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ABSTRACT In recent years the technological limits inherently present in the classical Turing paradigm
of computation have sparked the development of innovative solutions based on quantum devices or
analog-digital mixed approaches often based on the time evolution of differential equations. Such promising
machinery require accurate analysis to understand if and how theywill be able to perform better than classical
approaches in solving hard optimization problems. Here we challenge two machines representative of the
quantum annealing and differential equations approaches, namely D-Wave and Memcomputing by devising
a benchmark of three well known hard optimization problems from the realms of number theory, optimal
transport and optimal scheduling. We introduce the Mean First Solution Time, a novel metric for accurately
comparing performances, and take as baseline the classical Gurobi solver. We show that performances of
both solvers are heavily dependent on the selected set of internal parameters. Results shed lights on the
advantages and current limits of each paradigm and give a perspective on possible future developments.

INDEX TERMS Factorization problem, in-memory computation, non-linear dynamical systems, non-turing
computation, NP optimization problems, optimal transport, quantum annealing.

I. INTRODUCTION
The Von Neumann architecture [1], and hence the Turing
paradigm [2], has dominated computing since the time of
Charles Babbage [3]. Moore’s law [4] predicts an exponen-
tially increasing number of transistors which can be translated
to a sustained growth of the computing power. In recent years,
this increase has come from specialized and highly paral-
lel accelerators, chiefly graphics processing units (GPUs).
The quest for ever-increasing performance now requires
new approaches with more efficient energetic profiles and a
reduced environmental impact. Alternative architectures need
to be investigated in depth towards a more concrete green-
computing implementation. Notwithstanding the traditional
Turing machines may still be faster, technological signs of
progress may quickly change this situation, providing the
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community with faster architectures that are energetically
more sustainable.

Non traditional hardware/software platforms are today
available, an example being quantum-gate-based computing
assets [5]. These machines introduced by Deutsch [6], are
the quantum generalizations of the class of Turing machines.
As emerged from the study by Bernstein and Vazirani [7],
which introduced the concept of quantum complexity classes,
quantum computers can solve certain problems exponentially
faster than classical computers. Quantum-gate-based com-
puters are indeed universal computers; Adriano Barenco et al.
[8] describe the quantum counterpart of the classical logical
gates, called quantum gates, and provide a universal quan-
tum gate set. These quantum gates are implemented through
photonic qumodes [9], trapped ions qubits [10], [11], and
superconducting qubits. Currently many important players
as Google [12] and IBM [13] among others [14] are ded-
icating significant resources to the implementation of such
computing systems. It is debated when the quantum gold
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rush [15] will generate practical utility [16], [17], [18], [19].
In [16] the Google team claimed to have reached Quantum
Supremacy with their Sycamore QPU, while in [17] the IBM
team contended such claim. Later, [18] and [19] showed
how a modern supercomputer can match the aforementioned
‘‘quantum supremacy’’ performances.

Besides this quantum, Turing-gate-based machinery, there
are other non-classic alternatives such as the Quantum
Annealer (D-Wave Systems [20]). There are also differ-
ent ways to use classical phenomena to perform calcula-
tions, e.g. the MemcomputingMachine (Memcomputing Inc.
[21]), the Simulated Bifurcation Machine (Toshiba [22]),
and approaches such as the Ising machine [23] and p-bits
[24]. To fairly evaluate these different computing paradigms,
proper benchmarks must be defined to assess the potential
of these architectures to solve difficult tasks faster than con-
ventional computers. For instance in [25] benchmarks are
defined for assessing the speed-up against classical solvers;
in [26] and [27] methods are described to evaluate quantum
computing performances.

Here, we critically assess two commercially widely avail-
able and paradigmatic non-Turing approaches and compare
them to a classical solver (see Figure 1). D-Wave and Mem-
computing can solve equivalent problems and they represent
a quantum (not gate-based) and classical (not quantum)
approach, respectively. D-Wave solves Quadratic Uncon-
strained Binary Optimization problems (QUBO) and is an
adiabatic quantum annealer (AQC). Memcomputing solves
Integer Linear Programming problems (ILP) by mapping
them to a physical circuit, with the physical circuit evolution
emulated via a software. D-Wave is the most mature repre-
sentative of the quantum annealing strategy. Memcomputing
represents an approach based on differential equations with
digital read-out (similar in spirit to the bifurcation machine
[22]). The two approaches can be directly compared with an
established baseline, namely the Gurobi suite of optimization
methods [28].
We benchmark these approaches on three difficult, well-

known, and combinatorial problems of broad interest that can
be expressed in ILP (Memcomputing) and QUBO (D-Wave)
format: the Semiprime Factorization problem (FP), the Hard-
Assignment Gromov-Wasserstein problem (GWP), and the
Capacitated Helicopter Routing Problem (CHRP). The secu-
rity of large part of the public key cryptography (RSA [29]) is
based upon the assumed intractability of FP. GWP is a partic-
ularly hard example of the optimal transport theory [30], [31]
and is an instance of the well-known Quadratic Assignment
Problem [32], a fundamental combinatorial problem. CHRP
is an industrial optimization problem concerning the route
scheduling of helicopters.

