IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 27 June 2023, accepted 22 August 2023, date of publication 7 September 2023, date of current version 4 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3312717

== RESEARCH ARTICLE

Balanced Binary Tree Schemes for Computing
Zernike Radial Polynomials

HONG-YAN ZHANG", YU ZHOU", (Member, IEEE), AND ZHI-QIANG FENG

School of Information Science and Technology, Hainan Normal University, Haikou 571158, China
Corresponding author: Hong-Yan Zhang (hongyan@hainnu.edu.cn)

This work was supported in part by the Hainan Provincial Natural Science Foundation of China under Grant 720RC616, and in part by the
National Natural Science Foundation of China under Grant 62167003.

ABSTRACT Zernike radial polynomials (ZRP) play a significant role in application areas such as optics
design, imaging systems, and image processing systems. Currently, there are two kinds of numerical schemes
for computing the ZRP automatically with computer programs: one is based on the definition in which the
factorial operations may lead to the overflow problem and the high order derivatives are troublesome, and the
other is based on recursion which is either unstable or with high computational complexity. In this paper, our
emphasis is focused on exploring the balanced binary tree (BBT) schemes for computing the ZRP: firstly
an elegant formulae for computation is established; secondly the recursive and iterative algorithms based-on
BBT are proposed; thirdly the computational complexity of the algorithms are analyzed rigorously; finally
the performance of BBT schemes by testing the running time is verified and validated. Theoretical analysis
shows that the computational complexity of balanced binary tree recursive algorithm (BBRTA) and iterative
algorithm are exponential and quadratic respectively, which coincides with the running time test very well.
Experiments show that the time consumption is about 1 ~ 10 microseconds with different computation
platforms for the balanced binary tree iterative algorithm (BBTIA), which is stable and efficient for real-
time applications. In the sense of STEM education, the connection of the BBT and ZRP exhibits the beauty
and applications of discrete mathematical structure behind the engineering problem, which is worthy of
introducing to the college students, computer programmers and optics engineers.

INDEX TERMS Optics design, Zernike radial polynomials (ZRP), high-precision computation, balanced
binary tree (BBT), recursion and iteration, computational complexity, real-time application.

I. INTRODUCTION double indices (n, m) are denoted by [9], [10], [11]

The Zernike radial polynomials (ZRP), named after Frits n=lm]

Zernike, are important for atmospheric turbulence analy- R™(p) = 1 |: d i| : [(pz)'”’z'”" (0 — 1)"‘7"”‘]
sis [1], aberration analysis in imaging system and optics ("7T|m|)!p‘m| d(p?)

design [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], and k

image processing [13]. Mathematically, ZRP are a sequence = ch O =copt 1 ptE 4 o p K

of orthogonal polynomials which are defined on the unit disk s=0

and derived from the pupils of imaging system. Generally, for (H

the radial degree n € Z* = {0, 1, 2, - - -} and azimuthal order

; X in which the parameter for the number of terms is
m € Z such that |m| < n and n — m is even, the ZRP with

n— |m|
k= 2
2
and the coefficients c; can be expressed by
The associate editor coordinating the review of this manuscript and cg = (_I)S (k) (n - S) 0<s<k 3)
approving it for publication was Chao Zuo s k

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
VOLUME 11, 2023 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 106567

https://orcid.org/0000-0002-4400-9133
https://orcid.org/0000-0002-8481-1796
https://orcid.org/0000-0002-7384-295X
https://orcid.org/0000-0002-1461-0032

IEEE Access

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

where

o _a(a—l) (x—i+1) o—t
(i)_ i! _Hl—t “®

is the binomial coefficient. The symmetry characterized by
R;/(p) = R;"(0) = R}"(p))

implies that it is sufficient to consider the non-negative m for
computing the value of R(p). It is easy to find that it is not
wise for us to compute R}'(p) directly based on the definition
with the equation (1) since the factorial operations may lead
to the overflow problem and the high order derivatives are
troublesome in practical computations and/or implementa-
tions with computer programs.

In the past decades of exploring the indirect computa-
tion methods for R!"(p), there are several recursive methods
to compute R)'(p). In 1976, Kintner [14] proposed the
n—recursive formulae

R = - [0 +) RIA(p) + R ()] = 4
(6)
where
ky = Ki(n,m) = (n + m)(n — m)(n — 2)/2,
=Ky(n,m) =2n(n — 1)(n — 2),
ks = K3(n,m) = —m*(n — 1) — n(n — D(n — 2), M
ks = Ks(n,m) = —n(n+m —2)(n —m — 2)/2.

However, the stopping condition is unknown at that time and
the formula is singular when k1 = 0. In 1989, Prata and Rusch
[15] proposed the following recursive scheme

R7(0) = pLiR" () + LaR" 5(p), n=>2 (8)
with the coefficients
L= =Ty 9)
l_m—l—n’ 2_m—l—n_ b
and stopping condition
p,n=1,
Ry =11 "2 (10)

s

There are two significant points for the stopping condition:

« it has significant impacts on the time complexity and
space complexity of the computation;

« the choice of stopping condition is not unique, which
leads to different performance for the numeric schemes
adopted for the objective of computation.

For computing the R}'(p), Chong et. al. proposed a simple
stopping condition for recursive process in 2003 [13]

o™, n=m
m[(m+2)p —m+ D], n=m+2.
In 2013, Shakibaei and Paramesran [11] reformulated the
recursive relation in (8) by

RIp) = pLi R (0) + LRI, (0) (12)

R'(p) = (11)

106568

and derived an alternative recursive scheme

R(o) = p [RI" (o) + R ()] = RIy(0), 2
(13)
with the stopping condition
0, n<m
Ry(p)=1p, n=1; (14)
1, n=0;

via the properties of Chebyshev polynomials of the second
kind. However, the computation process is rather slow with
this recursive method. Chong et al. [13] proposed the follow-
ing m-recursive scheme

- h ,
Ry'(p) = (hz + p—;) R'2(p) + iR} (p), m =>4

15)

in which Ay, hp and h3 are functions of n and m. This
m-recursive scheme is more efficient than the other recursive
schemes for computing R} (p). However, p = 0 is a singular
point in (15) although R'(p) is regular for all p € [0, 1]. Thus
the computation will be unstable if p is small enough.

