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ABSTRACT The early detection of digestive problems is essential for lowering the chance of acquiring
any form of gastrointestinal cancer, including esophageal cancer. Endoscopy is the method that is used the
majority of the time for the purpose of examining and taking photos of this sort of illness. The application
of artificial intelligence is now proving to be very efficient in enhancing the identification of gastrointestinal
polyps and other abnormal features located inside the gastrointestinal system. As a direct consequence of
this development, the use of AI within this sector has seen substantial growth. In the framework of artificial
intelligence, this research investigates how well various types of algorithms perform in terms of polyp and
abnormal feature recognition accuracy, efficiency, and detection. And introduced a model in this work that is
GastroNet. It is developed by doing hyperparameter fine-tuning on YOLOv5 in order to find specific polyps
and abnormal characteristics, particularly esophagitis. In this method, a single neural network is used to do
an analysis on the whole picture before it is disassembled into its component parts and the bounding boxes
and probabilities for each one are calculated independently. The goal of the hyperparameter fine-tuning is
to further enhance the overall optimization of the model. Two different methods of annotation were used on
a collection of data that consisted of one thousand separate images that needed to be labelled. In addition to
implementing the fine-tuned SSD model, this study used three distinct backbone networks: MobileNet v2,
MobileNet v2 FPN Lite, and Resnet50 v1 FPN. Additionally, this study has used CSPdarknet53 to create the
improved YOLOv4 model. The results of the studies demonstrate that the proposed model, GastroNet was
effective in correctly recognizing polyps and aberrant characteristics, reaching a high mAP (mean Average
Precision), F1 score, and precision with a value of 0.99 and recall with a value of 1.00. The findings of this
research will be a great help to physicians in the proper identification and diagnosis of abnormal features
and gastrointestinal polyps.

INDEX TERMS Artificial intelligence, detection and classification, GastroNet, machine learning, health
care, gastrointestinal malignancies.
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I. INTRODUCTION
In the year 2023, it is expected that there will be 1,958,310
newly diagnosed cases of cancer in the United States,
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in addition to 609,820 deaths that would be caused by cancer.
There will probably be 28.4 million newly diagnosed cases of
cancer in the world in the year 2040 [1]. This is an indication
that should raise concerns about the health and manner of life
of the population. When compared to the total number of new
instances of cancer that are diagnosed each year in the United
States, the mortality toll attributable to esophageal cancer
is disproportionately high. According to the statistical data
that was compiled by the American Cancer Society in 2023,
there will be 21,560 new instances identified in this year, and
16,120 individuals are anticipated to pass away because of the
illness. It is anticipated that 17,030 men and 4,530 women
would get a diagnosis of esophageal cancer in the United
States in the year 2023. The total number of persons affected
is 21,560. In the United States, deaths caused by esophageal
cancer in men are the sixth most prevalent kind of cancer-
related death overall. The risk of acquiring gastrointestinal
malignancies of all types, including esophageal cancer, must
be reduced by the early detection of gastrointestinal ailments.

According to the National Cancer Institute (NCI) [2],
esophageal cancer ranks 17th among malignancies in inci-
dence (new cases) in the United States, but it is the 11th
largest cause of death due to cancer. It has a higher ranking in
other parts of the world, coming in at number six on the list
of major causes of death due to cancer and eighth on the list
of most prevalent cancers.

Endoscopy is the medical expert’s most suggested test for
identifying esophageal cancer in its early stages. The care
of esophageal cancer, particularly in Western nations, now
centers on endoscopic surveillance of Barrett’s esophagus
(BE) [3], [4], [5].

According to study, high resolution endoscopy was the
most accurate method for diagnosing early esophageal
malignancies [6]. This can provide crucial details regarding
the size and distribution of the tumour, which can be used
to assess whether surgery can be utilized to remove it. This
may assist to prevent the development of some esophageal
cancers. Nevertheless, polyps may be eliminated based on
their particular characteristics and the technical proficiency of
the endoscopist. Approximately 27% of po1yps are removed,
according to reports [7].

Artificial intelligence (AI) technologies are currently a
prominent topic of research in clinical medicine, e.g. to detect
covid-19, cancer, skin disease and mental illness as well.
This study focused on notable occurrences in the most recent
monkeypox dataset [8]. Where the prophet model was used,
which performed consistently when compared to the state of
the art. The authors [9] applied K-means algorithms for the
elbow and silhouette. Numerous machine learning techniques
using cluster-based datasets have been used to forecast
diabetes. An unsupervised cluster-based feature grouping
algorithm for early diabetes identification is demonstrated
using of 520 patients.

AI has been applied in gastrointestinal oncology in
many different methods, with significant improvements in
computer-aided detection and diagnosis. The most popular

focus has focused on colorectal cancer, although esophageal
disorders have also been the subject of AI development.
Numerous studies in this field have demonstrated excellent
diagnostic properties, many of them may not have strong
external validity. Mahmud et al. [10] describe the potential
integration of computer vision and augmented reality into
an endoscopic setup and foresee a number of unique
applications. However, there are a very few methods that
can accurately detect polyps and abnormal features like
esophagitis.

Yu et al. [11] improved anchor construction technique
allowed them to produce more boxes for detection and a
better anchor box form. A separate backbone is utilised for
polyp detection to compensate for the considerable time
cost brought on by dense anchor box regression. Where
0.90 represented the F1 score that fell short of expectations.
Hoang et al. [12] the method uses the YOLOv3 deep learning
algorithm, which has a fairly poor precision score of 85%
on average yet can identify polyps. Durak et al. [13] applied
a deep learning-based computer-aided diagnosis system
YOLOv4 for the detection of gastric polyps, and it scored
poorly with a mean average precision of 87.95 percent.

In recent years, the field of medical imaging and
diagnostics has witnessed remarkable advancements in the
application of artificial intelligence (AI) for the early
detection and diagnosis of various diseases. In the context
of gastrointestinal (GI) disorders, including gastrointestinal
polyps and abnormal features, AI has shown great potential
in improving recognition accuracy and overall diagnostic
efficiency. Several studies [15], [50], [51] have investigated
the use of AI algorithms for identifying these anomalies
within the gastrointestinal system. The study [49] com-
pares seven traditional semantic segmentation models with
ResNet50, MobineNetV2, and EfficientNet-B1 encoders.
An integrated evaluation approach is suggested for selecting
the best CNN model, combining subjective and objective
information. The automated polyp-segmentation system is
built using UNet++ with MobineNet v2 encoder. The
integrated assessment technique is neutral and objective, and
the semantic segmentation model has high clinical value
in gastric polyp identification. This work [52] introduces a
masked graph neural network model (MGNN) for real-time
polyp detection in gastroscopic images in Healthcare 4.0.
The model uses graph structure and convolution operations
to extract spatial and semantic information, compensating
for manual labeling. It has been tested on real gastroscope
images.