For an accurate comparison, we introduce the concept of
Mean First Solution Time (MFST) which is the expected
waiting time to obtain a first solution of the problem; we
also give a finite sample estimator of this quantity. It is thus
directly proportional to the expected total amount of mone-
tary budget required to solve the problem. We compare this

novel metric to the widely used probability-normalized Time
To Solution metric (TTS). TTS has been used to evaluate
performances of quantum annealers in [33], [34], and [35].
We also show that the performances of the solvers strongly
depend on the selected set of internal parameters. This is the
first time AQCs and Memcomputing machines are compared
to each other on such a comprehensive set of industrially and
mathematically relevant problems, and it is the first time that
the dependence of their performances on internal parameters
is analyzed in detail.

In the following Methods section, we introduce in more
detail the computing machinery and the three benchmark
problems. In the Results section, the obtained outcomes
are presented and discussed in terms of scaling, parameters
dependency and latency. In the Discussion and Conclusions
section we summarize the main results and provide a final
discussion.

II. METHODS
Here we briefly describe the Non-Turing machines used, the
problems, how problems were implemented, and the formal
definition of the Mean First Solution Time. Further details on
these aspects are available in Supplementary Material (SM).

A. COMPUTING MACHINERY
1) MEMCOMPUTING
Memcomputing is the name given to an emerging computa-
tional paradigm that exploits the evolution of a circuit based
on memristors to perform computations. It should not be
confused with the in-memory or near-memory computing
paradigm which was conceived to avoid most of the costs
of moving data by processing directly within the memory
subsystem [36]. In fact, Memcomputing is a non-Turing
paradigm that does not exploit the VonNeumann architecture.
It does not have a dedicated memory component but rather
exploits the evolution of a physical system. The dynamical
evolution of this system, therefore, plays the role of a ficti-
tious memory.

Memcomputing devices perform computations harnessing
the nonlinear dynamics of a physical system. Such concept
was pioneered by Chua and Lin [37]. The Chua’s approach
allows to solve nonlinear optimization problems [37] through
possibly such nonlinear dynamics. One of the key differ-
ences between the Chua’s approach and Memcomputing is
that while the former is a fully analogical method, the latter
exploits logical gates, hence the dynamical evolution is used
to support a fully bit-based solver.

Another computational device based on the dynamic of
nonlinear systems has been recently devised. This is the
Simulated BifurcationMachine (SBM) developed by Toshiba
[22] which is inspired by quantum principles. The SBM sim-
ulates a classical system of nonlinear oscillators that produces
bifurcations in the phase space, enabling the simulation of a
spin-glass system. As SBM is a fully digital solution this sys-
tem is currently the most closely related to Memcomputing.
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FIGURE 1. From the problem to the computing hardware. Three problems are formulated in ILP and QUBO forms and solved with three
different solvers: i) the Gurobi optimization software based on branch and bound and other heuristics; ii) a Virtual Memcomputing
Machine exploiting self-organizing logic; and iii) a Quantum Annealer. These solvers are physically implemented on hardware based on
the Von-Neumann architecture or on an adiabatic quantum computer based on superconducting qubits. Memcomputing machines could
be implemented on self-organizing memristor-based circuits.

In detail, Memcomputing machines [21] are electronic
circuits comprising memristive components arranged to com-
pose Self Organizing Logic Gates (SOLGs) [38]. SOLGs
are invertible analogues of the usual logic gates, since the
input values are inferred from the imposed output through
the system dynamic. Thus, Memcomputing machines are
analog circuits, with digital readout, able to invert boolean
functions and solve ILP problems [39]. Memcomputing
deals with ILP problems through specific circuital elements,
dubbed Self-Organizing Algebraic Gates (SOAGs). SOAGs
[39] share the same properties of SOLGs but their circuit
is designed to self-organize to satisfy an algebraic relation
as shown in Figure 2. Using SOAGs, one can assemble a
Self-Organizing Algebraic Circuit (SOAC). The SOAC col-
lectively self-organizes in order to satisfy the constraints of
an ILP problem. Indeed the linear equalities and inequal-
ities of a given ILP problem can be directly mapped on
a SOAC (see Figure 2). Instead, the cost function can be
easily reformulated as an extra linear inequality with an extra
bounding parameter. Iteratively, this bound is reduced forcing

the SOAC to self-organize and find a new feasible solution,
each time closer to the global optimum. Currently no physical
implementation of such concept exists, but Memcomput-
ing Inc. has realized software able to simulate the circuital
dynamic of Memcomputing machines on classical comput-
ers. The simulation software exploits GPUs to increase the
overall performance.

