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ABSTRACT Plant leaf diseases pose a significant threat to global food security and cause substantial
economic losses. The objective of this study is to develop an effective approach for early detection and
accurate identification of plant leaf diseases using computer vision techniques. The proposed method,
Cascading Autoencoder with Attention Residual U-Net (CAAR-UNet), leverages deep learning to achieve
precise segmentation and classification of plant leaf diseases. By cascading Symmetric Autoencoders
with Attention Residual U-Net model and training on a custom dataset, it surpassed existing methods in
identifying four disease classes. The model achieves remarkable accuracy, with a mean pixel accuracy of
95.26% and a weighted mean intersection over union of 0.7451, accurately capturing individual pixels and
delineating disease class boundaries. This approach holds great potential in facilitating early plant disease
detection and improving crop management practices. Its adoption can significantly impact food security
worldwide, addressing a critical gap in the agricultural sector. The results highlight the effectiveness of the
proposed strategy in plant disease management and open the door for further research in this field.

INDEX TERMS Plant disease, semantic segmentation, classification, symmetric autoencoder, attention
residual U-Net.

I. INTRODUCTION
Accurate segmentation and classification of plant-borne ill-
nesses is vital for smart farming, which aims to detect and
diagnose diseases early and improve crop yield while reduc-
ing losses. This motivation stems from the significant impact
that plant diseases have on global food security and eco-
nomic stability. Early detection and accurate identification of
these diseases can enable timely interventions, reducing crop
damage and ensuring efficient management of agricultural
resources.

Deep learning models have demonstrated great potential in
the field of plant leaf disease segmentation and classification.
However, there are challenges that need to be addressed to
ensure their effectiveness and practical applicability. One
such challenge is the need to improve the accuracy and
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generalizability of these models to handle variations in plant
leaves and diseases, as well as noisy and low-quality images
commonly encountered in real-world scenarios.

To address these challenges, previous researchers have
explored different models for plant-borne illness seg-
mentation and categorization. For instance, DenseNet, a
CNN-based model, achieved remarkable accuracy in cassava
disease recognition [1]. Attention U-Net, a medical image
segmentationmethod [2], successfully identified the pancreas
in low-contrast CT scans. However, these studies have limi-
tations in terms of the scope of plant diseases studied and the
robustness of the models. There is a need for more advanced
models capable of handling variations in plant leaves and
diseases, as well as noisy and low-quality images.

These challenges have been overcome in models utilizing
deep learning techniques to identify and diagnose diseases
present in the leaves of plants by introducing a novel approach
that uses a custom dataset containing four distinct disease
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classes. The method involves a hybrid architecture called
the Cascading Autoencoder with Attention Residual U-Net
(CAAR-UNet), which integrates attention mechanisms and
residual connections in the segmentation module. By doing
so, the model can capture more informative features and
mitigate the effects of noise and variations in input images.
Moreover, the symmetric autoencoder architecture in the seg-
mentation module allows the model to acquire hierarchical
visual features obtained from images used as input, resulting
in more robust performance in detecting plant leaves and
diseases.

The effectiveness of the CAAR-UNet model was evalu-
ated on a custom dataset comprising five classes, including
background class. The outcomes of the experiment demon-
strate that the model suggested performs better than previous
cutting-edge models, achieving an impressive average mean
pixel accuracy (Am) of 95.26% and a weighted mean inter-
section over union (wmIoU) of 0.7451. Notably, the model
also exhibits robust performance on noisy and low-quality
images, demonstrating its accuracy and generalizability. The
results from Table 5 of Section IV demonstrates the effec-
tiveness of the proposed CAAR-UNet model for class-wise
plant leaf disease segmentation, particularly for the detection
of northern corn leaf blight and coffee leaf miner, which are
two of the most economically important plant diseases. The
model also shows promise for the detection of strawberry leaf
scorch and grape black measles, although further improve-
ments may be possible with more diverse datasets and addi-
tional optimization of the model architecture. Overall, the
proposed CAAR-UNet model has the potential to enhance
the effectiveness and precision of plant disease detection
systems, thereby promoting sustainable agricultural manage-
ment. Furthermore, the CAAR-UNet model’s capability to
manage imbalanced class distributions and differing numbers
of samples in each class is a considerable advantage. This
allows the model to generalize better to new and previously
unseen data. The class-weighted ratio loss function helped to
mitigate the issue of class imbalance, resulting in improved
performance in the segmentation of minority classes. This
feature is particularly useful in real-world scenarios where
acquiring balanced datasets may be challenging.

The main contributions of this research are as follows:
1) Symmetric Autoencoder Preprocessing: Extracting

latent features and generating an initial mask image
with pixel-level classification for defined classes using
a symmetric autoencoder model.

2) Attention Residual U-Net Refinement: Fine-tuning the
mask image using an attention residual U-Net model to
capture disease patterns and boundaries with attention
mechanisms and residual connections more effectively.

3) Patch-based Analysis for Hidden Insights: Utilizing
a patch-based analysis strategy to analyze images at
a local level, uncovering finer details and contextual
information.

4) Model Training and Evaluation: Training and evaluat-
ing the CAAR-Unet model on a custom dataset, using

various performance metrics and comparing against
state-of-the-art methods.

These contributions highlight the innovative approaches
used in preprocessing, refinement, analysis, and evaluation
stages of the proposed model, showcasing advancements in
the field of plant leaf disease detection and segmentation.
This research fills an important need in the agriculture indus-
try by giving a more accurate and efficient way to segment
and classify plant leaf diseases. This can be used in preci-
sion agriculture and for managing plant leaf diseases. The
proposed model has demonstrated its robustness and effec-
tiveness in handling complex scenarios with multiple disease
symptoms and diverse image qualities. The remainder of this
paper is organized as follows. Section II describes the related
works. Section III explains the proposed methodology, over-
all workflow, data preparation, data preprocessing, proposed
model in detail, including its architectures. Section IV pro-
vides evaluation metrics, and experimental results which
provide evidence of the model’s effectiveness and useful-
ness. Finally, conclusion and future works are presented
in Section V.

II. RELATED WORKS
Over the past few years, the effectiveness of deep learning
approaches in accurately detecting and categorizing plant leaf
diseases has been increasingly evident. Amultitude of studies
have been conducted to explore the potential of different deep
learning architectures, such as MobineNet, VGG16 and Unet
variants, for plant leaf illness identification and categoriza-
tion. This section examines some of the relevant literature in
this field and discusses the benefits and limitations of various
methods.

Several studies have employed various forms of the Unet
architectures to identify and categorize plant leaf diseases.
For example, researchers in [3] proposed a novel method
for detecting leaf diseases in soybeans. Their framework
utilised a DIM UNet to extract features and an LSTM to
classify. Their proposed method achieved high accuracy in
soybean leaf disease detection, with an F1-score of 0.96,
when tested on a public dataset of soybean leaf images.
Similarly, in [4], the authors presented a hybrid deep learning
model dubbed ‘‘RA-UNet’’ that employs attention gates to
identify liver and tumour regions from CT scans. Combining
the UNet architecture with a residual network, the RA-UNet
model accomplished state-of-the-art outcomes in liver and
tumour detection task. For LiTS dataset, model accomplished
a dice coefficient of 0.947 and 0.731 for liver and tumour
segmentation.