However, edge blur between surrounding tissues will
continue throughout the polyp detection procedure because
of the inherent characteristics of the colorectal image,
insufficient brightness, noise, contrast, and the technical
limitations of the imaging equipment. Additionally, the
criteria of practical application cannot be met by current
artificial image feature selection methodologies in medical
image processing and analysis. The latest available solution
falls short of expectations. Therefore, the purpose of this
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study is to offer an accurate and trustworthy method of polyp
and abnormal feature detection.

GastroNet is a neural network developed by fine-tuning
the YOLOv5 algorithm to increase the recognition accuracy
and efficiency of polyps and abnormal characteristics,
particularly esophagitis, within the context of artificial
intelligence research. GastroNet introduces a novel strategy
by employing a single neural network to analyze the entire
image before deconstructing it into its component elements.
This differs from conventional image processing methods,
which typically divide an image into regions and process each
separately. By analyzing the image as a whole, GastroNet is
able to capture contextual information and the relationships
between objects, resulting in more precise and reliable
detection.

The procedure of hyperparameter fine-tuning is conducted
to further optimize the model’s performance. The following
are the specific hyperparameters used by GastroNet:

- 100 epochs are used to send the entire training
dataset through the model during training. More epochs
enable the model to learn intricate patterns and enhance its
precision.

- Batch Size: 16 is the number of training examples utilized
per iteration. A larger sample size can speed up the training
process, but it requires additional computational resources.

- Image Size: The input image resolution set to 416× 416.
The selected dimension strikes a balance between detection
precision and computational efficacy.

- Weight Decay: A regularization parameter that is set
to 0.0001 and inhibits overfitting. It controls the model’s
complexity and generalizes well to unseen data.

- Warmup Momentum: A parameter that, when set to 0.9,
regulates the rate of change in the learning rate during initial
training. It serves to accelerate and stabilize the training
process.

The results of the studies demonstrate the accuracy with
which GastroNet recognizes polyps and aberrant characteris-
tics. The high mAP (mean Average Precision) indicates that
GastroNet localizes and classifies objects precisely. The F1
score, precision, and recall values of 0.99 and 1.00 indicate
that the model can detect these features with a high degree of
accuracy and dependability.

The distinguishing characteristics and benefits of Gas-
troNet include:

1. Contextual Analysis: By analyzing the entire image,
GastroNet is able to capture global contextual information,
resulting in a more precise and robust detection of polyps and
aberrant characteristics.

The architecture of GastroNet enables the efficient pro-
cessing of images by eliminating the need to analyze regions
separately. This leads to quicker inference periods and
improved scalability.

3. Hyperparameter Fine-Tuning: The fine-tuning proce-
dure optimizes the performance of the model by selecting
the most suitable hyperparameters. This further increases the
detection’s precision and dependability.

Significant prospective impact of GastroNet on detection
accuracy improvement. In medical diagnostics and examina-
tions, accurate and efficient detection of polyps and abnormal
characteristics, such as esophagitis, is essential. The high
precision, recall, and mAP scores of GastroNet indicate its
potential to aid in the early detection, treatment planning,
and monitoring of gastrointestinal diseases. GastroNet has
the potential to improve patient outcomes, expedite medical
workflows, and enhance the overall quality of gastroenterol-
ogy care by leveraging the power of artificial intelligence.

In terms of artificial intelligence, this research discusses
how well various types of methods perform in terms of
polyp and aberrant feature detection accuracy, efficiency,
and detection. The following are the article’s primary
contributions:
1. Labelling the dataset with two different annotation tools.

One is MakeSense.ai, while the other is VGG Image
Annotator.

2. Applied three models with variations in five distinct
backbones.

3. To accurately detect polyps and abnormal features,
propose a model by performing hyperparameter fine
tuning on YOLOv5 and comparing with four other fine-
tuned models.

4. Examined the performance of the suggested model and
contrasted it with earlier research.

We have briefly addressed related earlier work in the
related works section. Then describe the research technique
we used. In this we discussed the proposed model, the applied
models process, and the dataset characteristics. Then, during
the result analysis phase, the conclusions of our suggested
model were examined. Finally, we evaluated how well our
model performed in comparison to four other applied models
and with earlier models that were still in use.

II. RELATED WORKS
In the last 20 years, advances in artificial intelligence (AI) and
deep learning (DL) have made it possible to quickly sort and
analyze massive data sets. The field of gastroenterology can
learn a lot from colorectal screening procedures. AI and deep
learning algorithms that can automatically find and classify
polyps can be developed using this data. It has been found
that Convoluted Neural Networks (CNNs) are an effective
technique for finding polyps.

Using attentive YOLOv5, Wan et al. [14] suggested a
method for polyp detection from colorectum images. Regres-
sion theory is used to feed the complete image into the
network, and at various locations throughout the image,
the target frame of this position is immediately returned.
Input, backbone network, neck, attention mechanism, and
prediction are its five primary divisions. To extract infor-
mation features from photos, YOLOv5 uses a backbone
network. As the neck, it makes use of PANET for feature
aggregation and SPP to improve the model’s detection of
objects of various scales. The model’s information storage
becomes richer as it contains more parameters. To combat
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the problem of information overload, they added a self-
attention module to the top layer of each step of the feature
extraction backbone network. An attention-based YOLOv4
detector for polyp identification and localization is suggested
by Sasmal et al. [15] in their study. The performance of the
suggested algorithm significantly outperforms that of cutting-
edge methods. The consistency of outcomes within and
between datasets further demonstrates the generalizability
and robustness of the strategy. The localized polyps are
then categorized, which is essential for improving prognosis.
Following SVM, they then suggest a triplet network built on
the Siamese architecture. A deep learning object detection
network is created by Cao et al. [16] by fusing the feature
extraction and YOLOv3 network. It is possible to precisely
identify and locate tiny polyps thanks to the feature map F’s
combination of low-level detailed texture information and
high-level semantic information. The feature extraction and
fusion module in the 36-layer network is made up of the
feature fusion portion of the final three simple convolutional
blocks from the backbone network and the feature pyramid.
They divide Darknet-53 into six convolutional layers for
feature extraction. To find small, medium, and large objects,
they use three distinct scale detectors in the detecting head.

A CNN-based single image super resolution SRCNN
model is suggested by Taş and Yılmaz [17] which is
a collection of filters that enables the mapping of low-
resolution inputs to high-resolution outputs. The Faster
RCNN and SSD networks with Inception-v2 and ResNet-
101 on the Tensor flow platform were then built using
these high-resolution images as inputs. Compared to SSD
Inception-v2 with SRCNN and Faster RCNN Inception-v2
with SRCNN, the Faster RCNN ResNet-101 with SRCNN
performs better. According to Ellahyani et al. [18] they offer
a cutting-edge method of computer-assisted diagnosis for the
detection of polyps. After a first stage of pre-processing, deep
features are extracted to carry out the detection of polyps
using a fusion of two deep neural networks (DNNs) that
were pre-trained on millions of tagged natural photographs
(ImageNet). The Kvasir-seg dataset’s images are used in the
fine-tuning process. Additionally, the initial layer weights of
the networks used in this work have been fixed. By combining
the outputs of the models that had been adjusted until they
were completely coupled, they ultimately performed the
binary classification. Due to the significant prevalence of
small polyps in various data sets, Li et al. [19] established
a low-rank model with the human resources network as the
backbone to perform accurate polyp segmentation.

