 5, m = 0;(⌈

log2m
⌉
+ 8

)
2
n−m
2 −1 − 5, m ≥ 1.

(44)

Therefore,

f∗(n,m)

= T ∗
(
Rmn

)

=


(⌈
log2 m

⌉
+ 8

)
2
n−m
2 −1 − 5, m ̸= 0, n−m ≥ 2;⌈

log2 m
⌉

, m ̸= 0, n− m = 0;
1, m = 0, n− m = 0

8 · 2
n−m
2 −1 − 5, m = 0, n−m ≥ 2

(45)

The total time flops for computing Rmn (ρ) is

TF(Rmn )

= T ∗
(
Rmn

)
+ T +

(
Rmn

)

=



[
7+

⌈
log2 m

⌉
2

]
2
n−m
2 − 5, m ̸= 0, n− m ≥ 2⌈

log2 m
⌉

, m ̸= 0, n− m = 0

7 · 2
n−m
2 − 5, m = 0, n− m ≥ 2

1, m = 0, n− m = 0
(46)

which can be expressed with the big-O notation as follows

TF(Rmn )

=


O

(
log2 |m| 2

n−|m|
2

)
, m ̸= 0, n− |m| ≥ 4;

O
(
log2 |m|

)
, m ̸= 0, n− |m| = 0, 2;

O
(
2
n−|m|

2

)
, m = 0, n− |m| ≥ 0.

(47)

Clearly, in the sense of time complexity or time consumption,
the recursive scheme is not recommended for the large value
of n− |m|.

IV. ITERATIVE SCHEME FOR COMPUTING THE ZERNIKE
RADIAL POLYNOMIALS
For the recursive Algorithm 4, its space complexity is expo-
nential and the time complexity varies with the configuration
of double indices n and m according to (47). For large value
of n− |m|, it is necessary for us to reduce the computational
complexity with iterative scheme instead of recursive scheme
for computing Rmn (ρ).
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A. COMPUTING THE RADIAL POLYNOMIALS ITERATIVELY
The key issue of iterative computation lies in two points:
firstly, we set the initial condition in an iterative scheme
with the stopping condition in the corresponding recursive
scheme; thenwe iterate by updating the state of nodes of inter-
est via the primitive recursive formulae in a reverse direction.
For the recursive problemwith a single integer parameter, say
n, this can be done easily since there are just two directions
for the variation of n for the 1-dim problems. However, for
the recursive problem with double integer parameters, say n
andm, the iteration may be trouble because there is no simple
direction for the updating process. Fortunately, for computing
the ZRP, it is possible to iterate simply with the structure of
BBT. Actually, what we should do is just accessing the nodes
in BBT from the leaf nodes to the root node.

FIGURE 2 shows the iterative process intuitively. For
m ≥ 0 and n − m ≥ 2, we start with the initial condition
specified by (11) in the leaves in the k-th level, then compute
the value of the upper nodes in the (k−1)-th level according to
(23), finally update the state of the nodes. The formula in (25)
can be used for both recursion and iteration, which depends
on the concrete usages. Moreover, it is obvious that there are
some repetitive nodes in FIGURE 2, which implies that we
can save their calculation to accelerate the computation and
reduce memories needed.

FIGURE 3 demonstrates the simplification of the BBT
with a 1-dim array to store the nodes of interest. By removing
the redundant nodes, there are just k independent leaves in
the k-th level of the BBT. We can use a sequence v =
⟨v0, v1, · · · , vk−1⟩ to store the initial values with the expres-
sion

vi = Rm+k−1−im+k+1−i(ρ)

= ρm+k−i−1[(m+ k − i+ 1)ρ2
− (m+ k − i)] (48)

for 0 ≤ i ≤ k − 1. With the help of (23), we can deduce that
the iterative formulae for updating must be

v(t+1)i = ρF1v
(t)
i + F2v

(t)
i+1, i, t ∈ {0, 1, · · · , k − 1} (49)

where t denotes the t-th iteration. It should be noted that the
direction of iteration is from the bottom to top such that

t = k − ℓ. (50)

In other words, the variable t for iteration can be replaced by
the index ℓ for the levels of the BBT. When t = k − 1, the
iterative process stops and we have

Rmn (ρ) = v(k−1)0 . (51)

When the iteration ends, we obtain the byproduct stored in
the sequence v:

⟨v(k−1)0 , v(k−2)1 , · · · , v(0)k−1⟩

= ⟨Rmn (ρ),R
m
n−2(ρ), · · · ,R

m
m+2(ρ)⟩, (52)

in which only v(k−1)0 is the computation result of Rmn (ρ) and
the others are discarded.