2) D-WAVE
The D-Wave machinery belongs to the category of quantum
annealing processors, also called Adiabatic Quantum Com-
puters (AQCs). Such devices are composed by few thousands
qubits that can be put in a quantum superposition state. The
system evolves according to the following Hamiltonian:

H (t) = −F(t)

∑
i,j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i

− G(t)
∑
i

σ xi

≡ F(t)HP + G(t)HT . (1)
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FIGURE 2. A Self-Organizing Algebraic Circuit (SOAC) represents an ILP problem. Each
Self-Organizing Algebraic Gate (SOAG) is a linear condition that has to be satisfied when solving
the ILP. The output of the SOAGs is imposed in order to obtain feasible solutions. The cost
function is mapped into an additional SOAG whose inequality value is progressively reduced. The
SOAGs at the circuital level are composed by dynamic correction modules (DCMs); the circuit
components of a DCM are illustrated in the figure below on the right.

The Hamiltonian HP implements the cost function of a
QUBO problem, hence the sigma variables are binary. The
Hamiltonian HT allows for spin flips, serving as the quan-
tum analogue for the temperature in the simulated annealing
approach. By gradually reducingG(t) and increasingF(t), the
system evolves towards the minimum of the cost function of
the QUBO problem. The evolution of the Hamiltonian must
take place adiabatically to guarantee success [40], [41]. In
practice, thermal effects and other sources of noise render the
adiabatic assumption only partially fullfilled [42], [43].

B. BENCHMARK PROBLEMS
1) SEMIPRIME FACTORIZATION PROBLEM (FP)
FP is a notoriously hard problem [44]. Given M , the num-
ber to be factored, one must find the prime factors p
and q. The best-known classical algorithm for solving FP
is the General Number Field Sieve whose complexity is not
polynomial [45]:

O
(
e

3
√

64
9 (logM)1/3(log logM)2/3

)
(2)

In 1994, Shor proposed an algorithm [46] that solves FP
in polynomial time with a gate-based quantum computer.
Despite the method’s correctness, its application is currently

hampered by the limited number of qubits available in
gate-based quantum machines. FP has high practical rel-
evance because its prohibitive computational complexity
forms the basis of the RSA [29] cryptographic system’s
security.

To implement this problem on the examinated platforms,
we formulated FP as an optimization problem. As shown
in [47], FP can be converted into a satisfability problem
(SAT) problem. The first step is to convert the equation
M = p × q into a nonlinear system of equations, whose
unknowns are the fixed point bit representation of the num-
bers. The nonlinear system is then converted to a linear
system with constraints, where auxiliary variables are used
with corresponding restraints. This form is an integer linear
programming problem and can be run on VMM and Gurobi.
To allow porting on D-Wave, we defined a QUBO problem
where we recover the quadratic form by squaring the system
of equations. The constraints can be imposed via a penalty
term. Full details are reported in the SM.

2) HARD–ASSIGNMENT GROMOV–WASSERSTEIN PROBLEM
(GWP)
Optimal transport theory deals with the problem of moving
mass from one place to another with minimal effort. This
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effort is accounted by a cost function; the integral of these
mass moves has to be minimized [48]. The main constraint
here is represented by mass conservation; this leads natu-
rally to approach optimal transport as a mapping problem
between probability distributions. The original problem has
twomain formulations: the hard formulation fromMonge and
the relaxed formulation from Kantorovich [48]. In both, one
assumes that the twometric spaces involved are the same. The
Gromov–Wasserstein distance was introduced by Mémoli
[30] and it is an instance of optimal transport between metric
spaces having different dimensions (nonregistered) [49]. The
GWP finds application in generative machine learning [50],
[51] and computer graphics [30], [31], among others. Finding
this distance is equivalent to finding a permutationmatrix that
allows this mapping between distributions.