By integrating the conventional VGGNets and Resnets
models with global average pooling, Wang et al. [20] devel-
oped two separate lightweight network architectures, the
VGGNets gap and Resnets gap, with good classifica-
tion accuracy and fewer parameters. Haj-Manouchehri and
Mohammadi [21] constructed a complete convolutional
network and an effective post-processing technique for polyp
segmentation after first developing a special convolutional
neural network for polyp frame recognition based on the

VGG network. To increase the effectiveness of detection,
Bochkovskiy et al. [22] have presented a number of target
detection algorithms based on the yolo series. An autonomous
polyp recognition method with a decreased false positive
rate was proposed by Guo et al. [23], and it is based on the
yolov3 structure and active learning. The Yolov3 network
was fused by Cao et al. [16] using a feature extraction and
fusing module they created. Because it can combine the
semantic information of a high-level feature map with a low-
level feature map, this method surpasses earlier ones in the
detection of small polyps. Yolov4-based real-time automatic
polyp recognition was proposed by Pacal and Karaboga [24]
in their study. They used the transformer block, mish
activation function, Diou loss function, and CSPNet network
throughout the entire architecture. In terms of accuracy and
effectiveness, this approach performs better than prior ones.
Taş and Yılmaz [17] proposed super-resolution convolutional
neural network-based polyp identification pre-processing for
colonoscopy pictures for the preparation stage of polyp
detection in colonoscopy images. Polyps can be found with
this pre-processing as image resolution increases. Transfer
learning is advised for high-resolution colonoscopy polyp
identification by Tang et al. [25]. The identification of the
polyps was precise but not categorical. A transformer
convolution network was recommended by Shen et al. [26]
for end-to-end polyp identification. Transformer encoder
and convolutional layers were interleaved for feature coding
and recalibration after CNN features were extracted. The
transformer decoder layer discovered objects, whereas the
feedforward network discovered targets.

By combining the enhanced depth residual network,
principal component analysis, and AdaBoost ensemble
learning, Liew et al. [27] proposed an automatic colon polyp
diagnosis method based on endoscopic images. Median
filtering, picture thresholding, contrast enhancement, and
normalization were used to train the classification model to
eliminate visual interferences.

This study [45], evaluated deep learning’s potential,
constraints, and existing use in thyroid cancer imaging.
They discussed about the most recent developments in
deep learning-based thyroid cancer diagnosis as well as the
numerous difficulties and practical barriers that might prevent
it from developing and becoming part of the healthcare
system. In order to construct a flexible and successful brain
tumour segmentation system, this research [46], suggests a
preprocessing technique that only affects a small portion
of the image. This speeds up processing and eliminates
overfitting in Cascade Deep Learning models. Because each
slice has a smaller representation of the brain, a straightfor-
ward and effective Cascade Convolutional Neural Network
(C-ConvNet/C-CNN) is suggested in the second stage. Two
methods are used by this C-CNN model to mine local
and global features. Compared to existing models, a unique
Distance-Wise Attention (DWA) mechanism increases the
accuracy of segmenting brain tumours. The brain and tumour
centre are accounted for by the DWA mechanism of the
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model. A breast cancer recognition system is proposed by
Ranjbarzadeh et al. [47], that uses a variety of encoding
techniques to create new images from input photographs.
Each encoded image has distinct qualities required for
texture detection. Pectoral muscle removal is achieved using
encoded image features. A quick cascade that works well
the pixels of 11 distinct photos are categorized by CNN.
These 11 local patches are fed by 11 encoded pictures.
For entirely connected layers, every gathered characteristic
is concatenated to a vertical vector. The suggested model
utilizes various mammography picture formats to interpret
input material more effectively without a deep CNN model.
Finally, thorough tests on two open datasets demonstrate
the proposed framework’s superior performance to a number
of baselines. This study [48], uses a distinctive four-feature
extraction CNN architecture to segment brain cancers in
MRI images. T1, T2, T1-c, and FLAIR were the four
imaging modalities used. To increase segmentation accuracy,
they applied ResNet-50 weights and biases. To extract
more features from each modality, they established two
fundamental construction components. Two patch sizes are
used to model local and global features.

III. METHODOLOGY
In the data collection block, we had an in-depth discussion
about the various datasets and the sources of the datasets.
The process of data labelling was then discussed in detail.
Our dataset has been divided into two parts: a train set and
a validation set. The train set accounts for 80% of the total,
while the validation set accounts for the remaining 20%.After
that, as is seen in the appliedmodel block, we used our dataset
to test five different models in order to determine which one
performed the best when applied to our dataset. We carried
out customized setup and fine-tuning procedures for each
model on its own. And provided amodel that was based on the
one that had the greatest overall performance as a suggestion.

In addition, we have discussed our proposed model
for recognizing and classifying coloured lifted polyp and
esophagitis characteristics, which performs better than the
alternativeswe considered on the datawe selected. In addition
to that, the scores for accuracy, recall, mAP, and F1 in the
results block were investigated.

This study put the concept to the test using colored lifted
polyps and esophagitis. Esophageal inflammation is brought
on by esophagitis. The first step in treating and preventing
esophageal cancer is detection. Polyps are removed by
locating Dyed Lifted Polyps. Damage to the gastrointestinal
wall is reduced. This dataset is excellent for identifying
and categorizing gastrointestinal anomalies including polyps.
Five models successfully detected the intended problems,
including esophagitis, and polyps. The f1 and mAP settings
were optimum for our model. The changes to the model are
outlined. We provide a model to recognize colored lifted
polyps and esophagitis by tuning the hyperparameters of
YOLOv5.

TABLE 1. Dataset description.

The components of the entire are hyperparameter, input,
backbone, neck, and prediction fine-tuning. Models for
machine learning include variables that must be learnt from
data. Training a model using previously acquired data is
necessary for fitting model parameters. Hyperparameters,
on the other hand, are not taught by a normal training method.
Before training, they are corrected. With the appropriate
hyper-parameters, neural networks learn more quickly and
perform better. These criteria include picture size, batch size,
and epoch. Weight decay and warmup momentum are taken
into account by YOLOv5’s default optimization method,
stochastic gradient descent (SGD). In the end, we compared
our model to some past research that had been done on the
detection and categorization of polyps.

IV. DATASET
In this study, a total of 1000 endoscopic images from Kvasir
v1 are evaluated. Endoscopic image dataset Kvasir v1 [28]
has various classes. For the evaluation of our model, we have
employed two classes: (a) esophagitis and (b) dyed lifted
polyp. The illness known as esophagitis causes inflammation
of the esophagus. In order to start therapy and prevent later
repercussions like esophageal cancer, detection is necessary.
The detection of Dyed Lifted Polyps is required for polyp
removal. It lessens the possibility of gastrointestinal wall
injury to the deeper layers. This dataset is ideal for our
investigation in terms of identifying and categorizing the
aberrant features and polyps that occur in the gastrointestinal
tract. Because wewere able to obtain images of a good quality
from this dataset, which is of the utmost significance for
training a model. Table 1 provides a summary of the dataset’s
description.