The authors of [5] developed an automated system to
detect and assess the extent of damage caused by grape black
measles. For detection, the system utilised Faster R-CNN and
DeepLabV3+models, and for severity analysis, a fuzzy logic
system. Their method achieved a disease detection accuracy
of 93.5% and a mean absolute error of 0.076 for sever-
ity analysis. Likewise, [6] proposed an automated method
utilizing MobileNet for detecting and categorizing diseases
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present in plant leaves. The authors fine-tuned a pre-trained
MobileNet model for disease and pest classification using
transfer learning. The overall accuracy of their method for
identifying diseases and pests was an impressive 97.84%.
The authors of [32] presented SDDNet, a deep learning
method for segmenting concrete cracks in images. SDDNet
achieved real-time performance and effectively handles com-
plex backgrounds and crack-like features. The model consists
of standard convolutions, DenSep modules, a modified ASPP
module, and a decodermodule. It is trained on amanually cre-
ated crack dataset and achieves an mIoU of 0.846 on the test
set. SDDNet outperforms recent models with significantly
fewer parameters and processes images in real-time (36 FPS)
at a resolution of 1025 × 512 pixels, making it a promising
approach for practical crack segmentation applications.

Numerous complex architectures have been investigated
by researchers in the domain of identifying and categorizing
diseases found in plants in an effort to increase comprehen-
sion. The authors of [7] reviewed recent research on deep
learning-based approaches intended for detecting and catego-
rizing diseases in plants. They analysed various architectures
and methodologies used in the field, identified challenges,
and proposed potential future research directions. Their anal-
ysis highlighted the need for larger and more diverse datasets,
robust and scalable models, and the incorporation of intelli-
gent agriculture systems. Overall, this paper provided use-
ful information about the current well-known methods in
employing deep learning methods to detect and categorize
plant diseases.

Several studies have investigated the use of backbones
in models for segmentation and classification of plant leaf
diseases. In [10], the authors proposed an automated archi-
tecture for banana leaf diseases based on segmentation and
classification using deep learning techniques such as CNNs
and transfer learning. Their method achieved a high degree
of disease detection precision, achieving an overall accuracy
of 96%. Similarly, in [11], the authors introduced a DCNN
backbone for the recognition of rice plant diseases and pests
by video detection and deep convolutional neural networks.
Transfer learning was used to refine a pre-trained VGG16
model for disease and pest classification, resulting in an
overall accuracy of 93.9 percent. Both papers evaluated their
proposed methods on their respective datasets of banana leaf
and rice plant videos, demonstrating promising disease and
pest recognition outcomes. Overall, employing backbones in
deep learning models for detecting and categorizing plant
diseases has potential to significantly enhance precision and
performance.

In [8], the authors introduced an edge-based coffee dis-
ease classification method based on deep learning. Trans-
fer learning was utilised to refine the parameters of a
pre-existing MobileNet model for coffee disease classifica-
tion on edge devices, achieving an impressive 98.7% accu-
racy. The authors of [9] proposed a two-stage cascade model
for segmenting MRI brain tumours. The model was tested

on the BraTS dataset and combined variational autoencoders
and attention gates to achieve high accuracy and outper-
formed several other well-known segmentation approaches.
The hybrid architecture, comprising both a cascaded autoen-
coder and a CNN, has been shown to be advantageous for
classification and segmentation.

Numerous research has studied the use of multi-stage and
hybrid architectures for segmentation of plant-borne diseases.
For instance, the authors of [12] presented a CRUN-based
architecture for segmentation and identification of leaf dis-
ease stages. Their model acquired a high F1-score of 0.95 for
segmenting leaf diseases and successfully identified the dis-
ease stage usingmorphological characteristics. To address the
difficulty of detecting various illnesses on distinct plant parts,
the authors of [13] suggested a CNN-CRF hybrid model for
plant disease recognition. Using a publicly available dataset,
the model attained an average accuracy of 95.5%, indicat-
ing its efficacy in plant disease recognition. The model was
implemented on a PC with a Tesla P100 GPU and 27 GB of
RAM, and the processing time required for inference could
range from several seconds to a few minutes.

The authors of [14] proposed a two-stage segmentation
technique based on deep learning and corn field data for
crop disease quantification. In the first step of the model,
modified Unet was utilised to segment leaves, followed by
a DeepLabV3+ model for segmenting disease lesions. Their
method achieved best accuracy in segmentation and clas-
sification, with an F1-score of 0.9 for segmentation and a
classification accuracy of 93.8%. They suggested a deep
learning-based method for image segmentation and classi-
fication to recognize tomato plant diseases in [15]. They
utilised a modified Unet with InceptionNet architecture to
accurately divide and classify leaf pictures into illness groups.
With an average F1 score of 0.96 across three distinct tomato
plant diseases, their model demonstrated a high degree of
accuracy. The success of these types of hybrid model served
as inspiration to incorporate similar design elements into our
work.

Some researchers have tried to employ autoencoder-based
models for segmenting and classifying plant leaf diseases. For
instance, in [16], the authors developed an autoencoder-based
model for diagnosing agricultural diseases and assisting treat-
ment recommendations. The model first uses a cascaded
autoencoder to extract features from images of a plant’s leaf
and then employs a support vector machine (SVM) classifier
to categorise the images as either healthy or unhealthy. The
model’s accuracy in detecting rice and tomato leaf diseases
was 96.3% and 95.4%, respectively. This research has limita-
tions as it was only tried out on a small subset of crop diseases.
A system for automatic detection and classification of defects
on metallic surfaces was proposed using the CASAE model
and compact CNNs [17]. In this two-stage process, defects
are identified, and then those identified are placed into pre-
determined categories. In order to pinpoint problem areas on
the metal’s surface, a cascaded autoencoder network is used
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during the defect detection phase. To determine the nature of
the flaws within the ROIs, a compact convolutional neural
network is employed during the defect classification phase.
When applied to a set of images of metallic surfaces, they
managed a 93.2% flaw detection rate and a 91.3% defect
recognition rate.