In literature one can find several regularized, approximate
or simplified forms of the GWP:Authors in [52] introduce the
entropic regularization approach and uses it in combination
with the Sinkhorn’s matrix scaling algorithm for solving the
GW problem; another paper [53] considers a variant of the
optimal transport problem that restricts the set of admissible
couplings to those having a low-rank factorization, achiev-
ing a linear time approximation for GWP. We will instead
consider the problem’s hard–assignment version, where the
desired mapping between points is bijective and the proba-
bility distributions in the two spaces assign equal weight to
all points. In this form, the cost function is an instance of a
Quadratic Assignment Problem (QAP) [32], which makes it
an NP-hard problem in general [54].

As anticipated, one is concerned with mapping two point
clouds which belong to different metric spaces. One is
given two sets of N points, S1 = {x1, . . . , xN } and S2 =

{y1, . . . , yN }, belonging to two distinct vector spaces, each
equipped with a distance, aij = d1(xi, xj) and bhk =

d2(yh, yk ). Further, one can define a distance between two
pairs of points. Here, we used the squared euclidean metric
d(aij, bhk ) = (aij − bhk )2. We ultimately want to find the
permutation matrix γ , such that the following expression is
minimized:

PGW(γ ) =

∑
ij

∑
hk

d(aij, bhk )γihγjk . (3)

Since γ is a permutation matrix, the following expressions
must hold:

γij ∈ 0, 1 ∀i, j∑
i

γij = 1 ∀j∑
j

γij = 1 ∀i (4)

The Gromov–Wasserstein distance is the value attained at
the minimum. The implementation therefore uses n2 binary
variables. This problem is already naturally in a quadratic
form similar to QUBO, yet is constrained. To ensure γ is a
permutation matrix we add the following restraints to the cost

function via a penalization technique (see Supplementary
Material for details).(∑

i

γij − 1

)2

∀j

∑
j

γij − 1

2

∀i (5)

For VMM and Gurobi, we transform this problem into a
corresponding ILP by merging the products in γ into a single
auxiliary variable. All details are reported in the SM.

3) CAPACITATED HELICOPTER ROUTING PROBLEM (CHRP)
CHRP is a helicopter flight scheduling problem, in which
one aims to minimize the overall flight time. CHRP was
introduced in [55], based on the formulation of the Dial-a-
ride problem (DARP) [56]. Each flight can have multiple
legs to connect offshore oil rigs. The flights are scheduled to
transport workers from heliport to rigs, from rig to rig, and
from rig to heliport. The problem has limiting constraints,
such as the maximum range for each helicopter type andmax-
imum capacities for the weight of the workers and luggage.
As a hard constraint, CHRP requires all workers to be trans-
ported. CHRP is then a multi-agent routing problem where
agents (helicopters) interact through the temporal worker
assignment constraints. These characteristics make CHRP
very hard, even for small instances, and therefore intractable
for real world scenarios. Indeed, CHRP and similar problems
such as the DARP are NP-hard in the strong sense [57] since
they generalize the Travelling Salesman problem with time
windows, which is proven to be NP-complete [58].

Because of its hardness and commercial relevance, multi-
ple heuristics have been developed to provide approximate
solutions, using clustering search [59], genetic algorithms
[60], and a League Championship Algorithm [61]. CHRP
can be cast to an integer linear programming problem with
all variables being binary. The problem is then automatically
in QUBO form with a null quadratic term and thus usable
on D-Wave. The problem size can scale with the number of
rigs (locations) and the number of workers, while the maxi-
mum number of flights is usually set according to the number
of workers. In the Integer Linear Programming format, all
binary variables are decision variables. The formulation has
two blocks of constraints. One block defines the helicopter
routes as cyclic paths in a dynamic graph. The other block
defines the assignment of workers to flights. More detailed
information and a description of the cost function to optimize
can be found in the SM.

C. MEAN FIRST SOLUTION TIME (MFST)
It is customary, when running algorithms, to define amaximal
execution time, after which the computation is stopped and
a new parameter (e.g. seed) is used to run the computation.
This requires proper metrics to evaluate the overall expected
execution time. In particular, the estimation should include
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the time spent in failures and not just the average time of
successes. The estimated execution time then correlates with
the allocated computing time and hence with the monetary
budget for the computation. We therefore introduce a new
metric, which takes fully into account the time spent in
failed runs. We call this metric the Mean First Solution Time
(MFST) (as it is inspired by the Mean First Passage Time
concept in physics [62]).

Given a problem instance, the MFST is defined as:

TMFST = E{k}Tmax + E{t} (6)

where E{k} is the expected number of failures before the
first solution is found, Tmax is the maximal allowed execution
time (e.g. for one seed) it is not a random variable, and E{t}
is the expected solution time (the averaged time of solved
instances).

