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ABSTRACT This work proposes a CMOS reconfigurable charge pump (CP) for a low-voltage energy
harvesting system. It utilizes the low effective resistance from the parallel CP to enhance its power conversion
efficiency (PCE). The CP exhibits an adaptive configuration with different stages depending on the input
voltage, changing its voltage conversion ratio (VCR) to limit the output voltage under 1.8-V. Additionally,
this work develops a novel dynamic source-fed oscillator that modulates the oscillating frequency by utilizing
a dynamic source for the ring-voltage controlled oscillator (RVCO). The independent source from the
RVCO and the clock-generating units from the proposed technique permit the implementation of frequency
modulation without affecting the clock amplitude. Fabricated in 65-nm CMOS, the proposed prototype
measures 62% peak PCE with an input voltage range of 0.26-V to 0.64-V.

INDEX TERMS Reconfigurable charge pump (CP), ring-voltage controlled oscillator (RVCO), dc-to-dc
converter, low power energy harvesting, CMOS, power conversion efficiency (PCE).

I. INTRODUCTION
Acapacitive-based CMOS DC-DC boost converter, also
called a charge pump (CP) plays an important role in energy
harvesting (EH) applications to step up the input voltage to a
higher voltage level suitable for load applications. The con-
ventional CP block shown in Fig. 1 consists of an oscillator
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that generates clock signals to govern the pumping oper-
ation, a non-overlap clock (NOC) generator that converts
the sinusoidal clock signals into two non-overlapping square
waves [1], and the CP itself, which boosts the scavenged DC
voltage to a usable level for the load [2].

Cross-coupled charge pump (CCCP) [3], [4], [5], [6], [7],
[8] and Dickson CP [9] are the two conventional CP topolo-
gies in vogue for EH applications. In low input voltage appli-
cations, switch-based CCCP is preferred over diode-based
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FIGURE 1. The basic block diagram of a conventional charge pump.

FIGURE 2. The PCE vs input voltage curve of (a) individual CP1
(b) individual CP2 (c) reconfigurable CP by combining CP1 and CP2.

FIGURE 3. The output voltage of (a) individual CP1 (b) individual CP2 (c)
reconfigurable CP by combining CP1 and CP2.

Dickson CP as the diode-based Dickson topology suffers
from high VTH conduction loss. On the other hand, Dickson
CP has an advantage in high input voltage applications due
to its minimal reversion loss. To reduce the conduction loss,
some studies have incorporated low voltage threshold (LVT)
devices to enhance the performance of charge pumps in sub-
threshold operation [4], [8], [10]. Nevertheless, the attempt to
minimize conduction loss entails a compromise of increased
reversion loss, which negatively impacts the charge pump’s
overall performance. Over the past few decades, a wide range
of techniques for improving CP performance has been docu-
mented in the literature [2], [11], [12], [13], [14], [15], [16],
aimed at addressing the aforementioned challenges. Despite
significant research focused on optimizing CP topologies,
there remains potential for further innovation in architectural
improvements.

In energy harvesting applications, the input voltage of the
CP varies due to the fluctuation in the harvested power,
which is an external influence on the system. For instance,
weather conditions can have an impact on the harvesting
of solar energy, while the harvesting of kinetic energy can
be affected by factors such as humans. There are several
problems accommodated with a wide input voltage range
CP. Firstly, their power conversion efficiency (PCE) cannot
remain high over a wide input voltage range, as it depends on
the CP topology. Additionally, the frequency generated by the
oscillator is influenced by the input voltage. Therefore, a wide

FIGURE 4. Plots of the relationship between input voltage, oscillator
source voltage and the modulated and unmodulated oscillating
frequencies.

input voltage range would cause the oscillator to produce a
broad frequency range, which would further degrade the CP’s
performance. Furthermore, a high input voltage would result
in a highly boosted output voltage, which can cause voltage
overstress on the operating transistors, as well as cause output
load breakdown. This effect is more pronounced in circuits
designed for low voltage performance, where devices with
low voltage overstress thresholds such as LVT devices or
short gate length transistors are used [17], [18].