In computer science, we know that the essence of recursion
lies in two facts: there must be a stopping condition for
the recursive procedure/function which calls itself; the recur-
sion depth should not be large otherwise the computational
complexity will be too large due to the massive memory
consumption and long time consumption caused by the push-
pop stacking processes. For the available recursive schemes
of computing R)"(p) at present, for large n and difference of
n—m, the computation complexity of these recursive schemes
is rather high which limits their applications. Generally, for
the recursive problem with single integer as argument, it is
easy to convert the recursive formulae to a more efficient iter-
ative counterpart. However, for the R(p) with two integers
n and m as arguments, there is a lack of feasible method to
convert the recursive formula to iterative versions. Although
Kintner’s n-recursive formula (6) can be reformulated as an
iterative formula, it is limited for n > 4; Chong’s m-recursive
scheme (15) can be converted to its iterative version, however
the singular point p = 0 will still exist. For the coupled
recursive formulae (8) (or (12) equivalently) and (13), their
iterative implementations are still to be explored.

For the computational complexity of the recursive algo-
rithms available, Shakibaei and Paramesran [11] considered
the time complexity by counting the number of addition
and multiplication operations. However, their conclusion is
arguable for some reasons: the space complexity of com-
putation is ignored, the running time is not tested and the
complexity just depends on the radial index »n instead of the
double indices n and m. It should be noted that the space
complexity of recursive algorithm is usually exponential or
more higher. In consequence, the recursive schemes are not
suitable for real-time applications.

In this paper, our objective is to explore an elegant for-
mula to compute R!'(p) stably and propose novel recursive

VOLUME 11, 2023

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

IEEE Access

and iterative schemes with the help of balanced binary tree
(BBT) structure. Our main contributions lie in the following
perspectives:

¢ A novel formula for computing the ZRP is proposed,
which stimulates the recursive and iterative schemes for
the numerical computation.

o The BBT structure of the novel formula is discovered,
which deepens the understanding of the ZRP.

« Both the recursive and iterative algorithms for com-
puting the ZRP are designed, which refreshes the
state-of-the-art of the computational complexity.

The rest of this paper is organized as follows: Section II
deals with the preliminaries for developing objective algo-
rithms; Section III discusses the BBT recursive scheme;
Section IV concerns the BBT iterative scheme; Section V
focuses on the verification and validation; finally Section VI
gives the conclusion for our work.

Il. PRELIMINARIES
A. A SPECIAL KIND OF DIFFERENCE EQUATION
For the discrete difference equation

szaprz"‘,B, p=274765.” (16)

with initial value Gy where «, 8 are constants and o # 1, its
solution is

=
—
Q
s

—1—1), =246,
(I7)

This formula will be used in analyzing the computational
complexity of computing R}'(p).

B. COMPUTING POWERS OF REAL NUMBER

WITH SQUARING

For any n € Z* and real number x € R, the power x" can be
computed fast by squaring, which is based on the following
recursive formulae

2 (18)

With this formulae, for n > 1 the power x” can be computed
fast with the time complexity of O(log, n) since only [log, n]
times of multiplicative operation is required. However, for
n = 0, x" is always 1, thus the complexity will be & (1).
The notations O(-), SprocName (+)> 7+ (1), T4 (), TAlg ()
TF(-), Taig(), TFAlg(), Salg (-) and so on about the compu-
tational complexity are introduced in the appendix, please see
Appendix B for more details.

The iterative algorithm for computing x” is shown in
Algorithm 1.

Obviously, the time complexity of Algorithm 1 is

o, n=0;

ﬁ(logzn) ,n>1. (19)

T calcPower (1) =

VOLUME 11, 2023

Algorithm 1 Compute the power x” with squaring method in
an iterative way

Input: variable x € R, variable n € ZT
Output: the value of power x”
1: function CalcPower(x, n)
2 prod <« I;
3 whilen > 1 do
4 if 2 1 n then
5: prod < prod - Xx;
6 end if
7 X < X-X;
8 n < n/2;
9 end while
10: return prod;
11: end function

For the purpose of computing the generalZRP R/'(p), it is
necessary to investigate the functions Rj(p) and R} ,(p)
since they can be used to generate formulae for R}'(p) as
stopping/initial conditions for recursive/iterative processes.
In the recursive tree, there are two types of leaf nodes: one
is type A specified by R"(p), another is type B specified by
R 42(p). Algorithm 2 and Algorithm 3 are used to compute
the leaf nodes of type A with R}}/(p) and type B with R} , (o)
respectively.

Algorithm 2 Compute the value of a leaf node of type A with
R™(p) = p™ where m € Z.

Input: Radius p € [0, 1], integer m € Z™*
Output: The value of R}, (p) = p™.
1: function CalcLeafNodeTypeA(p, m)
2: return CalcPower(p, m);
3: end function

Algorithm 3 Compute the value of a leaf node of type B with
R H(p) = (m+ 2)p"t2 — (m + 1)p™ where m € Z.

Input: Radius p € [0, 1], integer m € Z+

Output: The value of R”2(p) = p"[(m+2)p% — (m+ 1)].
1: function CalcLeafNodeTypeB(p, m)
2. return CalcPower(p, m) - ((m + 2)p? — (m + 1));
3: end function

The time flops for the leaf nodes of type A is given by

T (CalcLeafNodeTypeA) = 7T, (CalcPower(p, m))

m=0;

— O’
B |_10g2 m-| , m>1
(20

106569

IEEE Access

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

As a comparison, the time flops for the leaf nodes of type B
can be expressed by

T (CalcLeafNodeTypeB)
= T (CalcPower(p, m)) + 1+ 7T ((m +2)p> —(m+ 1))

_ 3, m=0;
|34 [logym], m=>1.

Therefore, the computational complexity for the leaf nodes of
type A and type B is always & (10g2 m) form > 1or (1)
for m = 0 when computing R}, (p) and R}, ,(p) with index
m and radius p (or RZ‘Z(,O) with index n and radius p).