The expected solution timeE{t} can be easily estimated via
the usual sample mean estimator:

t̄s =
1

|Is|

∑
j∈Is

tj (7)

where Is is the set of solved instances and |Is| its cardinality.
The variable k is a random variable which follows the

negative hypergeometric distribution NHG(|I |, |I | − |Is|, 1)

k ∼ NHG(|I |, |I | − |Is|, 1) =

(
|I |−k−1

|I |−|Is|−k

)(
|I |

|I |−|Is|

) (8)

where |I | is the cardinality of the run set. Therefore the
expected value of the number of failures k before a success
is:

|I | − |Is|
|Is| + 1

(9)

Hence, we estimate the MFST via the formula:

TMFST =
|I | − |Is|
|Is| + 1

Tmax +
1

|Is|

∑
j∈Is

tj (10)

Clearly, if all instances are solved, the mean solution time is
obtained.

Another widely used metric for evaluating the scalability is
the time to solution scaled by the solution probability (TTS).
While this quantity is formally a time, it does not explicitly
consider the maximal execution time, which is captured by
theMFST. In particular the Time To Solution (TTS) is defined
as:

TTTS =
E{t}
p

(11)

where p is the solution probability; this can be estimated as
p̄ = |Is|/|I |, hence the estimator:

T TTS =
t̄s
p̄

(12)

It is easy to show that there is a simple relation between T TTS
and TMFST :

TMFST =
|I | − |Is|
|Is| + 1

Tmax +
|Is|
|I |

T TTS (13)

This relation shows that, if all problems are solved (|Is|=|I |),
the two metrics are the same. However when not all instances
are solved, the presence of Tmax creates a discrepancy. If
Tmax is high, the TTS can significantly underestimate the
real execution time. In the SM, we derive the variance of the
estimators.

III. RESULTS
We challenged the platforms on the above-mentioned orthog-
onal hard problems: Semiprime Factorization probem (FP),
Hard-Assignment Gromov-Wasserstein problem (GWP)
and the Capacitated Helicopter Routing Problem
(CHRP).

To provide a fair comparison we take advantage of the
previously introduced Mean First Solution Time (MFST).
We perform a scalability assessment, analyze the parameters
dependency of the solvers and the time required to deliver a
first approximate solution.

A. SCALABILITY ASSESSMENT
Here, we discuss the scalability of the analyzed platforms
in terms of MFST (see Methods for further details). This
metric allows one to precisely capture the expected wait-
ing time to obtain the first solution, or in other words
the expected required computing time in an operative sce-
nario. This is achieved by taking into account explicitly
failed runs (no solutions found in the maximum allowed
wall time). The timeout for D-Wave and VMM were set
based on the available computing budget for each machine.
D-Wave was run for dozens of seconds for each problem
instance coherently with the granted computational time.
The VMM was executed for a few hours while running the
GPU backend, and for several days when utilizing the CPU
backend (see each problem section for precise timeout val-
ues). Gurobi was granted a timeout of 72 hours (maximum
wall time of the IIT HPC infrastructure). For every problem,
Gurobi was run on a cluster node with 32 cores (2 physical
sockets).

In the Supplementary Material, the results for the time
to solution (TTS) are also reported. To evaluate the scala-
bility and remove possible biases, we define n instances of
a problem given a prescribed problem size N . We estimate
the MFST of each problem and report the average MFSTs
between all the problem instances given one single size. The
scaling curve is the set of problems averaged MFSTs and
results are reported in log-log scale.

1) SEMIPRIME FACTORIZATION PROBLEM (FP)
We defined n = 5 different problem instances (five different
p, q pairs). To run the benchmark on Gurobi, we randomized
5 times the seed for each problem instance, for a total of
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25 runs per problem size. In Figure 3a, a plot with the average
MFSTs of the performed runs is shown. Each point is the
average MFST of the problem instances belonging to the
same bit size N .
The average MFST for VMM was estimated based on the

same 5 instances and 120 different seeds for each instance.
This setting was required to better estimate the solution
probability. We used the standard CPU backend of the Mem-
computing Software As a Service platform (Saas). For each
run, VMM simulated 2 replicas of the circuit corresponding
to FP, with a maximum timeout of 10 hours. To solve the
problem, VMM usually runs a Monte Carlo algorithm to
explore the space of the circuit parameters before simulating
it. For this specific problem, no parameter space exploration
was performed and the number of Markov chains was set to
120 to perform the calculation of the 120 different seeds in
parallel on 60 cores. Hence, all the runs correspond to the
same single circuit topology and parameter set.