We have utilized two different annotator software for
the data labelling. One is MakeSense.ai, while the other
is VGG Image Annotator. Where MakeSense.ai annotates
half of the images and VGG Image Annotator annotates
the other half. The polygon annotation type was employed
in the study’s dataset annotation procedures to mark and
label objects of interest. Both MakeSense.ai and VGG
Image Annotator support the annotation of polygons (VIA),
enabling annotators to more precisely identify and outline the
boundaries of polyps and aberrant structures.

The dataset was manually annotated by expert annotators
using the polygon annotation technique to precisely label
polyps and abnormal features in gastrointestinal images.
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Expert review ensured the accuracy and reliability of
the annotations. While manual annotation offers accuracy,
potential limitations were addressed through quality control
measures. With the polygon annotation technique, annotators
manually outline the desired items in the photos with
polygonal forms. These polygons precisely encompass the
study areas and offer precise and in-depth annotations for
polyps and aberrant traits. When working with intricate
and variable constructions, the polygon annotations make it
possible to capture uneven shapes and curves.

The study’s annotators use the polygon annotation type to
provide more precise and fine-grained annotations, defining
the precise boundaries of polyps and aberrant characteristics.
This method increases the detection accuracy by allowing
the trained models to understand and recognise the specific
shapes and patterns connected to these objects.

The studymade sure that polyps and aberrant features were
consistently and accurately delineated across the annotated
dataset by using the polygon annotation type in both
MakeSense.ai and VGG Image Annotator. This annotation
strategy enhances the dataset’s dependability and utility for
developing and testing machine learning models for polyp
and abnormal feature recognition tasks. We divided the
dataset into a train set and a validation set. For the training
set, 800 images were randomly chosen, while the remaining
200 images were used for validation. The sample examples
of each class with the ground-truths bounding box are shown
in Figure 2 (a) esophagitis samples (b) ground-truths with
bounding boxes. Figure 3 (a) dyed lifted polyp samples (b)
ground-truths with bounding boxes.

Our dataset is now prepared to be utilized for training, so in
the following part, we have implemented a several number of
models.

V. APPLIED MODELS
To accurately identify and categorize targeted polyps and
abnormal features like esophagitis, we employed a total of
five models. Our suggested model had the highest f1 and
mAP values among the four alternate models. Here is a brief
explanation of how those models were fine-tuned.

A. SSD MOBILENET V2
SSD (Single Shot MultiBox Detector) with a unique depth
wise separable convolution and a lean network, Mobilenet
v2 is a one-stage object identification model. Convolutional
neural network design called MobileNetV2 seeks to be
mobile-friendly. It is based on a residual structure with links
between bottleneck levels that is inverted [29]. The parameter
fine-tuning of the model for our dataset is described in
Table 2.

B. SSD MOBILENET V2 FPN-LITE
Model for object identification in SSD Mobilenet V2
using shared box predictor, focal loss, and FPN-lite feature
extractor. A single-scale image of any size can be entered into
the FPN (Feature Pyramid Network), a fully convolutional

TABLE 2. SSD mobilenet v2 model parameter fine tuning description.

TABLE 3. SSD mobilenet v2 FPN-Lite model parameter fine tuning
description.

TABLE 4. SSD Resnet50 v1 FPN model parameter fine tuning description.

TABLE 5. YOLOv4 model parameter fine tuning description.

feature extractor, and it will output feature maps of the
appropriate size at various layers. This process is unaffected
by the underlying convolutional architectures [30]. Table 3
details how the model’s parameters were fine tuned for our
dataset.

C. SSD RESNET50 V1 FPN
A model for object detection is the SSD Resnet50 v1 FPN
model. The SSD (Single ShotMultiBoxDetector) is amethod
of item discovery for each location on a feature map at
different aspect ratios and scales, it divides the output space
of bounding boxes into a number of default boxes. A feature
extractor FPN (Feature Pyramid Network) serves as the
backbone of the 50-layer deep convolutional neural network
known as ResNet-50 v1 FPN [30]. The parameter fine-tuning
of the model for our dataset is described in Table 4.
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FIGURE 1. Illustrates the full process of the proposed GastroNet model, with each phase represented by a
block. Block (A) shows the original Kvasir v1 endoscopic dataset, (B) data labelling with two separate
annotation tools, and (C) data split into train and validation sets. (D) A list of models that have been used
with various feature extractors. (E) Custom configuration and fine tuning those models. (F) Model
selection using the highest f1 and mAP value. (G) Analyse the proposed model’s results and test it on a
random dataset. Using coloured lifted polyps and esophagitis, we tested our theory. Five models, including
ones for polyps and esophagitis, effectively identified the desired issues. For our model, the f1 and mAP
settings were ideal. The model improvements are described in the proposed model section. By adjusting
the YOLOv5 hyperparameters, we proposed a model named GastroNet to identify coloured lifted polyps
and esophagitis.

D. YOLOV4
This well-known object detection backbone employs
DarkNet-53 as its structural support. It uses a cross-stage
hierarchy to combine two portions of a Dense Block feature
map, according to the CSPNet technique [22]. Table 5 details
how the model’s parameters were modified for our dataset.

VI. PROPOSED MODEL
In order to enhance optimization and accurately identify
dyed lifted polyps and esophagitis, we propose a model

in this study that performs hyperparameter fine-tuning on
YOLOv5. These five sections make up the whole: Fine-
tuning of the hyperparameters, input, the backbone, the
neck, and prediction. Figure 4 depicts the suggested model’s
architecture.

A. HYPERPARAMETER FINE TUNING
A machine-learning model is a mathematical construction
with a number of parameters that must be learned from
data. By using previously collected data to train a model,
we can fit the model’s parameters. On the other hand,
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FIGURE 2. (a) Shows some esophagitis samples, (b) Shows the
corresponding esophagitis ground-truths with bounding boxes that are
denoted by the pink color rectangle.

FIGURE 3. (a) Shows some dyed lifted polyp samples, (b) Shows the
corresponding dyed lifted polyp ground-truths with bounding boxes that
are denoted by the red color rectangle.

utilizing a typical training strategy does not immediately
teach hyperparameters. They are normally corrected prior to
the training process beginning. Neural networks can learn
more quickly and perform better with the right selection
of hyper-parameters during model training [31]. The epoch,
batch size, and image size of the model are described by
these parameters, among others. As a reason, YOLOv5
uses stochastic gradient descent (SGD) as the optimization
function by default, weight decay, and warmup momentum
additionally taken into account. The hyper parameter fine-
tuning process applied to the YOLOv5 model involves
optimizing the specific parameters of themodel to improve its
performance. This process aims to find the best combination
of hyper parameters that leads to higher accuracy, efficiency,
and detection capabilities. The following are some of the
changes we made to the hyperparameters.