Algorithm 5 Compute the radial function Rmn (ρ) iteratively
Input: Born-wolf double indices ⟨n,m⟩, variable ρ ∈ [0, 1]
Output: the value of Rmn (ρ)
1: function CalcRadiPolyBBTIA(n, m, ρ)
2: m← |m|; // Rmn (ρ) = R−mn (ρ).
3: p← n− m;
4: if p = 0 then
5: return CalcLeafNodeTypeA(ρ,m);
6: end if
7: if p = 2 then
8: return CalcLeafNodeTypeB(ρ,m);
9: end if
10: k ← p/2; // k = (n− m)/2
11: Allocate memories for the array v =

⟨v0, v1, · · · , vk−1⟩;
12: for i ∈ ⟨0, 1, · · · , k − 1⟩ do
13: vi = CalcLeafNodeTypeB(ρ,m+ k − 1− i);
14: end for
15: for ℓ ∈ ⟨k − 1, k − 2, · · · , 1⟩ do
16: nstart ← n − (ℓ − 1); // number n for the most

left node in level ℓ.
17: mstart← m+ (ℓ−1); // number m for the most

left node in level ℓ.
18: for i ∈ ⟨0, 1, · · · , ℓ−1⟩ do // compute the node

R
mpos
npos (ρ) in the level ℓ

19: mpos← mstart − i, npos← nstart − i;
20: F1← 2npos/(npos − mpos),F2← 1− F1;
21: vi ← ρF1vi + F2vi+1; // Updating the i-th

value vi in the (k − ℓ)-th level;
22: end for
23: end for
24: R← v0;
25: Release the memories for the sequence v;
26: return R;
27: end function

In the left part of FIGURE 3, the computation of R1
9(ρ)

is illustrated intuitively where n = 9,m = 1 and k = 4.
As a generalization, the right part of FIGURE 3 demonstrates
the iterative process of computing Rmn (ρ) for n − m ≥ 2 and
m ≥ 0.

B. BALANCED BINARY TREE ITERATIVE
ALGORITHM (BBTIA)
Although the principle of converting the recursive process
to its iterative counterpart is intuitive, it is still necessary
to present the iterative algorithm clearly for the purpose of
implementation with computer programs. Algorithm 5 is
the balanced binary tree iterative algorithm (BBTIA) for
computing Rmn (ρ) in an iterative way. We remark that the
dynamic memory allocation in Algorithm 5 is necessary
because the parameter k is determined by the input double
indices ⟨n,m⟩.
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FIGURE 2. Principle of Iterative Scheme for Computing Rm
n (ρ) when n ̸= |m|.

C. COMPUTATIONAL COMPLEXITY OF BBTIA
1) SPACE COMPLEXITY OF BBTIA
For n = m and n = m + 2, equation (11) can be used
and only one variable is needed to store the value of Rmn (ρ),
hence the space complexity is O(1). For n ≥ m + 4, the
sequence v = ⟨v0, v1, · · · , vk−1⟩ is used to realize the
computation of Rmn (ρ). The number of auxiliary variables
(i.e., p, k, nstart,mstart,F1,F2 and R) is constant, hence mem-
ory assumption is dominated by the length k = n−|m| of the
sequence v. In summary, the space complexity for computing
Rmn (ρ) is

SCalcRadiPolyBBTIA (n,m) = O (n− |m|) , |m| ≤ n. (53)

2) TIME COMPLEXITY OF OF BBTIA
For n−m = 0 and n−m = 2, the time computational com-
plexity is determined by the Line 5 and Line 8 inAlgorithm 5
respectively. The time complexity for the leaf nodes of type
X is

T CalcLeafNodeTypeX (n,m)

=

{
O (1) , n−m = 0;
O

(
log2 m

)
, m ̸= 0, n−m = 2;