We analyzed the scaling with respect to the increasing
problem size, namely the bit size in the interval [14, 64].
Gurobi was very effective in relative terms (see MFST in
Figure 3), since it performed a quick presolve of about half of
the instances under consideration. Gurobi’s ability to reduce
the number of variables and constraints of the optimization
problem depends on the instance and thus on the semiprime
to be factorized. For N = 64, Gurobi performed a presolve
calculation effectively enough to reduce solution time by four
orders of magnitude compared to the problems where this
simplification was not possible. At N = 68, the problems
that Gurobi could not simplify exceeded the wall time of
72 hours of computation. For this reason, problems with a
bit size greater than 64 were not considered. In the range
N = 37 to N = 64, the MFST for Gurobi scales with a slope
of 16.91 ± 0.92 (see Figure 3b).
All instances between N = 15 and N = 42 were solved

at least once by VMM. The linear fit of the MFSTs in the
range between 37 and 42 bits resulted in a scaling with a slope
of 14.64 ± 0.62. Therefore, VMM obtained a slightly better
slope with respect to Gurobi, but the overall execution time
was still superior, and VMM could not solve all instances for
larger bit sizes.

We also used D-Wave devices to solve FP in the inter-
val between 14 and 17 bits. The number of device queries
(which can be considered as the number of different seeds
in a quantum device) was 104 up to N = 14 and then was
gradually increased up to 8 × 104 at N = 17 (∼ 12 seconds
of computational time). The number of runs was doubled
each time that N increased by a unit. We found no significant
differences in the slope between D-Wave Advantage and
the D-Wave 2000Q, but D-Wave Advantage proved slightly
faster, probably because its greater connectivity allows for
shorter physical qubit chains [63].
Overall, we found that D-Wave devices could only tackle

small instances of the problems, whereas VMM and Gurobi
could deal with significantly higher bit sizes. Gurobi was the
fastest approach overall.

2) HARD-ASSIGNMENT GROMOV-WASSERSTEIN PROBLEM
(GWP)
GWP’s size and complexity depends on the variable N i.e.
the number of points to match between the two sets (see
Methods). To run our benchmark, we defined 5 problem
instances for each problem size. For each instance, multiple
runs were performed with different random seeds for the
solvers. Results are reported in Figure 3b. For Gurobi, each
instance was solved 5 times with different random seeds, for
a total of 25 runs for each problem size.

For VMM, each instance was solved 5 times with dif-
ferent random seeds for the solver, for a total of 25 runs
for each problem size, as for Gurobi. Contrary to FP and
CHRP, we found an advantage in using the GPU backend
of the Memcomputing Saas solver. We thus used GPUs to
solve GWP on VMM, setting the timeout for each instance to
Tmax = 1900 seconds.

For D-Wave Advantage, every instance was sampled with
thousands of annealing cycles, going from 50, 000 samples
for N = 3, 4, 5 up to 390, 000 samples when N = 7, 8.
We report that 390, 000 samples resulted in ∼ 60 seconds
of access time for D-Wave Advantage.

Gurobi solved all the runs for each instance of each prob-
lem size up to N = 16 points. At N = 17, the most compu-
tationally intensive instances required a wall time exceeding
72 hours, so we solved every instance only once (a single
seed). The corresponding point is indicated with a ′

+
′ marker

on the plot. The slope for Gurobi was 16.89 ± 0.83.
Figure 3b shows that the VMM achieved a better overall

scaling than Gurobi. The slope of the fit in log-log scale
was 5.89 ± 0.50, which was significantly better than the
competitors. At N = 12 and N = 13, Gurobi and VMM
required a similar time to solve the problem, but thewall times
quickly diverged for bigger problem sizes. At N = 16, the
VMMrequired an averageMFST of 409±107s (∼ 7minutes)
compared to the 9560±3730s required by Gurobi, i.e. VMM
was ∼ 23 times faster than Gurobi. VMM was able to tackle
problems almost up to the same size as Gurobi, but did not
solve every instance of the hardest problem size, N = 17.
D-Wave could only tackle small instances (N ≤ 8), thus it

is hard to make a sound comparison with other technologies.
At N = 8, D-Wave Advantage solved only one of the five
instances, finding the correct solution for this instance only
once over 390, 000 trials. The resulting point (the rightmost
in the D-Wave plot) is thus of limited statistical significance.
Deeper insights will be achieved when the D-Wave hardware
is advanced enough to tackle bigger instances of this problem.

Overall, VMMwas slightly less reliable than Gurobi in the
biggest problem sizes, but showed the best scaling behaviour.