Some of the recent EH CP works [3], [4], [5], [19] pro-
posed charge pumps that lack consideration in the oscillator
circuit; instead, two non-overlapping clocks with a stable
frequency are supplied by a function generator to model the
generated clock signals from the oscillator for pumping. This
is important to evaluate the CP’s performance, especially
for EH applications [6], [7] that have a fluctuating input
voltage. Furthermore, the unstable frequency generated from
the fluctuating input voltage will affect the CP’s performance.
The work in [7] provides constant 10 MHz clock signals to
its reconfigurable CP despite having an input voltage ranging
from 0.45 V to 0.75 V. Another work in [6] reveals the
high power loss caused by the high frequency from increas-
ing input voltage. Yet, the work used external trimming to
suppress the increasing oscillation frequency. Some works
incorporated a proper frequency modulation technique in the
reconfigurable CP, such as the variable delay stages con-
figuration from [20] and the dynamic delay block’s sources
from [21] and [22]. However, these frequency modulation
techniques lead to some performance hindrances, which will
be discussed later in this paper.

The previously mentioned issues highlight the need for a
reconfigurable CP. Hence, this work proposed a reconfig-
urable CP that exploits the low effective resistance in the
parallel CP to reduce the forward conduction loss and the
high voltage conversion ratio (VCR) of the series CP for
subthreshold operation wide input voltage energy harvester.
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FIGURE 5. Top architecture of the proposed series-parallel reconfigurable CP.

TABLE 1. Control logic high signal for stage reconfigurable CP.

By configuring the six-stage parallel CP into 4 stages,
3 stages, and 2 stages, the proposed reconfigurable CP limits
the output voltage under 1.8 V while attaining high efficiency
in a low input voltage range.

In this study, we address the issue of unstable frequency
resulting from fluctuating input and present an innovative
frequency modulation approach by employing a dynamic
source-fed oscillator. This technique can suppress the high
generated clock frequency during high input voltage to reduce
the switching loss effect in the CP. Moreover, the proposed
technique incorporates an independent source for the oscilla-
tor and the clock-generating unit, allowing for the provision
of a high-amplitude clock signal from the input voltage to the
CP while limiting the source voltage of the oscillator.

The rest of this paper is organized as follows. Section II
reviews the conventional reconfigurable CPs. Section III
discusses the design methodology of reconfigurable CP.
Section IV describes the operation of the proposed reconfig-
urable CP. Section V details the operation principle of a clock
generation unit in the CP, and the proposed dynamic source-
fed oscillator. Section VI presents the measurement results
and the performance comparison. Section VII concludes the
work.

II. CONVENTIONAL RECONFIGURABLE CP
The main objective of a reconfigurable CP is to enhance the
efficiency and control the VCR to limit the output voltage.

Reference [23] introduces a power-efficient reconfigurable
CP that configures between linear CP and Fibonacci CP in
high voltage and low voltage ranges respectively. However,
the work only concentrates on achieving maximum effi-
ciency, without taking into account the need to limit VOUT
to prevent transistor overstress and load breakdown.

An adaptive VCR reconfigurable CP was implemented
in [24], capable of switching between 1, 2, and 3 stages
to achieve maximum efficiency, but the diode-based design
restricts its use in low voltage energy harvesting applications.
Reference [25] introduces a circuit with a reconfigurable soft
transition VCR, but it is for step-down CP. Reference [22]
proposed a hybrid Dickson and Cockcroft-Walton CP capa-
ble of configuring between 4 and 6 stages. Despite having
multiple VCRs, the work only tested at a narrow input volt-
age range of 0.9, 1, and 1.1 V. Similarly [26] proposed a
reconfigurable CP with VCRs of 2 and 3 while [27] pro-
posed a stage selection CP that can configure between 1 to
3 stages. However, these CPs were only tested on the high
input voltage ranges. Besides limiting the output voltage
with adaptive VCR, [27] also included transistor electrical
overstress and gate-oxide unreliability consideration in the
design for the 1.8V/3.3V CMOS process. Reference [19]
presents an intriguing output voltage regulation by utilizing
the trans-conductive loop implemented through the bulk ter-
minal of the PMOS transistor in CCCP. The work, however,
ignored the impact of variable frequency in a wide input
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TABLE 2. Truth table for reconfigurable CP’s control signals.