(54)

according to (19) where X is A or B.
For m > 0 and n − m ≥ 4, the time computational

complexity is determined by the operations in the loops
involved in Lines 1 ∼ 27 in Algorithm 5. Let I =
{10, 13, 16, 17, 19, 20, 21} and ignore other line which the
time cost is not important for complexity analysis, we can

obtain the addition flops

T +
(
Rmn

)
=

∑
i∈I

T + (State[i])

=
5
2
k2 +

9
2
k − 4

=
5
8
(n− m)2 +

9
4
(n− m)− 4 (55)

since k = (n− m)/2 and multiplication flops

T ∗
(
Rmn

)
=

∑
i∈I

T ∗ (State[i])

=
5
2
k2 +

1
2
k + 1

+

k−1∑
i=0

⌈
log2(m+ k − 1− i)

⌉
(56)

respectively. Consequently, we have

T CalcRadiPolyBBTIA (n,m)

= O
(
k2

)
= O

(
(n− m)2

)
, m > 0, n− m ≥ 4. (57)

As an illustration, for Z94(ρ, θ) =
√
28R1

13(ρ) sin θ we have
n = 13,m = 1, k = (n− m)/2 = 6, thus we can obtain

T ∗
(
R1
13

)
=

5
2
· 52 +

5
2
+ 1+

4∑
i=0

⌈
log2(6− i)

⌉
= 74

Particularly, for m = 0, we can obtain TABLE 3. The time
flops are also determined by the operations in the loops
involved on Line 1 ∼ 27 in Algorithm 5. With the help
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FIGURE 3. Illustration of Iterative Algorithm for Computing Rm
n (ρ).

of TABLE 3, an argument similar to the process for finding
T op

(
Rmn

)
where m > 0 shows that

T op

(
R0
n

)
= O

(
(n− m)2

)
, op ∈ {∗,+} . (58)

since k = (n− m)/2 for non-negative m.
As a comparison, TABLE 4 shows the computational com-

plexity with the O(·) notation for computing the ZRP Rmn (ρ).

V. VERIFICATION AND VALIDATION
We implemented the novel recursive and iterative algorithms
with the C programming language and compared the running
time with Prata-Rusch’s and Shakibaei-Paramesran’s recur-
sive methods. As an illustration, we have tested the practical
running time for n = 28 and n = 29 respectively (where
m ∈ {n, n− 2, · · · , n− 2 ⌊n/2⌋}) via an average value by
repeating the algorithms of interest for 10 times.

As shown in FIGURE 4 from top to bottom, there are six
curves of running time varyingwith the difference n−m. Here
we give some necessary interpretations:

• the blue curve marked by circle ◦ and legend ‘‘Our
BBTIA’’ corresponds to the running time of our BBTIA
(Algorithm 5), which is at the bottom in the subfigures;

• the red curve marked by diamond and legend ‘‘Our
BBTRA’’ corresponds to the running time of our BBTRA
(Algorithm 4), which looks like a straight line in the
semilog diagram starting from n − |m| = 4 in the
subfigures since for n − |m| ≥ 4 the time complexity
is exponential;

• the dashed curve marked by upward-facing triangle and
legend ‘‘PrataRusch1989’’ corresponds to the run-
ning time of the primitive Prata-Rusch recursive scheme
with the stopping condition (10), which also looks like
a horizontal line in the semilog diagram; it is over the
straight line for our recursive Algorithm 4, which
implies the time computational complexity is much
higher than the exponential complexity;

• the blue curve marked by downward-facing triangle and
legend ‘‘PrataRuschBeta’’ corresponds to the run-
ning time of the improved Prata-Rusch recursive scheme
with the stopping condition (11), which reduces the time
consumption for n−|m| ≤ 18 and remains the samewith
the counterpart of the primitive Prata-Rusch recursive
scheme;

• the dashed curve marked by square and legend
‘‘ShakiParam2013’’ corresponds to the running time
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TABLE 2. Counting the time flops in Algorithm 5 for m ≥ 1.

TABLE 3. Counting the time flops in Algorithm 5 for m = 0.

of the primitive Shakebaei-Paramesran recursive scheme
with the stopping condition (14)

• the blue curve marked by hexagram and legend
‘‘ShakiParamBeta’’ corresponds to the running
time of the improved Shakebaei-Paramesran recursive
scheme with the stopping condition (11).