The authors of [30] proposed promising deep learning-
based approach to enhance colorectal polyp detection
and segmentation called PSNet. By combining various
deep learning modules, including PS encoder, transformer
encoder, PS decoder, enhanced dilated transformer decoder,
partial decoder, and merge module, they successfully
addressed the challenges of model overfitting, poor boundary
pixel definition, and capturing diverse polyp characteris-
tics. Through extensive comparative studies on five existing
polyp datasets, PSNet outperforms state-of-the-art results
with mDice and mIoU scores of 0.863 and 0.797, respec-
tively. The authors introduced a new modified polyp dataset
and achieved significantly improved performance with an
mDice of 0.941 and mIoU of 0.897. The authors of [31]
introduced STRNet, a novel semantic transformer represen-
tation network, for real-time crack segmentation in complex
scenes. It addresses deficiencies in previous studies related
to ground truth data preparation, complex scene handling,
object-specific networks, and evaluation methods. STRNet
incorporates attention-based encoder and decoder, coarse
upsampling, focal-Tversky loss, and learnable swish acti-
vation functions to achieve both speed and accuracy. The
network is trained on 1203 images with extensive augmen-
tation and evaluated on 545 images, outperforming advanced
networks with the highest evaluation metrics and processing
speed (49.2 frames per second). STRNet offers a signifi-
cant advancement in crack segmentation, providing practical
applications in real-time scenarios.

As we explore the possibilities of deep learning approaches
for detecting and categorizing plant leaf diseases, it’s impor-
tant to also consider the challenges and limitations that
come with these methods. One significant hurdle is the need
for large, diverse datasets to effectively train deep learn-
ing models. Obtaining representative images of plant leaves
with various diseases and environmental conditions can be a
real challenge, but it’s crucial for building accurate models.
Additionally, the computational complexity of deep learning
models requires significant computing resources for training,
including powerful GPUs and vast amounts of memory. This
can make inference on resource-limited devices, such as edge
devices in agricultural fields, a challenging task.

In the field of plant leaf disease detection, deep learning
models have shown promising results in accurately cate-
gorizing and detecting plant diseases. Their application is
often limited by the need for large, diverse datasets and
the computational resources required for training, there is
a need to develop methods to improve model generaliza-
tion and overcome the challenges of training with small
datasets. To address these challenges, a novel architec-
ture, the Cascading Autoencoder with Attention Residual

U-Net (CAAR-UNet), has been developed. This architec-
ture employs a two-stage learning process, incorporating
a symmetric autoencoder model for preprocessing input
images, followed by fine-tuning using the Attention Residual
U-Net architecture. To further improve model generalization
and robustness, patch-based approach and data augmentation
techniques were utilized. By dividing the images into smaller
patches and applying data augmentation, the model can learn
from a larger and more diverse set of examples, improving
its ability to accurately classify and detect plant diseases.
The proposed CAAR-UNet model was demonstrated on a
custom dataset of four commonly occurring plant leaf disease
classes and has shown its applicability in multi-class plant
leaf disease segmentation. Through continued exploration
of alternative methods, such as ensemble methods, transfer
learning, image processing, and hyperspectral imaging, deep
learning-based plant leaf disease detection can become even
more precise and effective in agricultural settings.

III. PROPOSED METHODOLOGY
This section contains an overview of the proposed work; the
overall workflow, data preparation, data preprocessing, and
the architecture of the CAAR-UNet model are discussed.

A. OVERALL WORKFLOW
Fig. 1, illustrates the overall process of the method for detect-
ing and classifying diseased regions in plant leaf images,
including northern corn leaf blight, grape black measles,
strawberry leaf scorch, and coffee leaf miner. To accomplish
this task, publicly available Plant Village dataset [27] is
utilized, which contains a diverse array of labelled images.
Prior to being input into the proposed model, the images
underwent enhancement using a variety of techniques to
ensure highly accurate detection of diseased regions. Data
preprocessing task includes the use of the Patchify library and
various data augmentation methods to bring out more finer
details and contextual informative features from the scal-
able image data. Comprising two components, the proposed
model first employs a symmetric autoencoder to enhance the
predicted image, without any irrelevant information (no leaf
backgrounds). The enhanced predicted image (consists only
background class and pixel wise predicted classes) is then
fed as input into the attention residual U-Net, which outputs
classified and segmented regions of disease on plant leaves.

B. DATASET DESCRIPTION
In this study, publicly available datasets, namely the PlantVil-
lage Dataset [27] and the Coffee Leaf Dataset [28], were
utilized to create a custom dataset for training and evaluation.
The PlantVillage Dataset contains a collection of 54,303
healthy and unhealthy leaf images divided into 38 groups,
representing different plant species and diseases. From this
dataset, we selected 100 images per class from the classes
Northern Corn Leaf Blight, Grape BlackMeasles, and Straw-
berry Leaf Scorch to represent distinct diseases across multi-
ple species.
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FIGURE 1. Overall proposed workflow.

TABLE 1. Custom data statistics.

Additionally, we incorporated the Coffee LeafDataset [28],
which consists of coffee leaf imageswith two classes: rust and
miner. From this dataset, we selected 100 images specifically
belonging to the coffee leaf miner class.

Overall, our custom dataset comprises a total of 400 RGB
images, each with a resolution of 256× 256 pixels. By com-
bining images from different classes and datasets, we aimed
to create a diverse and representative dataset that encom-
passes various plant species and disease types, enabling com-
prehensive training and evaluation of our proposed model.
Table 1 showcases the distribution of images across different
disease classes, providing a comprehensive overview of the
composition of the dataset.

C. DATA PREPARATION
The Apeer platform [29] is utilised in order to annotate
diseased regions that were visible in the plant leaf images.
Via its user-friendly interface, the Apeer platform provides
access to the most cutting-edge deep learning algorithms
currently available for image segmentation. Great caution
was employed to mark and highlight the diseased regions of
the plant leaf images using this platform, and then retrieved
the corresponding masked images for each category. Fig. 2,
displays some examples of plant leaf images alongside their
respective leaf masks that were obtained from apeer platform.

The model is trained using the Apeer platform’s produced
labels as the ground truth. As the process of marking and
highlighting exact shape and size of unhealthy parts in each
image needs a great deal of time and attention, it was not pos-
sible to generate these annotated images in huge quantities.
The techniques described in sub-section D will be utilized
to improve the model’s generalization and robustness. These
methods allow the model to learn from a more extensive and
diverse set of examples, resulting in increased accuracy in
detecting and classifying plant diseases.

D. DATA PREPROCESSING
In the preprocessing phase, patch-based approach with
patchify library and data augmentation techniques are
implemented to facilitate the learning process of the model.
By dividing the input images into smaller patches and
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TABLE 2. Data augmentation techniques applied.

FIGURE 2. Creating masks by highlighting and labelling the diseased
regions using apeer platform.

applying data augmentation, the model can learn from a more
diverse and extensive dataset, which can bring out more latent
features within the images and improve model’s ability to
generalize and make accurate predictions on new, unseen
data. Furthermore, patch-based approach and data augmenta-
tion reduces the computational burden and makes it possible
to handle datasets more efficiently.