FIGURE 6. Proposed reconfigurable CP (a) scenario I, 4 stages (b) scenario II, 3 stages (c) scenario III, 2 stages.

FIGURE 7. Proposed oscillator’s voltage controller unit’s (a) schematic
diagram and (b) equivalent resistant model.

voltage range as it only provides a constant 1MHz clocking
frequency in the design throughout the input voltage range.

Another method of changing the VCR is by controlling
the clock amplitude of the CP. Reference [7] implemented
a clock amplitude reducer to reduce the VCR by half in
addition to a reconfigurable CCCP capable of switching
between 2 and 4 stages. Reference [21] introduces a novel
self-oscillating CP where a different level of source voltages
is supplied to the CP to achieve an adaptive VCR. Although
the self-oscillating CP does not necessitate the use of an
oscillator, this frequency of the self-oscillating charge pump
cannot be independently adjusted, so an external frequency
modulation block is needed.

FIGURE 8. Block diagram of a non-overlap clock generator. The size of
inverters in the buffer represents the transistors’ width.

Frequency modulation is important in wide input recon-
figurable CP as the high switching loss caused by high
oscillating frequency will deteriorate the CP performance.
However, it is often overlooked in the past reconfigurable CP
works. Reference [28] proposed a subtraction-mode CP that
can tolerate high switching frequency loss with frequency
in the range of 60 MHz and 100 MHz, but the frequency
range is too small in wide input energy harvesting applica-
tions. This can be seen in Fig. 4, where the frequency of an
oscillator can rise by 100 MHz from a 0.4 V input increment.
Reference [20] implemented frequency modulation to his
9 stages CP at which each stage can be deactivated using a
stage control block. The frequency modulation is achieved
using variable delay cell configuration which will induce
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high power consumption. The details of power consumption
in the frequency modulation technique will be discussed in
Section V.

III. RECONFIGURABLE CP DESIGN METHODOLOGY
The first step of designing a reconfigurable CP is to individ-
ually design the CP for each voltage range. The performance
of each CP topology is identified and optimized individually
in a way that each CP has a peak performance at a separate
input voltage range as depicted in Fig. 2. The determination
of the target voltage, at which the CP reconfigures, is based
on the intersection of the CPs’ PCE curve as illustrated in
Fig. 2(c) [29], [30], and [31]. Similarly, to design a reconfig-
urable CP with an adaptive VCR that limits a bounded output
voltage [25], each CP is first individually designed to identify
the correlation between VCR and output voltage (VOUT). The
target voltage for the reconfiguration to occur is determined
when the VOUT of the CP with higher VCR exceeds the
boundary voltage as depicted in Fig. 3. The boundary voltage
is selected based on the application, depending on the load
breakdown voltage and the transistor’s operating point. Next
is to develop the control algorithm for the reconfigurable
CP. A comparison of the structure of each CP is carried out
to determine the number of switches needed for the recon-
figuration process. Subsequently, the state of each switch
in the various configurations is identified. The third step of
the reconfigurable CP design process involves developing a
control circuit to implement the algorithm designed in the
previous step. The control circuit is composed of a series
of logic gates that generate the necessary control signals to
activate the switches for the CP reconfiguration process.