2D

Ill. RECURSIVE SCHEME FOR RADIAL POLYNOMIALS

A. COMPUTING THE RADIAL POLYNOMIALS RECURSIVELY
Our novel recursive formulae is a combination of the recur-
sive schemes in [11] and [15]. The trick of the exploring is
to reduce the difference of the up-down scripts appearing
on the right hand side in (12) and (13) with a common
constant so as to get a balanced result, see TABLE 1. The
larger the difference of the up-down scripts in R])(p) is, viz.
n — m, the faster the recursive process is. For the two terms
pLy RL":”(/)) and L, R ,(p) in the right hand side of (12),
the reductions of the difference, namely (W' — m’) — (n — m),
are 0 and 2 where RZl,,(p) is in the right hand side of recursive
formula. Obviously, the reductions are not equal. Similarly,
for the three terms in the right hand side of (12), the reductions
of the difference are 0, 2 and 2 respectively. These quantities
are also not balanced. It should be noted that if the reduction
of difference is 0, then it is slow for the recursive process to
satisfy the stopping condition.

Let
2n
Fi =Fi(n,m) = ,
Fy = Fynm)= — 222 — 1 — Fy,
n—m

by multili)lying L; with (13) and eliminating the term

pLi Rlﬁl |(,0) in (12), we immediately have

RY(p) = pFI R (p) + FaRY y(p), n—m>2,m>0.

(23)

Evidently, the differences of up-down scripts in Rffll (p) and
R ,(p) are the same, i.e.,

=D —m+D)=n—-2)—m)=n—m—2. (24)

In this way, we can reduce the difference n—m to 0 or 2 step by
step with a common difference d = 2, and then the stopping
condition (11) can be applied naturally. In conclusion, we can
obtain the following complete recursive scheme

R (p)=R["(p),

R (p)=pF1 R (p) + F2RI,(p),
R} (0)=p",

R™(p)=p"[(m + 2)p* — (m +)],

m < 0;
m>0,n—m>4;
m=>0,n—m=0;

m>0,n—m=2;
(25)

106570

Algorithm 4 Compute the radial function R"(p) recursively

Input: Born-Wolf double indices (n, m), variable p € [0, 1]
Output: the value of R'(p)

1: function CalcRadiPolyBBTRA(n, m, p)

2 m < |ml; I/ R} (p) =R, (p).

3 p<n—m; [Ip=0,2,4,6,---

4 switch p do

5: case 0 // for the leaf node R}}(p) = p™.

6: return CalcLeafNodeTypeA(p, m);

7 end case

8 case 2 // for the leaf nodes R} ,(p).

9: return CalcLeafNodeTypeB(p, m);
10: end case
11: default // for the node R)} = R%ﬂ,(,o),p >4
12: Fi < 2n/(n—m), F, < 1—Fy;
13: return p - F1 - CalcRadiPolyBBTRA(n —

1,m+ 1, p) + F; - CalcRadiPolyBBTRA(n — 2, m, p);
14: end default
15: end switch
16: end function

For practical computation, we can always set m with |m| at
first. Before proceeding further, we give some interpretations
about this recursive scheme:

« the recursive process corresponds to a BBT as shown in
FIGURE 1;
« the stopping conditions consists of two kinds of leaves:

- type A, which corresponds to RI(p) for n = m;
— type B, which corresponds to R/ ,(p) forn = m+
2

« the root node corresponds to the objective polynomial
R} (p);

« computing the values of the leaf nodes with type A and
type B can be easily and fast performed with the stopping
condition (11);

o forn # m > 0, the computation of R(p) corresponds
to traversing the BBT and computing the value for each
node in the tree according to (22) and (23) dynamically;

« the number of levels of the nodes in the binary tree is
equal to the parameter k in (2);

o the number of nodes in the i-th level is 2°~! for
ik e {1,2,---,k} and the total number of nodes is

Zz"—‘:z"—l.

i=1

B. BALANCED BINARY TREE RECURSIVE

ALGORITHM (BBTRA)

For the given recursive formulae and stopping condition, gen-
erally it is easy to design a recursive algorithm. With the help
of the preceding two procedures CalcLeafNodetypeA and
CalcLeafNodetypeB specified by the stopping condition (11),
we can design the balanced binary tree recursive algorithm
(BBTRA) as listed in Algorithm 4.

VOLUME 11, 2023

IEEE Access

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

TABLE 1. Reduction of n — m for the up-down scripts of R]J' (o) in recursive relations.

Eq. Expr. of R:L",, (p) m n n —m Reduction Balanced Reduction?
[m—1]
pLiR,_{'(p) |m—=1 n—-1 n—-m 0(m>1)

(12) o, B o No

La R 5(p) m n—2 n—m-—2 2

R M) m—1 n—1 n-m 0(m>1)
(13) pR) m+1 n—-1 n—m-2 2 No

—R 5(p) m n—2 n—m-—2 2
23) pF1 Rn'"jll (p) m+1 n—1 n—m-—2 2 Yes

Fa R 5(p) m n—2 n—m-—2 2

m
Ry level 1, 29 node
+1
R level 2: 2! nodes
2
1%8
pF1
m+i m
Rnfz Rn72i L
3 level : 2¢-1 nodes
R7
pF1 Y’z Fy
level k: 2! nodes
n m+k—1 3 3 2 3 2 2
i Rm+k+1 R} (RS R} (R R) (R (RM i
m
| | |

Ry(p) = p" Ry ,(p) = (m+2)p™"2 — (m + 1)p™

FIGURE 1. Principle of Recursive scheme for computing R (o) with BBT when n # m > 0.

It should be noted that p = n — m is the difference odd the number of nodes is
integers or even integers, which implies thatp = 0,2, 4, ---.

Therefore, there is no “case 1’ in Algorithm 4.

SCalcRadiPolyBBTRA (11, M) = k—1=0 (ZWZW) . (26)

In consequence, the space complexity & (2”_”’) is exponen-
tial, which increases very fast with the difference n — m.
In the sense of space complexity or memory consumption,
the recursive scheme is not recommended for large value of
n — m. Particularly, for n = m and n = m + 2, the space
complexity is & (1).