FIGURE 4 shows clearly that
• the running time for our iterative algorithm is the
shortest since its time computational complexity is just
O

(
(n− |m|)2

)
and

• the semilog curve for the running time for our recursive
algorithm looks like a straight line, which corresponds

to the exponential complexity and coincides with the
theoretical analysis above very well.

FIGURE 4 also illustrates a quantitative result that for
n − m = 28 (i.e., n = 28,m = 0 or n = 29,m = 1):
the worst case of time consumption for computing Rmn (ρ) is
about 107 ∼ 108 microseconds (10 ∼ 100 seconds) with
recursive schemes, our BBTIA works very well and the time
consumption is about 1 microseconds, which implies that it
is suitable for real-time applications.

The trends of curves in FIGURE 4 show that the time
consumed increases with the growth of n−mwhen n− m ≥ 4
and remains constant when n − m ∈ {0, 2}. In [11], the
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TABLE 4. Computational complexity of computing Rm
n (ρ).

FIGURE 4. Diagrams of running time of computing Rm
n (ρ) the difference of n and m for n ∈

{
28, 29

}
and m ≥ 0.

conclusion that the time complexity depends only on n is
arguable since the smaller the n−m, the faster the algorithms
are. The computational complexity of recursive algorithms
by Shakibaei-Paramesran and Prata-Rusch is much higher
than the exponential complexity since the curve of time con-
sumption is over the line specified by our recursive algorithm
with exponential complexity. For our iterative algorithm with
square complexity O

(
(n− m)2

)
, the running time is within

1 micro-second, which implies that it is suitable for real-time
applications.

The data for FIGURE 4 can be downloaded from the
GitHub website: https://github.com/GrAbsRD/Zernike/tree/
RadialPolynomialRunTime. It should be pointed out that the
configuration of our testing platform is as follows: Debian
GNU/Linux 11 (bullseye) OS;Memory, 64GBRAM; Proces-
sor, AMD® Ryzen 7 5800×8-core processor×16; Compiler,
gcc-10.2.1 20210110 (Debian 10.2.1-6). For other compu-
tational platform, the running time may be different but the
trends of the curves should be similar and the straight line
for our recursive Algorithm 4 will still remain a straight
line in the semilog diagram which illustrates the exponen-

tial complexity O
(
2
n−|m|

2

)
clearly. Furthermore, the time

consumption of our iterative Algorithm 5 will stay at the
bottom since its O

(
(n− |m|)2

)
computational complexity is

the lowest.

VI. CONCLUSION
The numerical computation of ZRP is a challenging prob-
lem due to the stability and the computational complexity.
Our formulae (23) for computing Rmn (ρ) owns the following
advantages:

• firstly it is capable of computing the value of ZRP
with high precision by avoiding computing the high
order power functions ρℓ where ℓ is a large positive
integer;

• secondly it has a simple algebraic structure for under-
standing, remembering and applications;

• thirdly it is symmetric which leads to a balanced binary
tree for recursion and convenient theoretic analysis of
computational complexity;

• fourthly the conversion of recursive process to the
iterative version is easy and the quadratic complexity
refreshes the state-of-the-art of the computational com-
plexity for computing Rmn (ρ); and
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• finally it leads to a stable computation process since
there is no singularity in the expression.

The BBTRA proposed is the fastest recursive algorithm
for computing the ZRP when compared with the other avail-
able recursive algorithms. The BBTIA is the first iterative
algorithm for computing the ZRP which has the quadratic
time complexity and it is suitable for real-time applications.
The high precision can be achieved automatically due to
the recursive and iterative property for computing polyno-
mials. In the sense of STEM education, the connection of
the BBT and ZRP exhibits the beauty and applications of
discrete mathematical structure behind the engineering prob-
lem, which is worthy of introducing to the college students,
computer programmers and optics engineers.