The voltage detector is implemented to detect the target
voltage where the reconfiguration occurs. There are a few
approaches to implementing the voltage detector. A closed-
loop system detects the output voltage level to achieve
CP reconfiguration [24], [32] whereas an open-loop system
detects the input voltage [26]. The closed-loop system offers
the benefit of high stability and precise control, whereas the
open-loop circuit is simpler to design and has lower power
consumption due to its less complex circuitry. The selec-
tion of a closed-loop or open-loop system for reconfigurable
charge pump design is dependent on the specific application
requirements.

Finally, the performance of the reconfigurable CP is tested
and compared with the individual CP. Further optimiza-
tion will be carried out to improve the reconfigurable CP
performance.

IV. PROPOSED RECONFIGURABLE CP
A. PROPOSED SERIES-PARALLEL RECONFIGURABLE CP
The proposed CP scheme is shown in Fig. 5. The CCCP’s
VCR changes by reconfiguring the number of stages in series
or parallel, respective to the input voltage (VDD). Three main
circuit blocks define the scheme. First, the clock generation
unit is used to provide two non-overlap clock signals with
modulated frequency. The logic control unit provides the

control signals for the CP. Finally, the reconfigurable CP is
responsible for output voltage boosting.

The reconfigurable CP consists of 6 individual CCCP
which are capable of configuring into 4 stages, 3 stages, or
2 stages based on the detected input voltage. The CP con-
figuration is achieved by controlling the transmission gates,
SCP,1-10 which act as the control switches for the recon-
figurable CP. The main advantage of using series-parallel
reconfigurable CP is that each CP cell is fully in operation
under all different input voltage scenarios. Moreover, parallel
CP has a lower conduction loss due to its lower equivalent
circuit resistance, contributing to a much lower power loss
during the charge-transferring phase [33].

As shown in Fig. 6, the proposed CP has three operation
modes. When the input voltage VDD from the EH source
is below 0.4 V (VDD < 0.4 V), SCP,3,4,7,9,10 are turned
ON while the remaining gates are turned OFF. Thus, the
CP reconfigures to a 4-stage CP with a VCR of 5. In this
configuration, CP1, CP3, and CP5 are connected in parallel
in the first stage, boosting the voltage from VDD to 2VDD;
followed by CP2 in the second stage, boosting voltage to
3VDD, CP4 in the third stage, and CP6 in the fourth stage
as shown in Fig. 6(a). For VDD between 0.4V and 0.5V,
SCP,2,3,5,8 are turned ON while the rest are turned OFF.
The CP is then reconfigured into 3 stages with 2 parallel
paths where CP1, CP2, and CP4 form the first CP path, and
CP3, CP5, and CP6 form the second pumping path. Where
CP1,3 boosts voltage fromVDD to 2VDD; CP2,5 boosts 2VDD
to 3VDD and CP4,6 boosts 3VDD to 4VDD. When VDD is
scenario above 0.5V (VDD > 0.5 V), SCP,1,2,6,7,8 are turned
ONwhile the rest is OFF. The CP is reconfigured into 2 stages
with 3 parallel paths. The first path is made of CP1 and CP2,
the second is made of CP3 and CP4 and the last is made of
CP5 and CP6. In this configuration, CP1,3,5 is the first CP
stage; boosting VDD to 2VDD whereas CP2,4,6 is the second
stage responsible for boosting 2VDD to 3VDD.

B. LOGIC CONTROL UNIT
The logic control unit is responsible for providing the control
signals for controlling the CP configuration. Table 1 shows
the breakdown of the control signal for each transmission gate
where logic 1 represents the transmission gate being turned
ON and logic 0 represents the switch turned OFF. From
the table, it is evident that the circuit requires three distinct
control signals (A, B, C) and their respective complementary
signals (Ab, Bb, Cb) for the topology reconfiguration. For
example, SCP,4,9,10 share the same logic signal of 0, 0, and
1 when CP is configured into 2, 3, and 4 stages, respectively.
On the other hand, SCP,2,8 share the logic of 1, 1, and 0,
which is the direct complement of the control signal A.