C. COMPUTATIONAL COMPLEXITY OF BBTRA

For the non-negative double indices n and m such that n—m €
{2,4,6, -}, the recursive process will stop at the nodes of
leaves whenn —m =2orn—m = 0.

2) TIME COMPLEXITY OF BBTRA

1) SPACE COMPLEXITY OF BBTRA

The space complexity of computing R)'(p) is determined
by the memories needed. For n = m, we just need one
variable to record the value of R)"(p) once the radius p and
integer m is given, thus the corresponding space complexity
is 0(1). However, for n # m, all of the nodes in the binary
tree determined by the recursive process will be kept for
computing R!'(p). Hence the storage is determined by the
number of nodes of the BBT. As demonstrated by FIGURE 1,

VOLUME 11, 2023

The crucial result in our development of time complexity will
be the following fundamental equation
Top (R;"fll) =Top (RI,), opefx,+} (@27

for the non-leaf nodes of the BBT, which simplifies the
analysis of computational complexity in a surprising way. Let

Jop(n, m) = Top (an), (28)

106571

IEEE Access

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

then we have

fin=1m+1)=f(n—-2,m), n-—m=>4.

According to (20) and (21), for m > 1 we can obtain
fen,m)=3, m#0,n—m=2; (30)
f+(n,m)=0, m#0,n—m=0.

and

f*(n,m)=3+[log2m—|,m;ﬁO,n—m:Z; 31)
fe(n,m) = |_10g2m-| , m#0,n—m=0.

For m = 0, simple algebraic calculations show that
firn,m)y=3, m=0,n—m=2; (32)
fr(n,m)=0, m=0,n—m=0.

and
fin,om)=3, m=0,n—m=2; (33)
f*(n,m)zo, m=0,n—m=0.

For the addition operations, equation (25) implies that

To (Ry) =T (pFIRI) + T4 (FaRI) + 1
2
=7, (RI4) + 74 (!)
n—m
+T+(A-F)+T4+ R, +1
—27, (Rm+‘) +3 (34)
Thus
frnm)=2f (n—1,m+1)+3, n—m>4 (35)
Let
Gf=fi(n,m)=fi(n—m), p=n—me{0,2,4, -}
(36)
then

Gy ,=fra=1m+ 1) =fi(n=2,m), (37
hence we have the discrete difference equation
+ + +
G, =2G; ,+3, G; =3,G; =0. (38)
According to (16) and (17), the solution to (38) must be
GF =216 +32 7 - 1)
=325-1), p=024,-- (39)
Hence we have time flops for the addition operation
S+(n,m) =

T+(R;n):3(2%—l)’ n-m=0,2,4,---

(40)
Similarly, for the multiplication operations, we have
T« (RY) =T (RKF 11) + 7T (Ry,)
+ T (pF1) + T4 (F2) +2
—27, (Rm+1) 45 (41)

106572

In this way, we immediately obtain the following discrete
difference equation

G;:ZG;?z—i-S, p=2,4,6,--- (42)
and the initial value
e
With the help of (16), (17), (42) and (43), we can deduce
that
= 25165 +5 (2‘%—1 - 1)
m = U;
{ logzm—| + 8) 21 5, m>1. “4)
Therefore,
Ji(n, m)
=7.(R})
(Mogym] +8) 22"~ =5, m#0,n—m > 2;
[log, m], m#0,n—m=0;
1, m=0n—m=0
g.22" "1 _5 m=0,n—m>?2
(45)
The total time flops for computing R}(p) is
TFR]")
=T.(R}))+ 7T+ (R))
|: logzm:| —5, m#0,n—m=>?2
= [lome—|, m#0,n—m=0
-5, m=0n—m=>2
1, m=0n—m=0

(46)
which can be expressed with the big-O notation as follows
TF(R")
o (1og2 Im| 2"‘7""‘) L m£0,n—|ml >4
= ﬁ(log2|m|), m#0,n—|m|=0,2;
o (7). m=0,n—|m|>0.
(47)

Clearly, in the sense of time complexity or time consumption,
the recursive scheme is not recommended for the large value
of n — |mj.

IV. ITERATIVE SCHEME FOR COMPUTING THE ZERNIKE
RADIAL POLYNOMIALS

For the recursive Algorithm 4, its space complexity is expo-
nential and the time complexity varies with the configuration
of double indices n and m according to (47). For large value
of n — |m]|, it is necessary for us to reduce the computational
complexity with iterative scheme instead of recursive scheme
for computing R (p).

VOLUME 11, 2023

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

IEEE Access

A. COMPUTING THE RADIAL POLYNOMIALS ITERATIVELY
The key issue of iterative computation lies in two points:
firstly, we set the initial condition in an iterative scheme
with the stopping condition in the corresponding recursive
scheme; then we iterate by updating the state of nodes of inter-
est via the primitive recursive formulae in a reverse direction.
For the recursive problem with a single integer parameter, say
n, this can be done easily since there are just two directions
for the variation of n for the 1-dim problems. However, for
the recursive problem with double integer parameters, say n
and m, the iteration may be trouble because there is no simple
direction for the updating process. Fortunately, for computing
the ZRP, it is possible to iterate simply with the structure of
BBT. Actually, what we should do is just accessing the nodes
in BBT from the leaf nodes to the root node.

FIGURE 2 shows the iterative process intuitively. For
m > 0and n — m > 2, we start with the initial condition
specified by (11) in the leaves in the k-th level, then compute
the value of the upper nodes in the (k —1)-th level according to
(23), finally update the state of the nodes. The formula in (25)
can be used for both recursion and iteration, which depends
on the concrete usages. Moreover, it is obvious that there are
some repetitive nodes in FIGURE 2, which implies that we
can save their calculation to accelerate the computation and
reduce memories needed.