Scalable data processing techniques were employed to
effectively fine-tune the dataset consisting of 400 images.
Utilized the patchify library to extract multiple smaller, non-
overlapping patches from each original image, resulting in
4 non-overlapping patchified images of size (128, 128) from
each original image of size (256, 256) as presented in sub-
section I and Fig. 3. Applying data augmentation techniques
to the patches extracted from the images resulted in an
increased dataset diversity and complexity, as outlined in
Table 2. For each patchified image of size (128, 128), five
additional images of the same size were generated, result-
ing in a total of 9,600 images. This augmentation approach
greatly expanded the dataset, providing a more diverse and
extensive set of examples for training. To ensure a rigorous

evaluation, the test set data is separated from the entire dataset
at the outset of the experiment. The remaining data is then
utilized for the 10-fold cross-validation process. In each fold
of the cross-validation, the training and validation data are
altered while maintaining a constant size. Specifically, the
dataset is divided into ten subsets or folds, with each fold
serving as the validation set once while the other nine folds
are used for training.

This process is repeated ten times, ensuring that every data
point is included in the validation set exactly once and is part
of the training set in nine out of the ten folds. By consistently
maintaining the size of the training and validation sets across
all folds, we aim to comprehensively assess the model’s
performance, reduce the risk of overfitting, and yield mean-
ingful and reliable results for our proposed method. Table 3
complements this information by presenting the distribution
of data across the training, validation, and testing sets for each
category class, allowing for a comprehensive understanding
of the dataset composition and partitioning.

1) PATCHIFICATION BASED ANALYSIS
The patchify library was utilized to partition the input images
into smaller, non-overlapping patches of size (128 × 128)
from each original image of size (256× 256). This approach
enabled the model to uncover finer details and contextual
information within the images and detect subtle variations
that may not be visible in the original image. The extraction
of multiple patches from each image resulted in a more
diverse dataset and reduced computational burden, improv-
ing the model’s learning ability and allowing the model
to handle datasets more efficiently. Patchified images are
depicted in Fig. 3 and patchify library is applied as mentioned
in (1).

patchify
(
imagetopatch , patchshape, step = no.of steps

)
(1)

where the original images from the dataset, denoted as
imagetopatch , and these were divided into patches of size

(128, 128, 3) for leaf images and (128, 128) for mask images
using the patchshape parameter, with no overlapping between
patches as defined by the step parameter set to 128.

TABLE 3. Data statistics after patch extraction and data augmentation.

98158 VOLUME 11, 2023



S. Abinaya et al.: CAAR-UNet for Multi-Class Plant Leaf Disease Segmentation and Classification

FIGURE 3. Images after applying patchify library to the dataset.

FIGURE 4. Architecture of the proposed CAAR-UNet model.

E. CASCADING AUTOENCODER WITH ATTENTION
RESIDUAL U-NET (CAAR-UNET)
The Cascading Autoencoder and Attention Residual U-Net
(CAAR-UNet) model is a novel deep learning model pro-
posed for plant leaf disease segmentation and classification.
The proposed model architecture was chosen based on the
results of studying numerous deep learning-based model
architectures [2], [4], [9], [16], [20], [24], which led to the
adoption of the Attention Residual U-Net model architecture
andAutoencoders. Themodel architecture provides a promis-
ing method for image segmentation problems, with enhanced
efficiency, less overfitting, and greater generalisation capa-
bilities. The resulting model takes an image of a plant leaf as
input and produces a segmented image with diseased areas
highlighted and classified.

The proposed CAAR-UNet model is formed by cascading
two separate models, the Symmetric Autoencoder (SAE) [9],
[17] and Attention Residual U-Net (ARU-Net) [4], [24] as
presented in Fig. 4, initially they were defined separately for
compilation and training purpose. Then, a new input layer is
defined for the combined hybrid model outlined in Fig. 4 to
match the input shape of the separate models from Fig. 7, 10.
The SAEmodel takes preprocessedRGB leaf images of shape
(128, 128, 3) as input and outputs a pixel-wise predicted mask

of shape (128, 128, n), where n is the number of classes to
be predicted, in our case it is five classes including the back-
ground class. This output is then fed into the ARU-Net model,
which further refines the predicted mask and produces a final
result of the same shape (128, 128, n). The training process
involves training the SAE and ARU-Net models separately
using established training techniques, and then combining
them to form the CAAR-UNet model. Pseudocode of the
proposed CAAR-UNet model is given in the Appendix for
more information.

The combined model is then trained on custom dataset
using established training techniques from Table 4. After
training phase, the predict method is used to apply the model
to new samples of unseen data to test generalisability our
model. Overall, the proposed CAAR-UNet model leverages
the strengths of each component to achieve improved seg-
mentation accuracy.

A more powerful model that can tackle a broader set
of segmentation problems is achieved by combining their
architectures. For instance, the Symmetric autoencoder
excels at images with multiple objects and backgrounds,
but it may have trouble with objects of wildly varying
sizes and shapes. While ARU-Net performs well when
presented with objects of wildly varying sizes and shapes,
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it may struggle when presented with complex backgrounds
and overlapping objects. A model can be constructed that
is more versatile and effective across a wider range of
image segmentation problems by fusing the two architec-
tures. In conclusion, the proposedmodel, Symmetric Autoen-
coder cascading with Attention Residual U-Net architecture,
is a robust and versatile technique for plant-borne disease
detection and categorization, with the ability to learn useful
features from the input image and focus on important regions
for the segmentation task.

1) SYMMETRIC AUTOENCODER (SAE)
The Symmetric autoencoder’s structure is established in
the first phase of the proposed approach. This is a neu-
ral network that takes an input image and reduces it to
a lower-dimensional format before reconstructing it. This
method enables the network to learn valuable image charac-
teristics that can be used for subsequent segmentation. The
symmetric autoencoder is made up of numerous layers of
an encoder network that transform the input image into a
low-dimensional feature vector and a decoder network that
transform the feature vector into an output image.

The Symmetric autoencoder network consists of three
encoder blocks and three corresponding decoder blocks. The
architecture design of the SAE model is presented in Fig. 7.
The mathematical representation of the symmetric autoen-
coder architecture can be expressed as follows.

a: ENCODER BLOCKS
Each encoder block in this setup is tasked with maximis-
ing the number of feature maps while decreasing the spa-
tial dimensions of the input data. In order to reduce the
dimensionality of the input data while maintaining important
features, each encoder block uses two layers of convolution
with varying filter sizes, a batch normalization layer, a max
pooling layer with ReLU activation function in between. Each
block’s forward flow is shown in (2).

hk = fk (Wk ∗ hk−1 + bk) , k = 1, 2, 3 (2)

where hk−1 is the result of the preceding encoder block or
the input x if k=1, Wk and bk are the weights and biases of
the encoder block indexed k , and fk is the activation function
of the encoder block indexed k . The architecture design of
encoder block in SAE model is presented in Fig. 5.

FIGURE 5. Architecture design of encoder block in SAE.

b: DECODER BLOCKS
Each decoder block, on the other hand, performs the reverse
operation of the corresponding encoder block. It takes the
lower-dimensional representation produced by the encoder
block and transforms it back into the original spatial dimen-
sions while decreasing the number of feature maps.