To provide the necessary control signals, a voltage detec-
tion unit of two Op-amp-based comparators is implemented
to detect three voltage levels, below 0.4 V, between 0.4 V
and 0.5 V, and beyond 0.5 V. This work adopted the com-
parator from [34] for voltage detection. Two reference volt-
ages (VREF1, VREF2) are extracted from an external source
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FIGURE 9. Photomicrograph of the proposed reconfigurable CP.

(VREF) using diode-connected transistors which act as a volt-
age divider. The VREF can be provided by a battery in a
battery-assisted energy harvesting system. These reference
voltages are then fed into the comparator in the voltage
detection unit for voltage comparison.

The first comparator will compare VDD with VREF2 of
0.4 V and return A= 1 if VDD is smaller than the VREF2 and
return A= 0 otherwise. As long as signal A is high, SVD,1 and
SVD,2 will turn OFF to deactivate the second comparator to
prevent unnecessary power consumption, this will also force
signal B to remain low. When VDD is larger than 0.4 V, signal
A will be LOW, and the second comparator will be activated.
It will compare VDD with VREF1 of 0.5 V and return B = 1 if
VDD is less than VREF1 and return B = 0 if VDD is larger
than VREF1.

The circuit can identify the three different input voltage
ranges (below 0.4V, between 0.4 and 0.5V, and beyond 0.5V)
by only using the two control signals generated from the com-
parators (signals A and B). However, signal A and signal B
alone are not sufficient to control the CP configuration,
as shown in Table 1. Therefore, an extra signal (C and Cb)
is generated from signal A and signal B using an AND logic
gate. The truth table of AND logic for signal C and Cb
generation is described in Table 2. Using two comparators and
an AND logic gate, six control signals covering all possible
logic combinations can be generated.

This opens the possibility for future reconfigurable CP
work which configure into a different number of stages.

V. CLOCK GENERATION
A. VOLTAGE-CONTROLLED RING OSCILLATOR
A ring voltage-controlled oscillator (RVCO) is a key block
in the clock generation unit in the CP scheme to generate an
oscillating clock signal [35], [36], [37], [38]. The generated
oscillating frequency is dependent on the number of inverter
cells and the delay time, as shown in the equation below [39]
and [40]:

fOSC =
1

2 · N · td
(1)

where N represents the number of delay cell stages and td rep-
resents the delay time for each stage. The delay time depends

FIGURE 10. Measured performance of (a) PCE versus VIN (b) VCE versus
V IN (c) V OUT versus V IN at various output load condition.

on the input voltage of the oscillator and the transistor size [6].
Since the input voltage of an oscillator varies according to
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FIGURE 11. (a) Graph of PCE versus input current and (b) Graph of output
voltage versus input current at various input voltage under 100k �

condition.

FIGURE 12. Post-layout PVT simulation of V OUT at different input
voltage at 100 k�.

the circuit’s input voltage (VDD), the output clock frequency
range of the RVCO varies with VDD. This effect is severe in
EH applications where a wide input voltage range is common.
In addition, high frequency increases switching losses in the
charge pump. As the switching loss is inversely proportional
to the conduction loss [41], it is important to regulate an
optimal frequency for a balance point between the switching
loss and the conduction loss for optimal CP performance.

The oscillating frequency can be reduced by increasing the
number of delay cell stages or by reducing the oscillator’s

input voltage (VOSC). However, increasing the number of
delay cell stages is not a suitable method for frequency regu-
lation as it will increase the oscillator’s power consumption,
which can be discernible from the equation below [39]:

PC = N · fOSC · CL · V 2
OSC (2)

Although reducing VOSC seems like a good approach to
satisfy the reduction in the oscillating frequency and the
power consumption at the same time, reducing VOSC will also
reduce the oscillating signal’s output amplitude swing, which
reduces the conduction of the CP. Generally, the amplitude of
the CP’s clock signals is the same as the oscillating signal’s
amplitude. Having a lower amplitude will greatly reduce the
CP performance and its CR, due to the increase in the on-
resistance (Ron) of the charge transfer transistors as described
in the equation below [41], [42]:

Ron =
1

µCox WL (VGS − VTH )
(3)

where µ is the mobility of the electron/holes; Cox is the
oxide capacitance; W/L is the ratio of width to length of
the transistor, and VGS is the gate-to-source voltage of the
transistor which is equivalent to the clock amplitude.