FIGURE 3 demonstrates the simplification of the BBT
with a 1-dim array to store the nodes of interest. By removing
the redundant nodes, there are just k independent leaves in
the k-th level of the BBT. We can use a sequence v =
(vo, v1, - -+ , vk—1) to store the initial values with the expres-
sion

v =RyTT)
= p"H T+ k=i D —(m+k =] 48)

for 0 <i < k — 1. With the help of (23), we can deduce that
the iterative formulae for updating must be

W = o+) i1 e {01,k — 1) (49)

where ¢ denotes the ¢-th iteration. It should be noted that the
direction of iteration is from the bottom to top such that

t=k—¢. (50)

In other words, the variable ¢ for iteration can be replaced by
the index ¢ for the levels of the BBT. When ¢t = k — 1, the
iterative process stops and we have

k—1
R(p) =Y. (51)
When the iteration ends, we obtain the byproduct stored in

the sequence v:

k—1 k—2 0
(V(())7v(1)7"' 7v§(_)1>

= (R (p). Ry_,(p), - -~

in which only vg“l) is the computation result of R"(p) and

the others are discarded.

Ra(0)), (52)

VOLUME 11, 2023

Algorithm 5 Compute the radial function R(p) iteratively

Input: Born-wolf double indices (n, m), variable p € [0, 1]
Output: the value of R'(p)

1: function CalcRadiPolyBBTIA(n, m, p)
2 m<|ml; //RMp)=R,"(p).
3 p < n—m
4: if p = 0 then
5: return CalcLeafNodeTypeA(p, m);
6 end if
7 if p = 2 then
8 return CalcLeafNodeTypeB(p, m);
9: end if
10: k<p/2;, Ilk=m—m)/2
11: Allocate memories for the array v =
Vo, V1, -, Vk—1)s
12: forie (0,1,--- ,k—1)do
13: v; = CalcLeafNodeTypeB(p, m + k — 1 —i);
14: end for
15: fort e (k—1,k—2,---,1)do
16: Ngtart < 1 — (£ — 1); // number n for the most
left node in level £.
17: Mgart <— m~+ (€ —1); // number m for the most
left node in level £.
18: fori € (0,1,---,£—1)do //compute the node
R,,mppn‘f(p) in the level £
19: Mpos <— Mstart — [, Mpos <— Nstart — I3
20: Fi < 2npos/(npos - mpos)a Fy < 1—Fy;
21: vi < pF1v; + Foviy1; [/ Updating the i-th
value v; in the (k — £)-th level,
22: end for
23: end for
24: R < vo;
25: Release the memories for the sequence v;
26: return R;

27: end function

In the left part of FIGURE 3, the computation of Ré(p)
is illustrated intuitively where n = 9,m = 1 and k = 4.
As a generalization, the right part of FIGURE 3 demonstrates
the iterative process of computing R)'(p) for n —m > 2 and
m > 0.

B. BALANCED BINARY TREE ITERATIVE

ALGORITHM (BBTIA)

Although the principle of converting the recursive process
to its iterative counterpart is intuitive, it is still necessary
to present the iterative algorithm clearly for the purpose of
implementation with computer programs. Algorithm 5 is
the balanced binary tree iterative algorithm (BBTIA) for
computing R(p) in an iterative way. We remark that the
dynamic memory allocation in Algorithm 5 is necessary
because the parameter k is determined by the input double
indices (n, m).

106573

IEEE Access

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

n m-+k—1
Rn Rm+k+1

Ry (p) = p"

level 1

Ry o(p) = (m+2)p™ " — (m + 1)p™

FIGURE 2. Principle of Iterative Scheme for Computing RJY (o) when n # |m|.

C. COMPUTATIONAL COMPLEXITY OF BBTIA
1) SPACE COMPLEXITY OF BBTIA
Forn = mand n = m + 2, equation (11) can be used
and only one variable is needed to store the value of R"(p),
hence the space complexity is (1). For n > m + 4, the
sequence v. = (vg, Vi, -+, Vk—1) is used to realize the
computation of R'(p). The number of auxiliary variables
(i.e., p, k, ngtart, Mstart, F1, F2 and R) is constant, hence mem-
ory assumption is dominated by the length k = n — |m| of the
sequence v. In summary, the space complexity for computing
R} (p) is

ScalcRadiPolyBBTIA (1,) = O (n — |m|), |m| <n. (53)
2) TIME COMPLEXITY OF OF BBTIA
For n—m = 0 and n—m = 2, the time computational com-
plexity is determined by the Line 5 and Line 8 in Algorithm 5
respectively. The time complexity for the leaf nodes of type
Xis

7 CalcLeafN odeTypeX (n, m)

Z[ﬁ(l), n—m = 0 54)
17 (10g2 m) , m#0,n—m=2;
according to (19) where X is A or B.

For m > 0 and n — m > 4, the time computational
complexity is determined by the operations in the loops
involved in Lines 1 ~ 27 in Algorithm 5. Let I/ =
{10, 13, 16, 17, 19, 20, 21} and ignore other line which the
time cost is not important for complexity analysis, we can

106574

obtain the addition flops

T+RY) = ZT+ (stateli])
iel
=Sk 4 Jk—4

=2—mPt2m—m =4 (59)
since k = (n — m)/2 and multiplication flops

T.(R)) =D T.(stateli])
iel
=2+ b
T2 2
k—1
+ Z [logy(m+k — 1 —1i)] (56)

i=0
respectively. Consequently, we have
7 CalcRadiPolyBBTIA (72, 1)

=ﬁ(k2)=ﬁ((n—m)2), m>0,n—m>4 (57)

As an illustration, for Zy,(p, 6) = +/28 R}3(p) sinf we have
n=13,m =1,k = (n — m)/2 = 6, thus we can obtain

4

5 5 ,

T (R}3) =§-52+§+1+ ZO [log,(6 —i)] =74
1=

Particularly, for m = 0, we can obtain TABLE 3. The time
flops are also determined by the operations in the loops
involved on Line 1 ~ 27 in Algorithm 5. With the help

VOLUME 11, 2023

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

IEEE Access

Updating the R"(p) stored in an array of size k iteratively for k£ > 1

t

A 3
k-1 1 v R} | R} | R} | R
sy b we[E[m]R]E
TTTE
S 3| p2 | pt| pt
S 1 IE vV Ry | Ry | Ry | Ry