B. EPOCHS
The number of epochs since the start of the machine-
learning algorithm’s run is used to indicate how many times
the machine-learning algorithm has traversed the training
dataset. In other words, an epoch is a kind of hyperparameter
that specifies the number of iterations of the machine learning
algorithm that have been carried out throughout the whole
of the training dataset [32]. Too few epochs may result
in underfitting, while too many may lead to overfitting.
Following a series of updates, including Epochs 50, 90, 100,

and 120 respectively. GastroNet’s fine-tuning set 100 epochs.
The model can learn complex patterns and features by
adding epochs. However, overfitting occurs when the model
memorizes the training data and fails to generalize to new
data.

C. BATCH SIZE
The amount of training samples that are employed during the
course of one iteration before the internal model parameters
are altered is referred to as the ‘‘batch size.’’ In other words,
it refers to the number of samples that are analysed before the
model itself is changed. The number of samples included in a
batch has to be more than or equal to one, but it can’t be equal
to the number of samples found in the training dataset [31].
Smaller batch sizes may increase training noise and improve
generalization, while larger ones can speed up training but
require more memory.We have conducted tests using batches
of 8, 16, 32, and 64 in order to develop our model. Lastly,
GastroNet fine-tuned with 16 batches. Batch size affects
memory and computational efficiency. Processing more data
in parallel speeds up training, but also requires more memory
to record gradients and activations. Smaller batch sizes may
increase training noise and improve generalization.

D. IMAGE SIZE
When the photos were initially gathered, their dimensions
varied from 720 × 576 to 1920 × 1072. The dimensions
of the images used during training can significantly impact
the model’s performance. We have revised its calculations
to determine the size that works best with each distinct
model. GastroNet used 416 × 416 images. Image size
influences model correctness and computational efficiency.
Smaller image sizes can speed inference but reduce detection
accuracy, especially for little objects. Larger image sizes are
more detailed but more computationally expensive. The size
should balance accuracy and efficiency for the application

E. WEIGHT DECAY
Weight decay is a regularization method used in deep
learning. It operates by adding a penalty term to the cost
function of a neural network, which causes the weights to
decrease during backpropagation. As a result, there is a lower
chance that the network will over fit the training set and
experience the exploding gradient problem [33]. It helps
the model generalize to unseen cases by preventing it from
becoming overly sensitive to the training data. In our model,
the weight decay is 0.0001, which we gradually change to
0.0001-0.0005. However, Weight decay adds a penalty term
to the loss function to prevent overfitting. GastroNet fine-
tuned with 0.0001 weight decay. Weight decay simplifies and
generalizes the model. It helps the model generalize to unseen
cases by preventing it from becoming excessively sensitive to
the training data.

F. WARMUP MOMENTUM
Amethod for accelerating gradient descent known asmomen-
tum builds up a velocity vector along persistent reductions in
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FIGURE 4. Architecture of proposed model where CSPDarknet used as backbone, PANet as neck and yolo layers as head.

the objective across iterations [34]. Momentum is added to
the gradient descent optimization process. By lowering the
number of function evaluations necessary to find the best
solution or by enhancing the efficiency of the optimization
algorithm, it aims to hasten the optimization process.
To lessen the early training’s priority effect. It gradually
increases the learning rate from a lower beginning value to
the desired value, which stabilizes and accelerates training,
preventing the early training priority effect. GastroNet used
0.9 warmup momentum. Warmup momentum stabilizes and

accelerates training by gradually increasing the learning rate
from a lower beginning value to the desired value. It helps the
model adapt to training data and optimize faster.

The summarized description of hyperparameter
fine-tuning is shown in Table 6.

G. INPUT
It is simple to over fit the network because our training set
only contains a small number of photos. In order to prevent
this, we typically need to artificially boost certain image data
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TABLE 6. Proposed model hyperparameter fine tuning description.

FIGURE 5. Mosaic data enhancement.

by image processing, which raises the total number of photos
accessible and lowers the likelihood of overfitting. In order
to increase the amount of training data, YOLOv5 leverages
mosaic data improvement at the input. Four photographs are
chosen at random for the mosaic, which then combines the
four images with various semantic information, such as size
modification, scaling, rotation, and zooming. The photos are
eventually integrated with the frame to create a new image
that is positioned in the four directions. Additionally, the
frame associated with the new image is extracted. The label
frame in each of the four shots is occluded or hidden by a
number of other images throughout the splicing process. The
image box needs to be eliminated if it touches the edges of
the two photographs [26]. YOLOv5 builds a prediction frame
based on the original anchor frame, compares it to the ground
truth of the real frame, calculates the difference between the
two, and then updates it in reverse to determine the best
anchor set among multiple training sets. Figure 5 displays the
mosaic data enhancement.

The enhanced image data are transmitted to the backbone
segment. This is the output of the section based on the input,
which is defined further down.

H. BACKBONE
Gradient values are practically non-existent in other cir-
cumstances, a phenomenon known as gradient fading.
Focus layer and CSPDarknet are used by YOLOv5. The
benefit of adopting a Focus layer is lower CUDA memory
requirements, a smaller layer, and enhanced forward and
back propagation [35].This backbone eliminates redundant
gradient information seen in large backbones and incorpo-
rates gradient change into feature maps, which speeds up
inference, improves accuracy, and shrinks the size of the
model by lowering the parameter requirements [36]. CSPNet

duplicates the feature map from the base layer and transmits
it to the next level using a dense block. Using CSPNet, the F
function is immediately optimized as follows.

y = M
([
x ′

0,T
(
F

(
x ′′

0
))])

(1)

where x0 is divided in two along the channel and can be
written as [x′

0, x
′′

0]. The transition functions T and M are
utilized to combine the two segmented components once
the gradient flows have been truncated [37]. It aims to
solve the problem of repeating network optimization gradient
information in the backbone network. CSPNet’s architecture
reduces the number of model parameters and calculations by
using a single-point-sharperference model.

I. NECK
In YOLOv5, SPPF (spatial pyramid pooling - fast) is utilized
to obtain results that are mathematically identical to those of
SPP, but with less FLOPS and faster rates [38]. It combines
elements from every level, reducing the distance between the
lowest and highest levels. Adaptive feature pooling is used to
reconstruct the damaged information channel between each
candidate region and all feature levels [39], which can also
identify the various sizes of the targeted polyp and anomalous
feature scale, in order to avoid arbitrary allocation. Figure 6
depicts an illustration of the PANet.

After obtaining the size of the targeted polyp, the following
is an explanation of how the prediction of the bounding box
and the prediction of the polyp class were carried out in order
to produce accurate results.