APPENDIX
NOTATIONS FOR INTEGERS AND COMPUTATIONAL
COMPLEXITY
A. INTEGERS AND LOWER INTEGER FOR REAL NUMBER
For an integer n ∈ Z = {0,±1,±2, · · ·}, it is even if and
only if 2 | n, i.e., 2 divides n or equivalently n ≡ 0 (mod 2);
otherwise, it is odd if and only if 2 ∤ n or equivalently n ≡
1 (mod 2). The set of non-negative integers are denoted by
Z+ = {0, 1, 2, · · ·}. For any real number x ∈ R, the maximal
lower bound n ∈ Z such that n ≤ x is called the floor of x
and it is denoted by

⌊x⌋ = n = argmax
m
{m ∈ Z : x ≥ m} . (59)

Similarly, the minimal upper bound n ∈ Z such that x ≤ n is
called the ceiling of x and it is denoted by

⌈x⌉ = n = argmin
m
{m ∈ Z : x ≤ m} . (60)

B. TIME AND SPACE COMPLEXITIES
Let T ∗ (expr) and T + (expr) be the counting or times
of multiplication and addition in some operation expression
expr. The time complexity vector of computation (TCVC)
for expr is defined by

T (expr) = [T ∗ (expr), T + (expr)]. (61)

Note that we just list two components of T (expr) here since
the subtraction and division can be treated as addition and
multiplication respectively for real numbers. The time flops
(TF) flops [16], for computing expr is

TF(expr) = T ∗ (expr)+ T + (expr) (62)

in which T ∗ (expr) and T + (expr) are the time flops of
multiplication and addition respectively.

Similarly, we use T(expr) to denote the computation time
for expr. We also use T∗(expr) and T+(expr) to represent
the computation time for the multiplications and additions
involved in expr. Given the time units τ∗ and τ+ for mul-
tiplication and addition respectively, then

τ = [τ∗, τ+] (63)

will be the vector of time units. The time for computing expr
can be represented by

T(expr) = ⟨T (expr)|τ ⟩

= T ∗ (expr)τ∗ + T + (expr)τ+

= T∗(expr)+ T+(expr) (64)

if only multiplication and addition are essential for the total
time consumed. For the purpose of analyzing time complexity
theoretically instead of estimating practical running time of
programs, we can regard the units τ∗ and τ+ as 1, thus the
time consumption is equal to the flops involved.

Let S (expr) denote the space complexity of computing
expr, which means the memories required. For allocating
memories for a sequence v = ⟨v0, v1, · · · , vℓ−1⟩ with posi-
tive length ℓ ≥ 1, the space complexity will be S (v) = ℓ.
If the memory consumption for the single element of vi is
δ = sizeof(vi), then the total memories for the sequence
of v will be ℓδ. Just like the analysis of time complexity, the
memory unit δ can be regarded as 1. Consequently, the key
problem of estimating space complexity is to estimate the
counting of memories instead of concrete memory units.

For the algorithm named with Alg, its TCVC is

T (Alg) =
∑

expr∈Alg

T (expr)

= [T ∗ (Alg), T + (Alg)] (65)

and the time for computation is

T(Alg) = ⟨T (Alg)|τ ⟩ = T ∗ (Alg)τ∗ + T + (Alg)τ+ (66)

Similarly, the space complexity of the algorithm Alg is

S (Alg) =
∑

expr∈Alg

S (expr) (67)

If there are some parameters n,m, · · · for Alg, then we will
take one of the following notations

T Alg (n,m, · · · ),TAlg(n,m, · · · )

TFAlg(n,m, · · · ),SAlg (n,m, · · · )

to represent the computational complexity according to prac-
tical requirements and interests.

In algorithm analysis, we take the big-O notation [17], [18]

O (g(n)) = {h(n) : ∃c > 0, ∃n0 > 0,∀n ≥ n0,

0 ≤ h(n) ≤ c · g(n)} (68)

to represent time or space complexity of interest with an upper
bound g(n) where both c ∈ R+ and n0 ∈ Z+ are constant.
In this paper we will use the following fact

O
(
g(n) log2 n

)
= O

(
g(n)

⌈
log2 n

⌉)
, ∀g(n)

in the analysis of time complexity.
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DATA AVAILABILITY STATEMENT
The code and the data for FIGURE 4 can be downloaded from
the GitHub websites https://github.com/GrAbsRD/Zernike/
tree/RadialPolynomialRunTime and https://github.com/
GrAbsRD/Zernike respectively.
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