As a countermeasure, a dynamic source-fed oscillator as a
clock generation unit is proposed where a dynamic input volt-
age independent from the source voltage of the non-overlap
clock is supplied for the oscillator. This is to achieve fre-
quency regulation by changing VOSC without affecting the
output clock amplitude, V8 which is discussed next.

B. OSCILLATOR’S VOLTAGE CONTROLLER
The proposed clock generation unit consists of an oscillator’s
voltage controller (OVC), an RVCO, and a non-overlap clock
(NOC) generator. The OVC is used to extract a lower voltage
from VDD, providing a dynamic input voltage for the RVCO.
As depicted in Fig. 7, the OVC has three voltage divider paths
with different effective resistances which can be activated
using transmission gates SRO,1, SRO,2, and SRO,3 that are
controlled through signals A, B, and C, respectively. In this
work, the gate voltage for all transmission gates is derived
from the VREF with an amplitude of 1.5 V.

Path 1 consists of a single large-size diode-connected
NMOS with an effective resistance of 3.142 k�. Path 2 con-
sists of two diode-connected transistors with a width of
7.68 µm and 0.48 µm, yielding a total effective resistance
of 5.806 k�. Path 3 has the highest total effective resis-
tance of 9.524 k� from the two small-sized transistors with
a width of 0.48 µm each.
The working principle is explained through 3 operational

scenarios similar to Section II-B. In scenario I, as VDD is
low (VDD < 0.4 V), SRO,1 will be turned on to activate
the first voltage divider path, which has a relatively lower
effective resistance. The resistance in path 1 will reduce the
VDD from 0.26 V ∼ 0.4 V to 269 mV ∼ 240 mV, providing
a lower VOSC for the oscillator. In scenario II, the second
path will be activated with SRO,2 turned on. The 5.806 k�
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TABLE 3. Performance summary and the state-of-art comparison of the proposed circuit.

resistance from path 2 will decrease the VOSC to 180.5 mV
∼ 201 mV fromVDD of 0.4 V∼ 0.5 mV as depicted in Fig. 5.
In scenario III, SRO,3 will turn on to activate the highest
resistance path 3 (e.g., 9.524 k�) to produce a VOSC of
207 mV∼ 257 mV. By using the three voltage dividing paths,
a stable VOSC can be regulated for the RVCO to generate a
modulated frequency.

This work adopted an RVCO from [43] for clock frequency
generation which has a better performance compared to the
conventional oscillator in subthreshold operation. However,
instead of utilizing the supply at node VDD, this work uses
VOSC generated fromOVC earlier as the voltage supply node.
VOSC is bounded from 169 mV to 257 mV using the control
signals, A, B, and C. Thus, the frequency generated from the
oscillator will also be maintained in the range of 4.3 MHz
to 24 MHz, as depicted in Fig. 5. It is worth heeding that the
unboundedVOSC would rise from 168mV to 384mV, causing
the unmodulated frequency to surge from 4MHz to 148MHz
as delineated in the same figure.

C. NON-OVERLAP CLOCK GENERATOR
The non-overlap clock generator is an integration of two
parts as shown in Fig. 8. The early part consists of two
cross-connected NAND gates which are responsible for cre-
ating two non-overlapping signals for the CP pumping opera-
tion. The later part consists of a series of cascading inverters,
forming a series of buffer that shapes the sinusoidal wave
from RVCO into a square wave. The last few stages of invert-
ers in the series of buffer takes VDD as the supply voltage
instead of VOSC. This ensures the final output clock ampli-
tude remains as VDD, independent from the lower amplitude
VOSC of the RVCO.