This is achieved by applying each decoder block with
upsampling layers to expand the spatial size of the feature
maps, followed by two convolutional layers with the same
number of filters as in the corresponding encoder block. The
last decoder block is subsequently a 1×1 convolutional layer
with a softmax activation function that produces a segmenta-
tion mask with a number of class channels. The forward flow
of each block is represented in (3).

gk = fk (Wk ∗ gk−1 + bk) , k = 1, 2, 3 (3)

where gk−1 is the outcome of the preceding decoder layer or
the result of the k-th encoder layer if k=3,Wk and bk are the
weights and biases of the indexed k decoder layer, fk is the
activation function of the k-th decoder layer. The architecture
design of decoder block in SAE model is presented in Fig. 6.

FIGURE 6. Architecture design of decoder block in SAE.

c: FINAL LAYER
The output layer can be represented as shown in (4).

y = softmax (Wout ∗ g1 + bout) (4)

whereWout and bout are the output layer’s weights and biases,
and y is the predicted output of the symmetric autoencoder.

d: LOSS FUNCTION
The Symmetric autoencoder strives to minimize the dissim-
ilarity between the input data x and its anticipated output y,
as gauged by the reconstruction loss expressed in (5).

L(x, y) = −sumi{xi ∗ log(yi) (5)

where xi and yi are the i-th elements of x and y, respectively,
and sumi denotes the sum over all elements of x and y.
By minimizing the reconstruction loss across all building

blocks, the symmetric autoencoder aims to achieve optimal
performance, as reflected in (6), which involves summing up
the reconstruction loss for each block.

J (x, y) = sumk{L(hk−1, gk )} (6)
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FIGURE 7. Architecture of symmetric autoencoder in CAAR-UNet.

where hk−1 is the outcome of the (k-1)-th encoder block, gk
is outcome of k-th decoder layer, and sumk refers to the sum
over all building blocks (i.e., k=1,2,3 in this case).
Overall, encoder blocks aid in the extraction of significant

features from input data, while decoder blocks aim to recon-
struct the original input data using the extracted features. The
cascading of these block allows for deeper feature extraction
and reconstruction, which can result in more expressive and
accurate models.

During training, the SAE learns to reconstruct the image
by mapping it to a lower-dimensional representation and then
decoding it back to its original dimensions. In this process,
the SAE effectively suppresses noise and irrelevant variations
(e.g., lighting variations or leaf background), emphasizing the
relevant features necessary for disease segmentation resulting
in a cleaner image containing only the predicted class or
category of the pixel, such as different types of diseases or
background. These pixel values indicate the classification and
segmentation information generated by the SAE for further
processing and refinement in subsequent stages of the model.

2) ATTENTION RESIDUAL U-NET (ARU-NET)
The second phase of the proposed approach specifies archi-
tecture of the Attention Residual U-Net (ARU-Net) model,
which is intended for image segmentation. This model’s
architecture is intended for refinement of sub-section I seg-
mentation task, which includes dividing an image into regions
and labelling each region based on its class (e.g., various dis-
ease types). The architecture design of the Attention Residual
U-Net model is presented in Fig. 10. This model is com-
prised of convolutional layers that downsample the image,
followed by convolutional layers that upsample the image to
its original size. In addition, the model includes skip connec-
tions to preserve spatial information during downsampling
and upsampling operations. In addition, the model includes
an attention mechanism that assists the network in focus-
ing on the most relevant and important image regions for

segmentation, as well as residual connections in the network
that are used to address the vanishing gradient problem that
can arise during the process of training networks.

The model’s attention gates are defined by the attention
block function, which accepts input feature maps and com-
putes attention coefficients using two distinct convolutional
layers. The attention coefficients are then passed through
a softmax activation function to obtain the attention map,
which is then element-wise multiplied using the input feature
maps to generate attended feature maps. To achieve the final
result, the attended process of concatenating feature maps is
performed in conjunction with output of the corresponding
decoder block. The Attention Residual U-Net architecture
can be represented as follows:

a: DOWNSAMPLING LAYERS
The downsampling block is an important component that
aims to reduce the spatial dimensionality of feature maps
while increasing the number of channels, leading to the
extraction of higher-level features from the input image.
It consists of convolutional layers, ReLU activation functions,
and max pooling layers, and uses residual blocks to learn
more complex representations and extract hierarchical fea-
tures. The formula for the forward pass of the downsampling
block with residual connections is shown in (7).

hk = f (Wk ∗ hk−1 + bk + (Wk−1 ∗ hk−1

+bk−1)) , k = 1, 2, . . . ,N (7)

The equation (7) represents the computation for the k-th
layer of the downsampling block, where h0 represents the
input image, hk−1 is the output of the (k-1)-th layer, which is
then multiplied by the weightsWk and added to the biases bk .
The result is then passed through an activation function f ,
which is typically ReLU. In addition to this, there is a residual
connection that is added to this output, which is computed by
taking the output of the (k-1)-th layer, multiplying it with the
weights Wk−1 and adding the biases bk−1, and then adding
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FIGURE 8. Architecture design of residual block in ARU-Net.

this to the output of the k-th layer. This residual connection
helps in improving the flow of gradients through the network
and enables the network to learn better representations. The
architecture design of residual block in ARU-Net network is
presented in Fig. 8.

b: ATTENTION MECHANISM
The attention gates are used to selectively focus on the most
informative regions of the feature maps while suppressing
irrelevant or redundant information. The attention gate con-
sists of two parallel convolutional layers, one for the encoder
feature map, downsampling layer and another for the decoder
feature map, upsampling layer. The formula for the forward
pass of the attention block is shown in (8).

g = f
(
AVGPOOL

(
Wg ∗ hN + bg

)
+MAXPOOL

(
W ′
g ∗ hN + b′

g

))
z = SIGMOID (Wz ∗ g+ bz)

s = z ∗ hN (8)

The attention gate g from (8) consists of a global average
pooling and a global max pooling operation, followed by
two separate convolutional layers (Wg and W ′

g) as shown in
Fig. 9 with batch normalization and ReLU activation, and
a sigmoid activation layer (Wz and bz) that outputs a scalar
value between 0 and 1. The output of the attention gate s
is obtained by element-wise multiplication of the sigmoid
output z and the output of the last convolutional layer of the
corresponding downsampling block hN .