3) CAPACITATED HELICOPTER ROUTING PROBLEM (CHRP)
We fixed the number of rigs to 25 and varied the number of
workers (w) and the pick-up and drop-off locations generated
at random (see Methods). When converted into QUBO and
embedded into chimera topology, the problem becomes too
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FIGURE 3. MFST plots for all the tested computing platforms, in log10, log10 scale. Every problem size corresponds to 5 different problem instances
using different seeds. Whenever a problem size on a given machine includes unsolved instances, a smaller dot is used and the number of solved
instances is shown. The error bars represent the standard deviation (see Methods). We report both baseline and parameter-optimized scaling results. In
the scaling section, we discuss these results. a: FP MFST with respect to the number of bits of the semiprime. b: GWP MFST with respect to the number
of points. The red plus mark is the point N = 17 for Gurobi, which was obtained by solving each instance only once, due to time constraints. c: CHRP
MFST with respect to the number of workers. d: Zoom of the GWP plot showing the slopes for Gurobi and VMM solvers for the biggest problems. The
VMM with enhanced settings achieved the best performances. The highlighted rounded slope values have the following values and standard deviations:
Gurobi 16.89 ± 0.83; VMM 5.89 ± 0.50; VMM baseline 10.93 ± 0.98.

large to fit in D-Wave, even for a few passengers, thus the
device was not included in the comparison plot.

Summary results are presented in Figure 3c.We considered
five instances for each problem size, and every instance was
submitted to Gurobi and VMM with 5 different seeds, for
a total of 25 submitted problems for every worker size. We
used the GPU backend of the Memcomputing Saas, setting
the timeout for each instance to 5 hours. The slopes of the
two solvers in log-log scale were very similar for the problem
sizes considered (5.2 for Gurobi versus 5.1 for VMM). In
contrast to GWP, the CHRP did not show an advantage for

VMM in scaling terms. Additionally, while Gurobi solved all
instances, VMM was slightly less reliable beacause it could
not solve all instances of the biggest size (w = 24).

Overall, the results of the three benchmark problems show
that D-Wave’s current hardware can solve only very small
instances. VMM managed the biggest problems well in most
cases. VMM’s scalingwas similar to Gurobi, but was superior
for one problem.

We note that, for GWP, VMM used GPU hardware to
achieve significant speed-ups. In contrast, Gurobi, and the
branch-and-bound [64] method in general, is not particularly
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FIGURE 4. Performances of VMM and Gurobi on the CHRP problem, in log-log scale. Errorbars have been slipped whenever they included negative
values. a: average gap percentage with respect to the optimal solution reached by VMM and Gurobi in 60 seconds, versus the number of workers. Gurobi
was faster for small instances but its performances quickly deteriorated, while VMM was much more solid as the problem size increased. b: time
required by VMM and Gurobi to reach the first feasible solution, versus the number of workers. The dependence of computing time on problem size
clearly differed between the two solvers. VMM was more resilient to hard instances, resulting in a better wall time for w = 22, 24.

amenable to a GPU implementation. This is important
because the ability to exploit GPU architectures may be
critical to improving the overall computing time.

B. PARAMETERS DEPENDENCY
D-Wave and VMM allow users to tune several parameters
that directly affect the dynamic of the physical and simu-
lated device, respectively. For each machine, we identified a
single problem size on which to execute a tuning protocol.
Those optimal parameters were then used for all the other
problem sizes, improving performances. Below, we systemat-
ically compare the scaling results using the default parameters
against their tuned version. The parameter tuning procedure
is described in detail in the SM.

1) SEMIPRIME FACTORIZATION PROBLEM (FP)
For VMM, we considered N = 29 as the tuning point.
In Figure 3a, a comparison between the results before and
after the parameter tuning is shown. Instances N ∈ [30, 42]
were not solved using default parameters. After the parameter
tuning, all the instances up to N = 42 were solved in less
than ∼ 4 × 103s. For D-Wave, the size N = 14 was used
as the tuning point. The tuned parameters didn’t result in an
improved solution probability.

2) HARD–ASSIGNMENT GROMOV-WASSERSTEIN PROBLEM
(GWP)
In the GWP, VMMwithout any parameter tuning solved only
one of the five instances forN = 15, with no instances solved

for N = 16 and N = 17 (see Figure 3b). The parameter
tuning was performed on one instance at N = 16, enabling
VMM to solve all other instances for N = 16 and all but
one instance for N = 17. The tuning process also sensibly
reduced the computing time for all N < 16 cases. This
means that for GWP the parameter tuning of VMM shows
good transferability: spending computational time to get the
right parameters is an effort that systematically boosts the
solver’s ability to tackle newGWP instances, even at different
problem sizes. The most remarkable effect was at N = 12,
where the MFST of VMM was reduced by a factor of 16.