0
SELIEE
Vo V1 V2 U3

b=k—t,k=(n—m)/2

1S
ol

Updating formula: 0 <i<k—-1,0<t<k-1

o oo 4 Byl

7 % i+1

oo (0) +k—1—i
Initialization: v; * < R 17 (p)

The t-th iteration «— the ¢ = (k — t) -th level

k—2 m 0
(k—2) -, R™ ,(p) :vl(cjl

m k-1) pm
R7(p) = v Y, R 4 (p) = o

FIGURE 3. lllustration of Iterative Algorithm for Computing R] (o).

of TABLE 3, an argument similar to the process for finding
T op (R) where m > 0 shows that

Top (RS) =0 ((n — m)2) , opé€{x+}. (58)

since k = (n — m)/2 for non-negative m.
As a comparison, TABLE 4 shows the computational com-
plexity with the J(-) notation for computing the ZRP R}'(p).

V. VERIFICATION AND VALIDATION
We implemented the novel recursive and iterative algorithms
with the C programming language and compared the running
time with Prata-Rusch’s and Shakibaei-Paramesran’s recur-
sive methods. As an illustration, we have tested the practical
running time for n = 28 and n = 29 respectively (where
m € {n,n—2,--- ,n—2|n/2]}) via an average value by
repeating the algorithms of interest for 10 times.

As shown in FIGURE 4 from top to bottom, there are six
curves of running time varying with the difference n—m. Here
we give some necessary interpretations:

« the blue curve marked by circle o and legend “Our
BBTIA” corresponds to the running time of our BBTIA
(Algorithm 5), which is at the bottom in the subfigures;

VOLUME 11, 2023

k1) vgcfl)v(lkﬁ) e @ 1,@ 1,0

Vg 3|Vk—2|Y-—1

ok=2) Pl DR vﬁf?l
o0 o bl 2,
0@ @ [o@] [o® [o@ [o@ | | o,
v v(()l) ”:(11) vz(‘i)l Ugl) ”z(‘}r)1 USQI
N B e A e E R e

« the red curve marked by diamond and legend “Our
BBTRA” corresponds to the running time of our BBTRA
(Algorithm 4), which looks like a straight line in the
semilog diagram starting from n — |m| = 4 in the
subfigures since for n — |m| > 4 the time complexity
is exponential;

« the dashed curve marked by upward-facing triangle and
legend “PrataRusch1989” corresponds to the run-
ning time of the primitive Prata-Rusch recursive scheme
with the stopping condition (10), which also looks like
a horizontal line in the semilog diagram; it is over the
straight line for our recursive Algorithm 4, which
implies the time computational complexity is much
higher than the exponential complexity;

« the blue curve marked by downward-facing triangle and
legend “PrataRuschBeta” corresponds to the run-
ning time of the improved Prata-Rusch recursive scheme
with the stopping condition (11), which reduces the time
consumption for n—|m| < 18 and remains the same with
the counterpart of the primitive Prata-Rusch recursive
scheme;

o the dashed curve marked by square and legend
“ShakiParam2013” corresponds to the running time

106575

IEEE Access

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

TABLE 2. Counting the time flops in Algorithm 5 form > 1.

TABLE 3. Counting the time flops in Algorithm 5 for m = 0.

Line 74 (Line) T« (Line) Loop Counting ~ Remark
5 0 [logy m) 1 for leaf node Rj;;
8 3 3+ [logy m] 1 for leaf node R}, o
10 0 1 1 for root node R;
k—1
13 3 3+ [logg(m+k —1—1i)] for root node R}
i=0
-1
16 2 0 Z for root node R;’
=1
k—1
17 2 0 for root node R}
=1
k—16—1
19 2 0 for root node R}
£=1 i=0
k—16—1
20 2 2 Z Z for root node R}
¢=1i=0
k—16—1
21 1 3 for root node R;
(=1 i=0
Line T4 (Line) T+ (Line) Loop Counting ~ Remark
5 0 0 1 for the leaf node RY(p)
8 3 3 1 for the leaf node R
10 0 1 1 for the root node RY (p)
13 3 2 1 for the leaf RY(p)
k—2
3 2+ [logy(k — 1 —i)] > for the leaf R} ;1 "}(p)
i=0
i1
16 2 0 Z for the root node R?(p)
£=1
k—1
17 2 0 for the root node R? (p)
=1
k—16—1
19 2 0 Z Z for the root node RY(p)
£=1i=0
k—16—1
20 2 2 Z Z for the root node RY(p)
£=1i=0
k—1¢—1
21 1 3 Z Z for the root node RY(p)
¢=1i=0

of the primitive Shakebaei-Paramesran recursive scheme
with the stopping condition (14)

o the blue curve marked by hexagram and legend
“ShakiParamBeta” corresponds to the running
time of the improved Shakebaei-Paramesran recursive
scheme with the stopping condition (11).

FIGURE 4 shows clearly that

o the running time for our iterative algorithm is the
shortest since its time computational complexity is just
O ((n — |m])*) and

« the semilog curve for the running time for our recursive
algorithm looks like a straight line, which corresponds

106576

to the exponential complexity and coincides with the
theoretical analysis above very well.

FIGURE 4 also illustrates a quantitative result that for
n—m = 28 (iie,n =28 m = 0orn = 29,m = 1):
the worst case of time consumption for computing R(p) is
about 107 ~ 10% microseconds (10 ~ 100 seconds) with
recursive schemes, our BBTIA works very well and the time
consumption is about 1 microseconds, which implies that it
is suitable for real-time applications.

The trends of curves in FIGURE 4 show that the time
consumed increases with the growth of n—m whenn — m > 4
and remains constant when n — m € {0,2}. In [11], the

VOLUME 11, 2023

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

IEEE Access

TABLE 4. Computational complexity of computing R (o).