FIGURE 9. Architecture design of attention block in ARU-Net.

c: UPSAMPLING LAYERS
Similar to the downsampling block, the upsampling block
also uses a series of residual connections to increase the
spatial resolution of the feature maps while recovering the
spatial details of the input image. The upsampling block

usually consists of an upsampling layer, followed by a con-
catenation with the corresponding encoder feature map (from
the same resolution). The formula for the forward pass of the
upsampling is shown in (9).

h′
k = f

(
h′
k−1 ∗W ′

k + b′
k +

(
hN ∗W ′

k−1

+b′

k−1
)
+ s

)
, k = 1, 2, . . . ,M (9)

The equation (9) represents the computation for the k-th
layer of the upsampling block, where h′

k−1 is the output of the
(k-1)-th layer, which is then multiplied by the weightsW ′

k and
added to the biases b′

k . The result is then passed through an
activation function f , which is ReLU. In addition to this, there
is a double residual connection (i.e. the residual connection
between the current layer and the corresponding layer in the
encoder, as well as the residual connection between the cur-
rent layer and the previous layer in the decoder) that is added
to this output. The first part of this connection is computed by
taking the output of the (k-1)-th layer, multiplying it with the
weights W ′

k−1 and adding the biases b′

k−1, and then adding
this to the output of the corresponding downsampling layer
(hN ) that feeds into the current upsampling layer. The second
part of this connection is the attention map s, which is added
to the output.

d: FINAL LAYER
The final output uses a convolutional layer with an activation
function (e.g., softmax) to produce a probability map of each
pixel belonging to each class. The final layer formula is
shown in (10).

y = f (hM∗WM + bM ) (10)

where WM and bM are the weights and biases of the final
convolutional layer of upsampling block, and f is a activation
function, which is softmax. The output of the final layer ywill
be a probability distribution over the different classes for each
pixel. The class with the highest probability will be selected
as the predicted class for that pixel during inference.

e: LOSS FUNCTION
For the purpose of classification tasks, a widely used loss
function is cross-entropy loss, which has been employed in
this particular study. It quantifies the discrepancy between
the predicted probabilities and the true labels. The formula
for cross-entropy loss, shown in (11), calculates the negative
sum of the logarithm of the predicted probabilities for each
pixel.

L = −

(
1
N

)
∗

h∑
i=1

ω∑
j=1

c∑
k

yi,j,k ∗ log (pi,j,k ) (11)

here, N refers to overall count of pixels contained within
the image, yi,j,k represents the ground-truth label assigned
to the pixel located at position (i,j) for class k , and pi,j,k
denotes the probability assigned to each individual pixel (i,j)
for class k . During the training phase, the cross-entropy loss
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FIGURE 10. Architecture design of attention residual U-Net in CAAR-UNet.

function is utilized to update the model parameters, thereby
minimizing the dissimilarity between the predicted and actual
labels.

Overall, the Attention Residual U-Net with attentionmech-
anism repeats the downsampling and upsampling layers
multiple times, with attention gates inserted between corre-
sponding encoder and decoder blocks. The output of the final
upsampling layer is a segmentation map with the same spatial
resolution as the input image, where each pixel corresponds
to a predicted class label. The use of residual connections
allows the gradient to flow more efficiently through the net-
work during training while attention mechanism allows the
network to focus on the most informative regions of the input
image, which can improve the accuracy of the segmentation
results.

The CAAR-UNet model presented in sub-section E is a
novel hybrid neural network architecture designed to improve
the accuracy of plant disease segmentation. By combining the
strengths of a Symmetric autoencoder, an Attention Resid-
ual Unet and incorporating patch-based analysis, this model
offers a unique approach that builds upon existing concepts.
The Symmetric autoencoder preprocesses the input data to
extract latent features improving the quality of the input data
and lead to better segmentation results, while the patch-based
approach and data augmentation techniques help to uncover
more finer details and contextual information within the
images. The attention mechanism selectively focuses on
informative regions, and the use of residual connections
improves the flow of gradients during training. Although
each of these components has been used in other contexts,
their specific combination in the CAAR-Unet model for plant
disease segmentation is novel. Overall, this approach has the
potential to improve the accuracy of multi-class segmentation
tasks and represents an important contribution to the field of
plant disease diagnosis and treatment.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The Windows 10 operating system with specifications of
NVIDIA Tesla P100 GPU and 16GB RAMwas used with the
Spyder platform to implement the CAAR-UNet architecture
model proposed for plant-borne disease detection. The Keras
framework was used alongside a Tensorfow backend. The
experimental results showed the best split between training,
validation, and testing to be 80/10/10.

The training of the proposed CAAR-UNet model followed
a supervised learning approach. The dataset was loaded and
preprocessed using the patchify technique, extracting patches
of size (128, 128, 3) from the input images, ensuring the
images and their corresponding masks are appropriately for-
matted. These patches served as the input for the model.
As the segmentation task involves multiple classes, we have
modified the loss function to incorporate the class weight
ratio. This modification helps address class imbalance issues
and ensures that each class receives appropriate emphasis
during training. Next, hyperparameter tuning is performed
using 10-fold cross-validation. This allowed to optimize key
hyperparameters such as batch size, number of epochs, and
learning rate. The inclusion of cross-validation enabled robust
evaluation of the model’s performance across different sub-
sets of the training data, enhancing its ability to generalize.

The model architecture is then constructed, it is designed
to effectively capture spatial features and extract meaningful
representations from the input images. Then the model is
compiled, specifying the modified loss function with the
class weight ratio, along with an appropriate optimizer and
evaluation metrics. This ensures that the training process
focuses on minimizing the weighted loss, considering the
class distribution. During training, the model iteratively pro-
cesses batches of training images and corresponding masks.
Backpropagation and parameter updates occur to minimize
the weighted loss and improve the model’s performance.
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The training process continues for a specified number of
epochs, allowing the model to learn complex patterns and
refine its segmentation predictions. After training, the model
is evaluated on a separate validation dataset. Evaluation met-
rics mentioned in sub-section A, are calculated to assess the
model’s performance in accurately delineating the different
classes in the validation images.

The inclusion of patch-based preprocessing aimed to
enable the model to capture localized patterns within the
dataset, enhancing its learning capabilities. By incorporating
modified loss function accounting for class weights and using
10-fold cross-validation, our proposed model is trained to
effectively segment multiple classes in images. This compre-
hensive training approach aims to enhance the model’s ability
to capture class-specific details and generalize well to unseen
data. Table 4 displays the hyperparameters that were adjusted
throughout the training procedures.

TABLE 4. Hyperparameters utilized in training process.

During the training stage, we tested three different
optimizers: Adam, SGD, and RMSprop. Among them,
the CAAR-UNet model trained with the Adam optimizer
achieved the highest segmentation accuracy. Therefore, all
the comparisons and results presented in the tables are
based on the CAAR-UNet model trained specifically with
the Adam optimizer. We utilized a batch size of 64 and
trained the model for over 100 epochs. The evaluation
of the model’s performance was conducted on the valida-
tion dataset, yielding promising results. This confirms the
effectiveness of our approach for image segmentation tasks
using the CAAR-UNet model and the Adam optimization
algorithm.

A. EVALUATION METRICS
The performance of the CAAR-UNet model for multi-plant
leaf disease segmentation and classification can be evaluated
using various metrics. The basic concepts of some of these
performance metrics along with the mathematical details are
presented in the following subsections.

1) MEAN PIXEL ACCURACY
The mean pixel accuracy for multi-class segmentation is the
average pixel accuracy over all images and classes. It mea-
sures the proportion of correctly classified pixels across all

the classes and provides a measure of how well the model
can performmulti-class segmentation. For image i in the data,
(12) presents the pixel accuracy for each class j.

Aij =

(
TPij + TN ij

)(
TPij + TN ij + FPij + FN ij

) (12)

In the aforementioned context, the notation TP refers to the
count of true positives, TN denotes true negatives, FP repre-
sents false positives, and FN indicates false negatives.