J. PREDICTION
Similar to Yolov3 and Yolov4, YOLOv5 has the same head.

1) BOUNDING BOX PREDICTION
For each bounding box, the network predicts four coordi-
nates: tx, ty, tw, and th. If the cell is offset from the top left
corner of the image by (cx, cy) and the bounding box prior
has width and height pw, ph, then the predictions correspond
to:

bx = σ (tx) + cx (2)

by = σ (ty) + cy (3)

bw = pwet w (4)

bh = pheth (5)

During training, it employs sum of squared error loss.
The gradient is equal to the ground truth-value minus the
prediction: t ′

∗- t∗ if the ground truth for a coordinate
prediction is t ′

∗. The ground truth-value can be easily
determined by inverting the aforementioned formulae. This
technique forecasts an object class score for each bounding
box using logistic regression. This value should be 1 if the
bounding box prior overlaps a ground truth object more than
any other bounding box prior. If the prediction overlaps a
ground truth object by more than a threshold yet the bounding
box prior is not the best, the prediction is dismissed. Each
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FIGURE 6. Illustration of PANet (Path aggregation network) in YOLOv5, showcasing the utilization of SPPF (spatial
pyramid pooling - fast) and adaptive feature pooling. PANet combines features from multiple levels, reducing distance
and reconstructing information channels to accurately identify various sizes of targeted polyps and anomalous features
while avoiding arbitrary allocation.

FIGURE 7. Bounding box and class prediction.

ground truth object is given a single bounding box before
using a threshold of 0.5 [40].

2) CLASS PREDICTION
Each box forecasts the classes that the bounding box might
include using multi-label classification. Since a softmax
is not necessary for high performance, it depends on
several logistic classifiers instead. During training, binary
cross-entropy loss is used to generate the class predic-
tions [40]. Figure 7 displays the bounding box and class
prediction.

In the following section, we will discuss the outcome in
further detail, taking into consideration our prognosis and
classification of the polyp and the abnormal characteristic.

VII. RESULTS ANALYSIS
In image classification and detection tasks, performance
evaluation metrics such as F1 score, precision, recall, and
mean Average Precision (mAP) are frequently used to judge
the performance of the models. These metrics help evaluate
the precision of predictions and provide insight into numerous
aspects of model performance.These metrics are essential for
assessing the performance of image classification and detec-
tion models because they provide a quantitative evaluation of
precision, dependability, and overall efficacy in identifying
and localising objects within images. By analysing these
indicators, this study compares multiple models, modifies
parameters, and makes prudent judgements to improve
system performance. Specific details on the evaluation
metrics used and their calculation methodologies are as
follows:

Precision =
TruePositives

(TruePositives+ FalsePositives;
(6)

Recall =

√
TruePositives

(TruePositives+ FalseNegatives
(7)

F1Score =
(2 × Precision× Recall)
(Precision+ Recall)

(8)

mAP =

√
1

Numher of Classes

×

√∑k=n

k=1
Average Precision (9)

A. PRECISION
A model’s precision is a measure of how frequently it
makes accurate predictions. It demonstrates the precision
of the model’s optimistic forecasts [41]. When the batch
size was 16 and the epochs were 100. We obtained the
highest precision value for our dataset. We tried other batch
sizes and epoch values, but the batch size 16 and epochs
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FIGURE 8. Per epoch precision value graph of proposed model.

FIGURE 9. Per epoch recall value graph of proposed model.

100 combination worked best. Figure 8 displays the per-
epoch precision value of our proposed models.

B. RECALL
The number of relevant elements discovered is assessed by
recall. Therefore it separates true positives by the number of
relevant items [41]. When our batch size was 16 with epochs
100.We achieved the best recall value for our dataset. Despite
experimenting with numerous batch sizes and epoch values,
the batch size of 16 and epochs 100 combination proved to be
the most efficient. Per epochs, recall value of our proposed
model is displayed in Figure 9.

C. mAP
Models for object detection are evaluated using the mean
average precision (mAP). By contrasting the detected box
with the ground-truth bounding box, the mAP determines a
score. The accuracy of the model’s detection increases with
score [42]. As previously mentioned, the batch size 16 and
epochs 100 combination turned out to be the most effective
for mAP value despite experiments with various batch sizes

FIGURE 10. Per epoch mAP@0.5 graph of proposed model.

FIGURE 11. Per epoch F1 score graph of proposed model.

and epoch values. Figure 10 displays the per-epoch mAP
value of our suggested model.

D. F1 SCORE
The F1 score is the harmonic mean of recall and preci-
sion. It is a metric for statistically assessing performance.
In other words, a performance based on precision and
recall is averaged to get an F1-score [41]. The F1 score,
as is usually known, is the harmonic mean of recall and
precision. When we reached our highest levels of precision
and recall, we automatically received the best F1 score.
Figure 11 displays the per-epoch F1 score for our suggested
model.

Figure 12 illustrates how our classification loss for the
validation dataset was significantly lower than for the train
dataset. How accurately the algorithm predicts an object’s
class is shown by the classification loss. While validation
objectness loss was far lower than validation bounding box
loss. This proves that the bounding box was accurate and
comprehensive. The precision and recall value still have
a curved shape before 30 epochs. However, it performs
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FIGURE 12. (a) Shows the comparison between train and validation classification loss. (b) Shows the comparison between validation objectness loss
and bounding box loss. (c) Shows the comparison between precision and recall. (d) Shows the comparison between validation mAP@0.5 and
mAP@0.5:0.95.

quite well after 50 epochs. Furthermore, mAP@0.5:0.95 was
unsteady whereas mAP@0.5 had a smooth value of 0.99.

GastroNet is a novel model introduced in the paper for
the purpose of polyp and abnormal feature recognition in
gastroenterological imaging. It stands out due to several
advancements and improvements compared to previous
research. One notable aspect is the utilization of the CSP-
Darknet backbone, which incorporates a cross-stage partial
connection technique. This unique architecture enhances
feature extraction capabilities, leading to improved accuracy
in detecting polyps and abnormal features. The study also
pays attention to the dataset annotation process by involving
two different annotation software tools, MakeSense.ai and
VGG Image Annotator, along with multiple annotators. This
approach ensures diversity and consistency in the labeling
process, minimizing biases and enhancing the reliability of
the annotated data.

A comprehensive performance comparison is presented,
demonstrating the superior performance of GastroNet com-
pared to existing models. It outperforms models such as
YOLOv4, SSD, and Faster RCNN in terms of precision,
recall, F1 score, and mean Average Precision (mAP).
This highlights the significant advancements achieved by
GastroNet in accurately detecting and recognizing polyps and
abnormal features. Furthermore, GastroNet is specifically
designed and optimized for gastroenterological imaging
datasets, with a particular focus on esophagitis. This
targeted approach improves the model’s performance by
tailoring it to the specific characteristics and challenges
of gastroenterological images. In summary, GastroNet’s
novelty and contribution lie in its adoption of the CSP-
Darknet backbone, meticulous dataset annotation techniques,
and superior performance compared to existing models.
These advancements and improvements make GastroNet a
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FIGURE 13. (a) Test input image of the Proposed Model; (b) Test output
image of the proposed model.

significant step forward in the field of polyp detection and
abnormal feature recognition in gastroenterological imaging.