Type of Algorithm Double Indices (n, m) Space Complexity Time Complexity
Recursive algorithm n—|m|l€{0,2},m#0 0(1) O (logy |m|)
CalcRadiPolyBBTRA n —|m| € {0,2},m=0 0 (1) o (1)
n—|m| n—|m|
n—|m| >4,|ml =1 o o
n—|m| n—|m|
n—|m|l>4,|m| >1 % 2 O | (logy Im|)2 2)
Iterative algorithm n—|m|l€{0,2},m#0 0(1) O (logy |m|)
CalcRadiPolyBBTIA n—|m| € {0,2},m=0 O (1) o (1)
n—|ml >4 O (n— |ml) 0 ((n—1|m))?)
7 :
8. [OOurBBTIA =
§ 10 Our BBTRA o e o § 10° Og::gggéx
¢ PrataRusch1989 % PrataRusch1989
<] X7 PrataRuschBeta e :
3 B ShakiParan2013 A g e ShakiParam2013
é 10k ¥ ShakiParamBeta é 100 2 ShakiParamBeta
S 3
= 0 N
C.m(‘\l .&N .
o0 107 o0 104
g s
B 3
=9
: 3
S 107 S 10
o [
=] =]
Q
£ £
& 10° & 10
k= ‘=
= o 1 1 1 =} O]
2 0 5 10 15 20 25 30 2 0 5 10 15 20 25 30
n-m n-m

(a) Running time for R%g(p)

m

(b) Running time for R%q(p)

FIGURE 4. Diagrams of running time of computing R} (o) the difference of n and m for n < {28,29} and m > 0.

conclusion that the time complexity depends only on n is
arguable since the smaller the n — m, the faster the algorithms
are. The computational complexity of recursive algorithms
by Shakibaei-Paramesran and Prata-Rusch is much higher
than the exponential complexity since the curve of time con-
sumption is over the line specified by our recursive algorithm
with exponential complexity. For our iterative algorithm with
square complexity & ((n — m)?), the running time is within
1 micro-second, which implies that it is suitable for real-time
applications.

The data for FIGURE 4 can be downloaded from the
GitHub website: https://github.com/GrAbsRD/Zernike/tree/
RadialPolynomialRunTime. It should be pointed out that the
configuration of our testing platform is as follows: Debian
GNU/Linux 11 (bullseye) OS; Memory, 64GB RAM; Proces-
sor, AMD® Ryzen 7 5800 x 8-core processor x 16; Compiler,
gce-10.2.1 20210110 (Debian 10.2.1-6). For other compu-
tational platform, the running time may be different but the
trends of the curves should be similar and the straight line
for our recursive Algorithm 4 will still remain a straight
line in the semilog diagram which illustrates the exponen-

tial complexity & (2#) clearly. Furthermore, the time

VOLUME 11, 2023

consumption of our iterative Algorithm 5 will stay at the
bottom since its & ((n — |m|)2) computational complexity is
the lowest.

VI. CONCLUSION

The numerical computation of ZRP is a challenging prob-
lem due to the stability and the computational complexity.
Our formulae (23) for computing R(p) owns the following
advantages:

o firstly it is capable of computing the value of ZRP
with high precision by avoiding computing the high
order power functions p® where ¢ is a large positive
integer;

« secondly it has a simple algebraic structure for under-
standing, remembering and applications;

o thirdly it is symmetric which leads to a balanced binary
tree for recursion and convenient theoretic analysis of
computational complexity;

o fourthly the conversion of recursive process to the
iterative version is easy and the quadratic complexity
refreshes the state-of-the-art of the computational com-
plexity for computing R"(p); and

106577

IEEE Access

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

o finally it leads to a stable computation process since
there is no singularity in the expression.

The BBTRA proposed is the fastest recursive algorithm
for computing the ZRP when compared with the other avail-
able recursive algorithms. The BBTIA is the first iterative
algorithm for computing the ZRP which has the quadratic
time complexity and it is suitable for real-time applications.
The high precision can be achieved automatically due to
the recursive and iterative property for computing polyno-
mials. In the sense of STEM education, the connection of
the BBT and ZRP exhibits the beauty and applications of
discrete mathematical structure behind the engineering prob-
lem, which is worthy of introducing to the college students,
computer programmers and optics engineers.

APPENDIX

NOTATIONS FOR INTEGERS AND COMPUTATIONAL
COMPLEXITY

A. INTEGERS AND LOWER INTEGER FOR REAL NUMBER
For an integer n € Z = {0, £1, £2, -}, it is even if and
only if 2 | n, i.e., 2 divides n or equivalently n = 0 (mod 2);
otherwise, it is odd if and only if 2 { n or equivalently n =
1 (mod?2). The set of non-negative integers are denoted by
Z+* =1{0,1,2, ---}. For any real number x € R, the maximal
lower bound n € Z such that n < x is called the floor of x
and it is denoted by

lx] =n=argmax{m € Z : x > m}. (59)

Similarly, the minimal upper bound n € Z such thatx < n is
called the ceiling of x and it is denoted by

[x]=n=argmin{me Z:x <m}. (60)

B. TIME AND SPACE COMPLEXITIES

Let 7, (expr) and 7 4 (expr) be the counting or times
of multiplication and addition in some operation expression
expr. The time complexity vector of computation (TCVC)
for expr is defined by

T(expr) = [T 4 (expr), T 4+ (expr)]. (61)

Note that we just list two components of 7 (expr) here since
the subtraction and division can be treated as addition and
multiplication respectively for real numbers. The time flops
(TF) fiops [16], for computing expr is

TF(expr) = T4 (expr) + 7 + (expr) (62)

in which 7, (expr) and 7 4 (expr) are the time flops of
multiplication and addition respectively.

Similarly, we use T(expr) to denote the computation time
for expr. We also use Ty (expr) and T4 (expr) to represent
the computation time for the multiplications and additions
involved in expr. Given the time units 7, and 74 for mul-
tiplication and addition respectively, then

T = [14, T4] (63)

106578

will be the vector of time units. The time for computing expr
can be represented by

T(expr) = (7 (expr)|T)
=T, (expr)ty + 7 + (expr)t+
= Tx(expr) + Ty(expr) (64)

if only multiplication and addition are essential for the total
time consumed. For the purpose of analyzing time complexity
theoretically instead of estimating practical running time of
programs, we can regard the units 7, and 74 as 1, thus the
time consumption is equal to the flops involved.