The mean pixel accuracy (Am) is the average of overall
images and classes, and it is represented in (13).

Am =
1
n

∗

∑n

i=1

∑C

j=1
Aij (13)

In this context, the variable n corresponds to count of
overall images contained within the dataset, and c is the count
of overall classes.

2) WEIGHTED MEAN INTERSECTION OVER UION
Weighted mean Intersection over Union (IoU) is a com-
mon evaluation metric for image segmentation that considers
both the pixel-wise accuracy and the class distribution in
the ground truth. The weighted mean IoU formula can be
expressed as follows:

For each class j (j = 1, 2, . . . , c) and each image i (i = 1, 2,
. . . , n), the IoU score is presented as (14).

IoU ij =
TPij(

TPij + FPij + FN ij
) (14)

The per-class IoU by averaging the IoU scores over all
images for each class is presented in (15)

IoU j =
1
n

∗

∑n

i=1
IoU ij (15)

The class weights wj expressed as a percentage of total
ground truth pixel count for class j is presented in (16).

wj =
Pj(∑c
j=1 Pj

) (16)

where Pj is the total count of pixels for class j in the ground
truth segmentation masks.

The weighted mean IoU as the weighted mean of the
per-class IoU scores using the class weights is represented
in (17).

wmIoU =

∑c

j=1
wj∗IoU j (17)

The weighted mean IoU is obtained by computing the
average IoU score across all classes while considering
the proportional representation of pixels for each class in the
ground truth. This accounts for class imbalance in the dataset
and gives more weight to the classes with more pixels in the
ground truth.
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3) MEAN BOUNDARY F1-SCORE
Mean boundary F1-score is a measure of the accuracy
of the detected boundaries, calculated as the F1 score of
the boundary pixels. Mathematically, precision, recall and
F1 score for class j, wj is the count of boundary pixels per
class j, is represented in (18).

precisionj =
TPj(

TPj + FPj
)

recall jj =
TPj(

TPj + FN j
)

F1j =
2 ∗ precisionj ∗ recall j(
precisionj + recallj

) (18)

The weighted mean BF Score across all classes and images
is represented as in (19).

wmBF1 =
1
n

∗

∑C

j=1
wj ∗ F1j (19)

The Weighted Mean Boundary F1 score (wmBF1) pro-
vides a more balanced evaluation of the boundary detection
algorithm’s performance across different classes, by consid-
ering the count of boundary pixels per class.

4) DICE COEFFICIENT
The Dice coefficient is used to evaluate how close an
algorithm’s prediction is to the true segmentation. Mathemat-
ically dice coefficient for class j is represented as in (20).

Dj =
2 ∗ TPj(

2 ∗ TPj + FPj + FN j
) (20)

The weighted mean Dice coefficient across all classes and
images is represented as in (21).

wmDC =
1
n

∗

∑C

j=1
wj ∗ Dj (21)

The wmDC ranges from 0 to 1, with 1 indicating per-
fect correlation between what was expected and what really
happened. A higher Dice coefficient indicates better segmen-
tation performance.

The evaluation of the CAAR-UNet model’s efficacy can
be conducted using a combination of these metrics to assess
its ability to accurately segment and classify multi-plant leaf
diseases.

B. PERFORMANCE ASSESSMENT: EXISTING
ARCHITECTURES VS PROPOSED MODEL
The purpose of this section was to evaluate distinct network
architectures for the task of segmenting plant leaf diseases.
Images of plant leaves were used to test the effectiveness of
the architectures such as Mask R-CNN, Symmetric Autoen-
coder, U-Net, Attention U-Net, SegNet, SDDNet, Attention
Residual U-Net, STRNet, PSNet and Cascading Autoen-
coder with Attention Residual U-Net. The loss function was
updated by including a class weighted ratio to enhance the
models’ performance. This method assisted in resolving the
problem of class imbalance within the dataset, where some

TABLE 5. Semantic segmentation of multi class plant leaf diseases.

classes had significantly fewer samples than others. The
effectiveness of the trained and tested models was evaluated
by analyzing the segmentation results, as presented in Table 5.
Various metrics, such as average pixel accuracy, weighted
mean Intersection over Union (IoU), weighted mean dice
coefficient, and weighted mean boundary F1-score, were
used to measure the performance of each model.

The outcomes demonstrated in Table 5 establish the
supremacy of the proposed CAAR-UNet model over the
individual SAE and UNet models and also existing models
in the task of plant-borne disease segmentation and catego-
rization. The proposed model achieved highest wmIoU of
74.51 percent and wmDC of 61.76 percent, indicating that
in most of the cases its predictions are more accurate and
closely aligned with the ground truth. This improvement
in performance can be attributed to the use of Symmetric
autoencoder architecture as a preprocessing step to extract
high-level features from the input images, reducing irrelevant
information and improving the relevance of visual features.
The attention residual unet model may have been able to learn
more effective feature representations from the output of the
symmetric autoencoder due to the presence of residual con-
nections and attention mechanisms in its architecture. These
mechanisms allow the model to focus on relevant parts of the
input features and facilitate the flow of information through
the network, leading to more effective feature representations
and further improvement in the model’s segmentation accu-
racy, leading to more accurate segmentation.

While the individual SAE, UNet, and Mask R-CNN mod-
els may have struggled to effectively capture high-level
contextual information and learn effective feature represen-
tations, the attention unet and attention residual unet models
may have faced limitations in capturing complex disease
interactions and mitigating the vanishing gradient problem.
The proposed hybrid CAAR-UNet model overcomes these
limitations and achieves improved segmentation accuracy by
leveraging the strengths of both the symmetric autoencoder
and attention residual unet architectures.
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TABLE 6. Class-wise performance analysis of experimented segmentation models.

Overall, the proposed hybrid CAAR-UNet model have
outperformed other models due to its ability to effectively
capture complex features and interactions between different
disease classes, incorporate both local and global contextual
information, and mitigate training issues such as the vanish-
ing gradient problem.

To further assess the performance of the models, a class-
wise analysis was conducted for each disease class.

The results presented in Table 6 demonstrate that the pro-
posed CAAR-UNet architecture achieved higher pixel classi-
fication accuracy (Am,class), IoU , Dice coefficient (DCclass),
and mean boundary F1-score (mBF1class) for all four dis-
ease classes compared to the other models. These find-
ings suggest that the proposed model has the potential to
accurately detect and classify a wide range of plant leaf
diseases.
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FIGURE 11. A Closer Look at the image, ground truth masks, and segmentation outputs of SAE, ARU-Net, and
CAAR-UNet models.

To provide a visual representation of the effectiveness of
the proposed model in segmenting different disease classes,
final predicted mask was generated for each class and pre-
sented in Fig. 11. These results highlight the model’s ability
to accurately identify and segment different plant leaf dis-
eases, where nclb, gbm, sls and clm are the class names of
northern corn leaf blight, grape black measles (commonly
known as esca), strawberry leaf scorch and coffee leaf miner
respectively. Overall, the experimental outcomes highlight
the potential of the proposed CAAR-UNet architecture in
effectively segmenting and classifying plant leaf diseases.