VIII. TESTING MODEL
On some arbitrary data, we tried our proposed model. Our
model performed remarkably well, with a high prediction
score, in the detection and categorization of dyed lifted polyps
and esophagitis. Figure 13 (a) and (b) demonstrate the tested
input and output outcomes of the suggested model.

IX. DISCUSSION
The proposed GastroNet model demonstrates superior perfor-
mance in gastrointestinal polyp and abnormal feature recog-
nition compared to various backbone networks, including
MobileNet v2, MobileNet v2 FPN Lite, Resnet50 v1 FPN,
and the fine-tuned SSD model.

The selection of these specific backbone networks are
attributed to several factors. MobileNet v2 is known for its
efficiency in terms of computational resources, making it
suitable for real-time applications with limited processing
power. MobileNet v2 FPN Lite further enhances feature
representation by introducing Feature Pyramid Networks
(FPN), enabling multi-scale feature extraction and improving
detection performance. Resnet50 v1 FPN, based on the
ResNet architecture, is renowned for its depth and capability
to capture complex features. By incorporating FPN, Resnet50
v1 enhances the representation of features at different
scales, enabling the model to detect objects of varying sizes
effectively. The fine-tuned SSD model likely serves as a
baseline comparison in this study. SSD (Single ShotMultibox
Detector) is a popular object detection model known for its
speed and efficiency. Fine-tuning the SSD model allows to
compare the performance of GastroNet against an existing
well-established model.

The selection of these diverse backbone networks allows
for a comprehensive evaluation of GastroNet’s performance
against different architectures, ensuring that the proposed
model is versatile and adaptable to various medical imaging
scenarios. Therefore, the choice of MobileNet v2, MobileNet
v2 FPN Lite, Resnet50 v1 FPN, and fine-tuned SSD
model as backbone networks for GastroNet is driven by
considerations of computational efficiency, multi-scale fea-
ture extraction, depth, and established baseline comparison.
These selections contribute to GastroNet’s state-of-the-art
performance in gastrointestinal abnormality recognition,
making it a promising tool for early detection and diagnosis in
gastroenterology.

On the basis of the results of our experiment (Table 7 and
Figure 14), our hypothetical scenario is as follows. When
compared to the other four possible iterations, our model
achieves the best results overall. Precision values of 0.92,
0.92, 0.93, and 0.95 found in the YOLOv4 model, SSD
Mobilenet v2, SSD Mobilenet v2 FPN-Lite, SSD ResNet50
v1 FPN, and SSD Mobilenet v2 FPN-Lite, respectively. The
accuracy of the model that we suggested was, on the other
hand, 0.99. SSDmakes use of anchor prioritization boxes and
applies the IoUmethodology to achieve a score that is greater
than 0.5. They are pre-calculated boxes of a given size, quite
similar to the ground-truth boxes used in the beginning. Our
model, on the other hand, takes advantage of auto-learning
bounding boxes, which helps to improve the accuracy of the
algorithm as a whole.

In our particular instance, the model numbers SSD
Mobilenet v2, SSD Mobilenet v2 FPN-Lite, SSD ResNet50
v1 FPN, and YOLOv4 have been assigned the recall
numbers 0.63, 0.64, 0.66, and 0.92 respectively. The recall
value for the model that we suggested was 1. Despite
the fact, that YOLOv4 and our model share a number of
architectural similarities. The key differentiating factor that
contributes to our model’s superiority is the incorporation of
a focus layer, which boosts the overall performance of our
representation.
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FIGURE 14. Comparison graph of all models where precision is shown in (a), Recall is shown in (b), mAP is shown in (c) and F1 is shown in (d).
Additionally GastroNet model is denoted by blue colour line, Yolov4 is denoted by megenta colour, SSD Resnet50v1 FPN is denoted by sky colour,
SSD MobileNet v2 FPN lite is denoted by green colour and SSD MobileNet v2 is denoted by purple colour.

TABLE 7. Summarized description of applied models performance comparison.

After making a number of changes to the batch size,
the epochs, and the training step, the mAP value settled
in at the following. The mAP for the SSD Mobilenet v2,
SSD Mobilenet v2 FPN-Lite, SSD ResNet50 v1 FPN, and
YOLOv4 models are respectively 0.92, 0.92, 0.93, and 0.95.
However, the value of the mAP for the model that we
suggested was 0.99.

It has come to our attention that YOLOv4 possesses
the highest learning rate. Our model, on the other hand,
was able to acquire the best possible F1 score because
to its remarkable precision and recall value. We get F1
scores of 0.75 for the SSD Mobilenet v2 model, 0.76 for
the SSD Mobilenet v2 FPN-Lite model, 0.77 for the SSD

ResNet50 v1 FPN model, and 0.94 for the YOLOv4 model.
In contrast, the model that we thought would work best
had an F1 score of 0.99. CSPDarknet53 is an enhanced
version of the Darknet-53 backbone that incorporates the
Cross Stage Partial (CSP)module. The CSPmodule improves
information flow and feature representation within the
network, enabling better detection performance. It enhances
the accuracy and recall of the YOLOv4 model, contribut-
ing to its superior precision, recall, mAP, and F1 Score
compared to other models in the Table 7. The improved
YOLOv4 model introduces additional optimizations, such as
PANet, Mish activation, and CIoU loss, to enhance object
detection performance. These optimizations improve the
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TABLE 8. Performance comparison description with existing work.

accuracy of bounding box regression and overall detection
capabilities.

In the proposed GastroNet model, the combination of
CSPDarknet as the backbone and the improved YOLOv4
optimizations contributes to its exceptional performance.
GastroNet achieves a precision, mAP, F1 score of 0.99 and
recall of 1, indicating its ability to accurately detect polyps
and abnormal features. The use of CSPDarknet enhances
feature representation and information flow, while the
improved YOLOv4 optimizations enhance object detection
performance, resulting in a highly accurate and reliablemodel
for detecting and recognizing polyps and abnormal features.
Overall, the contributions of CSPDarknet53 and the improved
YOLOv4 model significantly affect the performance of the
proposed GastroNet model, enabling it to achieve state-of-
the-art accuracy and precision in polyp and abnormal feature
recognition.

X. PERFORMANCE COMPARISON WITH EXISTING WORK
The results obtained from the proposed GastroNet model
showcase its superior performance compared to existing
methods or benchmarks, as outlined in Table 8. GastroNet
outperforms other models in terms of precision, recall, F1
score, and mAP, demonstrating its effectiveness in polyp
detection and recognition.

Wan et al. [14] utilized the YOLOv5-attention mechanism
on the Kvasir-SEG and WCY datasets. While they achieved
good precision and recall values of 0.92 and 0.90 for Kvasir-
SEG, and 0.91 and 0.92 for WCY, respectively, GastroNet
surpasses these results with precision, recall, and F1 score of
0.99, 1, and 0.99 for the Kvasir v1 dataset.

Sasmal et al. [15] applied the YOLOv4-attention mech-
anism on the Kvsir-SEG and SUN Colonoscopy datasets,

achieving high precision 0.93 and recall 1 values, resulting in
an impressive F1 score of 0.97. GastroNet’s precision, recall,
and F1 score of 0.99, 1, and 0.99, respectively, demonstrate
its superiority over their results.