Let S (expr) denote the space complexity of computing
expr, which means the memories required. For allocating
memories for a sequence v = (v, vy, - - - , V¢—1) With posi-
tive length £ > 1, the space complexity will be S (v) = £.
If the memory consumption for the single element of v; is
8 = sizeof(v;), then the total memories for the sequence
of v will be £5. Just like the analysis of time complexity, the
memory unit § can be regarded as 1. Consequently, the key
problem of estimating space complexity is to estimate the
counting of memories instead of concrete memory units.

For the algorithm named with Alg, its TCVC is

T (Alg)= > T (expr)

expreAlg
=7 (Alg), T+ (Alg)] (65)

and the time for computation is
T(Alg) = (T (Alg)|7) = T, (Alg)ts + T4 (Alg)r; (66)

Similarly, the space complexity of the algorithm Alg is

S (Alg) = Z S (expr) (67)
expreAlg
If there are some parameters n, m, - - - for Alg, then we will

take one of the following notations

TAlg (n5 m, - -)5 TAlg(na m, -)
TFA]g(”v m,---)1 SAlg (nv m, - - ')

to represent the computational complexity according to prac-
tical requirements and interests.
In algorithm analysis, we take the big-O notation [17], [18]

O (gn)) = {h(n) : 3c > 0,3ng > 0, Vn > ny,
0 <h(n) <c-gn)} (68)

to represent time or space complexity of interest with an upper
bound g(n) where both ¢ € RT and ng € Z™T are constant.
In this paper we will use the following fact

O (g(n)logy n) = O (g(n) [logy n]) .

in the analysis of time complexity.

Vg(n)

VOLUME 11, 2023

H.-Y. Zhang et al.: Balanced Binary Tree Schemes for Computing ZRP

IEEE Access

DATA AVAILABILITY STATEMENT
The code and the data for FIGURE 4 can be downloaded from

the

GitHub websites https://github.com/GrAbsRD/Zernike/

tree/RadialPolynomialRunTime and https://github.com/
GrAbsRD/Zernike respectively.

REFERENCES

[1]
[2]

[3]
[4]

[5]
[6]

[71
[8]

[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc.
Amer., vol. 66, no. 3, pp. 207-211, 1976.

H.-Y. Zhang, Y. Zhou, and E.-Y. Li, “An automatic method for generating
symbolic expressions of Zernike circular polynomials,” IEEE Access,
vol. 11, pp. 56481-56493, 2023.

V. N. Mahajan, “Zernike annular polynomials for imaging systems with
annular pupils,” J. Opt. Soc. Amer., vol. 71, no. 1, pp. 75-85, Jan. 1981.
J. A. Diaz and V. N. Mahajan, “Orthonormal aberration polynomials
for optical systems with circular and annular sector pupils,” Appl. Opt.,
vol. 52, no. 6, pp. 1136-1147, Feb. 2013.

D. Malacara, Optical Shop Testing, 3rd ed. New York, NY, USA: Wiley,
2007.

R. J. Mathar, ‘“Zernike basis to Cartesian transformations,” 2008,
arXiv:0809.2368.

J. Biihren, Zernike Coefficients. Berlin, Germany: Springer, 2018.

C. G. Berger. Zernike Aberrations. Accessed: Aug. 18, 2022. [Online].
Available: https://opticsthewebsite.com/Zernike

M. Born and E. Wolf, Principles of Optics, 7th ed. London, U.K.:
Cambridge Univ. Press, 1999.

A. J. E. M. Janssen, “Zernike circle polynomials and infinite integrals
involving the product of Bessel functions,” 2010, arXiv:1007.0667.

B. H. Shakibaei and R. Paramesran, ‘“Recursive formula to compute
Zernike radial polynomials,” Opt. Lett., vol. 38, no. 14, pp. 2487-2489,
Jul. 2013.

Focus Software Inc. (2013). ZEMAX: Optical Design Program User’s
Guide. [Online]. Available: http://www.zemax.com

C.-W. Chong, P. Raveendran, and R. Mukundan, “A comparative analysis
of algorithms for fast computation of Zernike moments,” Pattern Recog-
nit., vol. 36, no. 3, pp. 731-742, Mar. 2003.

E. C. Kintner, “On the mathematical properties of the Zernike polynomi-
als,” Optica Acta, Int. J. Opt., vol. 23, no. 8, pp. 679-680, Aug. 1976.

A. Prata and W. V. T. Rusch, “Algorithm for computation of Zernike poly-
nomials expansion coefficients,” Appl. Opt., vol. 28, no. 4, pp. 749-754,
1989.

G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD,
USA: Johns Hopkins Univ. Press, Jan. 2013.

D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental
Algorithms, 3rd ed. New York, NY, USA: Addison-Wesley, 1997.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 4th ed. Cambridge, MA, USA: MIT Press, 2022.

VOLUME 11, 2023

HONG-YAN ZHANG received the B.S. and M.S.
degrees in applied physics and telecommunica-
tion engineering from Xidian University, China,
in 2000 and 2003, respectively, and the Ph.D.
degree from the Institute of Automation, Chinese
Academy of Sciences, in 2011. He is currently
with the School of Information Science and Tech-
nology, Hainan Normal University, China. His
research interests include computer vision, data
analysis, STEM education, and mathematics for
engineering.

YU ZHOU (Member, IEEE) received the Ph.D.
degree in electronic engineering from Newcastle
University, in 2008. He is currently a Research
Associate of electronic engineering with Hainan
Normal University, China. His research inter-
ests include algorithms analysis and design, cir-
cuit design, logic synthesis and CAD tools for
asynchronous circuits and systems, and STEM
education.

ZHI-QIANG FENG received the B.S. degree in
data science and big data technology from the
School of Mathematics and Statistics, Hainan Nor-
mal University, in 2023, where he is currently
pursuing the degree in computer science and tech-
nology. His research interests include data analysis
and algorithm design.

106579