VI. MEASUREMENT RESULT
We implemented the proposed CP in 65-nm CMOS, adopt-
ing on-wafer probing for the chip with an active area of
0.36 × 0.96 mm2, shown in the photomicrograph in Fig. 9.
To optimize the performance in subthreshold operation [44],
this work adopted low-voltage threshold (LVT) devices in all
charge transfer transistors to elevate the forward conduction
loss. Other circuit blocks, such as OVC and the comparator,
utilize standard threshold (SVT) transistors. Each CP stage
in the circuit utilizes two 20 pF metal-insulator-metal (MIM)
capacitors for the charge pumping operation. Additionally,
a 120 pF MIM capacitor is employed as the load capacitor
to reduce the output voltage ripple and provide a smoother
output voltage.

To evaluate the proposed system’s performance, we mea-
sure the PCE and the system’s voltage conversion efficiency
(VCE) at different load conditions as portrayed in Fig. 10 (a)
and (b). PCE is a metric used to measure the effectiveness of a
power conversion system in converting input power to usable
output power while VCE is a measure of how effectively a
voltage conversion system converts input voltage to output
voltage. The formula for PCE and VCE is given below:

PCE =
POUT
PIN

× 100% (4)

VCE =
VOUT (measured)
VOUT (ideal)

× 100% (5)

In scenario I where VDD < 0.4 V, the LVT device and
the switch-connection parallel CP configuration allow the
reconfigurable CP to achieve a high PCE in subthreshold
operation. In scenario II, the CP is configured into 3 stages
with 2 parallel paths which lowers its effective resistance to
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allow a high PCE. The performance of the CP in scenario II
is observed to be superior compared to scenario I as the
transistors are not operating in the subthreshold region owing
to the higher input voltage. The peak PCE is recorded in
scenario II with 62 % at 0.48 V when driving 50 k� loads.
In scenario III, the CP performance drops despite having three
parallel pumping paths. This is because the CP is optimized
for low input voltage operation. The CP suffers high reverse
current leakage across the LVT transistors in high-voltage
operations. Moreover, the utilization of a 2-stage CP leads
to a circuit mismatch that results in an ineffective transfer of
power to the output load. To limit the output voltage under
1.8 V for safeguarding the system, the CP performance is
sacrificed in scenario III.

Fig. 10 (b) depicts the VCE of the proposed reconfigurable
CP. It exhibits over 80% VCE at all voltage ranges, with
a peak VCE of 97% recorded at open load conditions with
0.4 V input voltage. The proposed circuit successfully limits
the output voltage under 1.8 V in all load conditions for an
input voltage of 0.26 V to 0.64 V as shown in Fig.10(c).
As the input voltage rises from 0.26 V to 0.4 V, the circuit is
reconfigured into 3 stages, lowers its CR to 4, and decreases
the VOUT under 1.8 V. The same phenomenon repeats itself at
0.5 V with the circuit configured into 2 stages, as illustrated
in Fig. 10(c). This can prevent voltage overstress on the
LVT devices used in the reconfigurable CCCP. The measured
performance of the CP is provided in Fig. 11(a) as a function
of the input current. From the figure, it can be observed that
the peak PCE is shifted towards the right at a higher input
voltage. In other words, lower stage configuration performs
better with higher input current. The proposed CP is tested
with various input currents up to a range of 325µA. Fig. 11(b)
illustrates the relationship between the input current and out-
put voltage of the proposed circuit. The figure demonstrates
that the proposed circuit effectively maintains the output
voltage within the boundary level for most input current
levels, except when the input voltage is near the configuration
switching points (0.48V and 0.38V). Nevertheless, the circuit
is capable of maintaining the boundary voltage at the input
current level as low as 15 µA.