The analysis from Table 6 revealed that among the all
the classes, northern corn leaf blight (nclb) and coffee leaf
miner (clm) have highest IoU scores across all models, while
the grape black measles (gbm) has the lowest IoU score,
and strawberry leaf scorch (sls) has an average performance
across all models.

The hybrid Cascading Autoencoder with Attention Resid-
ual U-Net model achieved highiest IoU score of 0.75 for the
nclb class and 0.71 for the clm class, while the IoU score for
the gbm class was only 0.5. The PSNet, STRNet, Attention

Residual U-Net, Attention U-Net, and SegNet models also
achieved high IoU scores for the nclb and clm classes, with
scores ranging from 0.62 to 0.72, but struggled with the gbm
class, achieving scores around 0.5 to 0.6. The traditional
U-Net model and Mask R-CNN achieved an IoU score of
0.7 for the nclb, but struggledwith the other classes, achieving
scores ranging from 0.5 to 0.6. The SAEmodel had moderate
IoU scores for all classes, with scores ranging from 0.5 to 0.7.

The performance of each model is likely due to the com-
bination of the specific architecture of the model and the
characteristics of the images in each class. The distinct shape
and size of the lesions in the nclb and clm classes such
as large oval-shaped brown or greyish lesions and irregular
shaped brown tunnel spots respectively may have contributed
to the models’ high performance in segmenting these classes.
The small irregular shaped dark spots in the gbm class may
have made it particularly challenging for all models to accu-
rately segment this class. Finally, multiple small circular or
irregular-shaped reddish lesions all over the strawberry leaf
may have made it moderate performed for most models,
to segment the sls class accurately.
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The CAAR-UNet model demonstrated impressive perfor-
mance not only on the custom dataset but also on the addi-
tional images from the PlantVillage dataset and the Coffee
Leaf dataset, which were unseen during the training phase.
This was done to assess the generalizability of the model and
to test its ability to accurately segment plant leaf diseases in
different scenarios. These findings suggest that the proposed
CAAR-UNetmodel can be effective in accurately segmenting
plant leaf diseases across different datasets and scenarios and
may have potential for wider use in agricultural research and
crop management.

The visual representation depicted in Fig. 11 offers an
elaborate analysis of the image segmentation results obtained
from implemented models; SAE, ARU-Net, and CAAR-
Unet. By comparing the outputs of each model, it is
evident that the CAAR-Unet model exhibited exceptional
accuracy and precision, while ARU-Net and SAE also yielded
good segmentation results overall. The quarter portions of
the original image sizes were used in the Fig. 11 to pro-
vide a close-up view of the segmentation outputs, allowing
for a more detailed analysis of how each model performs.
By visualizing the segmentation results in this way, a bet-
ter understanding of the strengths and weaknesses of each
model in capturing fine-grained details of the input image
can be achieved. The figures provide a comparative view
of the performance of each model and helps in identify-
ing the model that yields the most accurate segmentation
outputs.

V. CONCLUSION AND FUTURE WORKS
Our research introduces the Cascading Autoencoder with
Attention Residual U-Net (CAAR-UNet) model, a novel
deep learning architecture for multi-plant leaf disease seg-
mentation and classification tasks. The study demonstrates
outstanding performance, surpassing other models with
a remarkable wmIoU of 0.7451 and mean pixel accu-
racy of 95.26%. These results hold promise for prac-
tical applications in precision agriculture and disease
monitoring.

However, it is important to acknowledge the limitations
of our research. The computational complexity and training
time of the CAAR-UNet model are relatively high, requiring
significant computational resources. While our experiments
yield promising results on a specific dataset, further research
is needed to evaluate the model’s performance on unseen
datasets and different plant species.

Addressing these limitations and conducting further
research can enhance the practicality and effectiveness of
the CAAR-UNet model in plant leaf disease image analysis.
Future studies should aim to explore the model’s generaliza-
tion capabilities, reduce its computational complexity, and
assess its performance on diverse datasets and plant species.
By overcoming these limitations, the CAAR-UNet model can
unlock its full potential for advancing precision agriculture
and disease monitoring. field.

APPENDIX
Pseudocode of the proposed CAAR-UNet model:

# Patchify the original images into smaller patches
FUNCTION patchify_images(original_images,

patch_size):
patchified_images = []
FOR image IN original_images:

patches = patchify.patchify(image, patch_size)
patchified_images.extend(patches)

RETURN patchified_images
# Preprocess the patchified images using Symmetric

Autoencoder model
FUNCTION SymmetricAutoencoder(input):
FOR patch IN patchified_images:

# Encoder Path
encoder_outputs = []
current_layer = patch
FOR i IN range(num_encoder_blocks):

current_layer=EncoderBlock(current_layer, fil-
ters[i])

encoder_outputs.append(current_layer)
# Decoder Path
FOR i IN range(num_decoder_blocks):
current_layer = DecoderBlock(current_layer, filters[-

(i+1)])
# Reconstructed Output
preprocessed_images = Convolution(current_layer,

num_channels)
RETURN preprocessed_images

# Refine the preprocessed images using Attention Residual
U-Net model

FUNCTION AttentionResidualUNet(input):
# Encoder Path
encoder_outputs = []
skip_connections = []
current_layer = input
FOR i IN range(num_encoder_blocks):
current_layer, skip = EncoderBlock(current_layer, fil-

ters[i])
encoder_outputs.append(current_layer)
skip_connections.append(skip)
# Decoder Path
FOR i IN range(num_decoder_blocks):

current_layer = DecoderBlock(current_layer, skip_
connections[-(i+1)], filters[-(i+1)])

# Attention Mechanism
attention_map = AttentionBlock(encoder_outputs[-1],

current_layer)
attended_features = ApplyAttention(attention_map,

current_layer)
# Residual Connections
residual_connections = []
FOR i IN range(num_residual_blocks):

current_layer = ResidualBlock(current_layer,
filters[-(i+1)])
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residual_connections.append(current_layer)
# Final Prediction
output = FinalPrediction(residual_connections[-1], fil-

ters[0])
RETURN output

# Main Cascading Autoencoder with Attention Residual
U-Net (CAAR-UNet) model

FUNCTION CAAR_Unet(input):
refined_images = []
# Symmetric Autoencoder preprocessing
preprocessed_images = SymmetricAutoencoder

(patchified_images)
# Attention Residual U-Net refinement
output = AttentionResidualUNet(preprocessed_

images)
refined_images.append(output)
RETURN refined_images

# Unpatchify the refined images to reconstruct the output
images

FUNCTION unpatchify_images(refined_output, origi-
nal_image_size):

output_images = []
FOR refined_image IN refined_images:
output_image = patchify.unpatchify(refined_image,

original_image_size)
output_images.append(output_image)

return output_images
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