Cao et al. [16] employedYOLOv3with a feature extraction
and fusion module on the CVC-CLINIC&ETIS-LARIB
dataset, achieving precision, recall, and F1 score of 0.93,
0.88, and 0.90. GastroNet’s significantly higher precision,
recall, and F1 score of 0.99, 1, and 0.99 highlight its improved
performance.

Taş and Yılmaz [17] utilized Faster RCNN-ResNet-101
with SRCNN-based pre-processing on the ETISLARIB
dataset, achieving precision, recall, and F1 score of 0.71,
0.84, and 0.77, respectively. GastroNet’s precision, recall, and
F1 score of 0.99, 1, and 0.99 indicate its superiority in polyp
detection.

Liu et al. [43] employed SSD-ResNet50, SSD-InceptionV3,
and SSD-VGG16 on the CVC-CLINIC&ETIS-LARIB
dataset, achieving various precision, recall, and F1 scores.
GastroNet outperforms all three models with its precision,
recall, and F1 score of 0.99, 1, and 0.99.

Gao et al. [44] proposed YOLOv5x-CG for lesion
diagnosis, attaining a mAP score of 0.92. In contrast,
GastroNet achieves a significantly higher mAP score of 0.99,
indicating its superior performance in accurately detecting
and localizing abnormalities.

Overall, the comprehensive analysis and comparison
highlight the superiority of the GastroNet model. It achieves
exceptional precision, recall, F1 score, and mAP, surpassing
existing methods and benchmarks. GastroNet’s ability to
accurately detect and recognize polyps and abnormal features
in medical imaging demonstrates its potential for improving
diagnostic accuracy and assisting medical professionals in
gastroenterological applications.
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FIGURE 15. The illustration of proposed ‘‘GastroNet Diagnostic’’
application.

XI. PROPOSED APPLICATION
This study proposed the ‘‘GastroNet Diagnostic’’ applica-
tion, a cloud-based platform that utilizes the GastroNet
model for image classification and diagnosis in the field
of gastroenterology. GastroNet Diagnostic simplifies the
process of image analysis, supports accurate diagnosis,
and facilitates efficient collaboration between healthcare
providers. Figure 15 shows the illustration of proposed
‘‘GastroNet Diagnostic’’ application.

Key features of the GastroNet Diagnostic application:
• Image Upload and Cloud Storage: Healthcare providers
can securely upload patient images, such as endoscopic
or radiological images, to the cloud storage within the
application. These images are stored in a centralized
and secure environment, ensuring accessibility and data
integrity.

• Integration with GastroNet Model: GastroNet Diagnos-
tic seamlessly integrates with the powerful GastroNet
model to analyze the uploaded images. The GastroNet
model, specifically trained for gastroenterology, lever-
ages deep learning techniques to classify and identify
specific gastrointestinal conditions or abnormalities
present in the images.

• Image Classification andDiagnostic Support: GastroNet
Diagnostic processes the uploaded images using the
GastroNet model. The model analyzes the images and
provides diagnostic support, generating classification
results that indicate the presence of abnormalities,
specific conditions, or potential areas of concern within
the gastrointestinal system.

• Result Communication and Collaboration: The diag-
nostic results produced by the GastroNet model are
promptly communicated to healthcare providers via
the application. The platform facilitates seamless col-

laboration by enabling discussions, annotations, and
comments on the results, allowing for interdisciplinary
consultations and knowledge-sharing among medical
professionals.

• Result Storage and Retrieval: GastroNet Diagnostic
securely stores the diagnostic results in the cloud,
associating them with the patient’s profile or medical
record. This ensures that the results are easily accessible
for future reference, follow-up visits, or consultations,
providing a comprehensive history of the patient’s
imaging studies and outcomes.

• Privacy and Security: The application prioritizes patient
data privacy and security. It adheres to stringent data
protection standards, including encryption and access
controls, to safeguard patient information throughout the
image uploading, analysis, and storage processes.

• Integration with Electronic Health Records (EHR): Gas-
troNet Diagnostic seamlessly integrates with existing
EHR systems, allowing healthcare providers to access
patient data, medical history, and imaging results within
a unified interface. This integration streamlines the
workflow and ensures the seamless flow of information
across different healthcare IT systems.

GastroNet Diagnostic aims to streamline and enhance
the accuracy of image-based diagnostics in gastroenterology
using the powerful GastroNet model. By leveraging cloud-
based infrastructure and enabling collaboration, the appli-
cation empowers healthcare professionals with an advanced
tool for efficient and reliable image analysis, contributing
to improved patient outcomes and collaborative decision-
making with affordable and cost-effective image analysis for
Gastroenterology.

XII. CONCLUSION
This study concludes by emphasizing the significant con-
tribution of artificial intelligence, specifically the Gas-
troNet model, to the enhancement of early identification
and diagnosis of digestive issues, such as gastrointestinal
polyps and abnormal characteristics such as esophagitis.
Utilizing cutting-edge algorithms and hyperparameter fine-
tuning techniques, the GastroNet model demonstrates supe-
rior precision, efficiency, and detection capabilities. The
study employs numerous backbone networks, including the
enhanced YOLOv4 model with CSPdarknet53, MobileNet
v2, MobileNet v2 FPN Lite, Resnet50 v1, and MobileNet
v2 FPN. The results demonstrate the effectiveness of the
GastroNet model, with mean Average Precision (mAP),
F1 score, precision, and recall values of 0.99 and 1.00,
respectively. As a result of these discoveries, physicians will
be better able to recognize and diagnose gastrointestinal
disorders and polyps. It effectively reduces false positives and
negatives, leading to more accurate treatment plans and better
patient outcomes. GastroNet enables timely interventions
and tailored management plans, potentially offering less
invasive treatment options and better prognoses, especially
for gastrointestinal cancers. The model’s accurate detection
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capabilities streamline the diagnostic process, saving time
and resources for physicians to focus on patient care and
complex decisions. Utilizing AI in this sector has the
potential to enhance early detection efforts, reduce the risk
of gastrointestinal cancers, especially esophageal cancer, and
improve patient outcomes. This paper presents a novel and
beneficial paradigm for clinical endoscopists. However, there
is a severe lack of high-quality endoscopic image databases
for the identification and classification of gastrointestinal
polyps and anomalous features. Because they are more
cost-effective, endoscopic images of average quality are
more prevalent than those of superior quality. Optimization
of a model is only possible with a high-quality dataset.
GastroNet has some limitations and potential challenges
that need to be addressed. These include scalability issues
with large-scale datasets, the interpretability of the model’s
decisions, the generalizability to different populations and
imaging modalities, data availability and quality, and ethical
considerations related to patient privacy and data security.
Overcoming these challenges requires ongoing research,
collaboration, and validation efforts to ensure the reliability
and applicability of GastroNet in clinical practice. However,
we will continue to examine current issues in the future.
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