As depicted in Figure 12, the proposed circuit shows
process variations of 17.66% (FF) and 63.4% (SS) for the
4-stage configuration at an input voltage of 0.32V. For the
3-stage and 2-stage configurations, the process variations are
24.88% (FF), 1.739% (SS), and 2.31% (FF), 12.86% (SS)
respectively. Additionally, the circuit exhibits temperature
variations of 68.7% (-40 ◦C) and 11% (80 ◦C) for the 4-stage
configuration. The 3-stage configuration has temperature
variations of 40.56% (−40 ◦C) and 12.3% (80 ◦C), while the
2-stage configuration has variations of 36.5% (−40 ◦C) and
19.9% (80 ◦C).
While the proposed circuit is effective in limiting the output

voltage under 1.8V, it cannot regulate and maintain the output
voltage level across the wide input voltage range. However,
an auxiliary closed-loop regulation mechanism [19], [45],
[46], [47], [48], [49], [50] can be implemented in conjunction

with the proposed circuit to maintain a consistent output
voltage. In this configuration, the proposed circuit caps the
output voltage, while the auxiliary closed-loop circuit fine-
tunes and maintains the desired output voltage level.

Table 3 summarizes and compares the proposed system
with the state-of-the-art reconfigurable CP. Reference [51]
limits the output voltage under 1.4V using an output feedback
mechanism with a resistive voltage divider. This technique
compares the output voltage with a bandgap reference voltage
to adapt the division ratio of the resistive voltage divider for
voltage regulation. As a consequence, the output will suffer in
power losses for the voltage absorbed by the resistive voltage
divider. The works in [20], [21], and [22] regulated the output
voltage by varying the number of CP stages in operation
in a way similar to the proposed work. However, the work
deactivates the CP to reduce its pumping stage instead of
connecting them in parallel. This technique fails to utilize
the advantage of the low equivalent circuit resistance that is
obtained by connecting multiple CPs in parallel, resulting in
a potential loss of harvesting efficiency.

Concerning using the approach of frequency regula-
tion, [20] used a variable delay cell configuration for fre-
quency modulation. Such configuration comprises different
stages of delay cells to generate the desired frequency. How-
ever, as described in equation (2), the high number of delay
stages will increase the power consumption in the clock gen-
eration circuit. The works in [21] and [22] perform frequency
modulation by varying the voltage source of the delay cell,
similar to the proposed work. The difference is, that the work
utilizes the output from the CP as the dynamic source for the
delay stages. Nevertheless, the high boosted voltage from the
CP output will result in a high-power loss in the delay cells.

Table 3 demonstrates that the proposed reconfigurable
CP exhibits the highest PCE among other state-of-the-art
reconfigurable CPs for low-voltage energy harvesting appli-
cations [20], [22], [51] which achieved a peak PCE of approx-
imately 58%. Although [21] and [52] achieved a slightly
higher PCE, it was at a higher input voltage. Additionally, [7]
achieved a 73% PCE, but it was based on simulation results
and did not consider the power consumption of the oscillator.
Furthermore, the proposed work recorded the lowest circuit
complexity, occupying a silicon area of only 0.346 mm2.

VII. CONCLUSION
This work proposed a series-parallel CP architecture, consist-
ing of a novel dynamic source-fed oscillator, a logic control
unit, and a reconfigurable CCCP for low voltage energy
harvesting application. By arranging the CCCP into 4, 3, or
2 stages in series and parallel, the proposed CP modified its
VCR to maintain the output voltage under 1.8 V. It lever-
aged the advantage of low effective resistance in a parallel
CP topology to enhance the CP performance. Additionally,
this work devised a novel dynamic source-fed oscillator for
frequency regulation using a dynamic input voltage for the
RVCO that enabled frequency modulation without affect-
ing the clock’s amplitude. Validated on 65-nm CMOS, the
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proposed architecture attained a 62% peak PCE and a 97%
VCE performance with the lowest circuit complexity when
compared with state-of-the-art reported designs.
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