The effect for D-Wave Advantage was even more remark-
able: the tuning procedure at N = 6 reduced the MFST by
more than one order of magnitude at all problem sizes. The
highest speed-up (∼ 78 times faster) was found at N = 3.

3) CAPACITATED HELICOPTER ROUTING PROBLEM (CHRP)
Parameter tuning allowed VMM to reduce all its MFSTs,
peaking to a tenfold reduction for w = 10 (see Figure 3c).
While the baseline VMM solved all instances up to w =

10, VMM with tuned parameters solved all instances up to
w = 22. The tuned VMM could tackle problems with ∼

3.5 times the number of nonzero elements in the ILP problem
matrix, compared to the baseline. The efficacy of the solver
was therefore greatly increased, showing good transferability
of the optimal parameters.

Overall, we conclude that the tested parameter tuning pro-
cedures are fundamental for VMM and D-Wave solvers. For
some instances of GWP and CHRP, using optimal parameters
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reduced by more than one order of magnitude the required
time to find the global minimum. The ability to obtain
an advantage using new computational approaches such as
VMM and D-Wave heavily depends on the development of
better and automated parameter tuning procedures.

C. GAP AND LATENCY DRIVEN ANALYSIS
CHRP finds direct application in industry. The ability to
quickly reach a good solution, i.e. latency, is more relevant
than being able to reach the global optimum in several real-
world scenarios. Hence, we analyzed the solver’s ability to
achieve a certain gap from the true solution in a given amount
of time. Figure 4a shows the gap from the optimal solution
obtained by the two solvers with one minute as maximum
wall time. When the solver did not find a feasible solution,
the gap was considered 100%. For a number of workers
w = 22, 24, Gurobi struggled to find a feasible solution in
a minute, resulting in gap values up to 89 ± 31% at w = 24.
VMM achieved better scores on the biggest sizes, with a 19±

30% gap atw = 24. The gap obtained by both solvers exhibits
great variability (as can be seen by the standard deviation) due
to the different difficulty of the tackled instances.

In Figure 4b, we report the time required by the two
solvers to find the first feasible solution. When w increases,
Gurobi takes a rapidly increasing amount of time to satisfy
the constraints. However, VMM finds a feasible solution in a
time that seems only mildly dependent on the problem size.
For comparison, Gurobi takes 0.32±0.73 seconds forw = 10
(first nontrivial case for the solver) and 208±116 seconds for
w = 24 (i.e. ∼ 650 times slower due to increased problem
complexity). VMM takes 16.5±7.2 seconds for w = 10, and
44±42 seconds forw = 24, which is only∼ 2.7 times slower
on average.

IV. DISCUSSION AND CONCLUSIONS
Here, we challenged two novel optimization engines on three
hard problems and compared them with the state-of-the-art
classical Turing Gurobi ILP solver. Gurobi was fast and reli-
able for all the tested problems. However, the non-classical
solver VMM significantly outperformed Gurobi in absolute
MFST and scaling for GWP. This finding shows that the
VMM solver is very effective in some Integer Linear Pro-
gramming classes. Yet, this performance boost was not effort-
less, being obtained only after parameter tuning. However, the
parameter tuning, as for D-Wave, was performed for only one
instance and the same parameters were used to solve the other
ones. It is also worth mentioning that different parameter
settings does not just lower the absolute convergence time,
but also lower the slope of the scaling. VMM and D-Wave
parameters could have been fine-tuned at different problem
sizes and this could have significantly improved the scaling
results. However, computing time limitations prevented this
per-problem optimization and hence reaching larger problem
sizes. In principle VMMhas no intrinsic limits in dealingwith
bigger problem sizes; however, being a heuristic approach its
efficiency depends on the parameters setting. A key factor

is represented by the invariance of the problem structure at
increasing problem sizes. When the invariance is preserved,
good parameters at a given size become ‘‘portable’’ to bigger
problems. If the structure invariance is not preserved (as in
our hard problems) then this requires fine-tuning the param-
eters at each problem size.

On a practical level, VMM was also the best solver for
CHRP to find a low gap feasible solution for the hardest
instances. VMM’s performance, in terms of absolute time
but not scaling, is partly due to its use of GPUs. In contrast,
Gurobi is bound to CPUs because it exploits branch and
cut and heuristics that are not easily parallelizable. VMM,
instead, is natively parallelizable, so able to exploit GPU
(and other distributed hardware) computing power. The fact
that an algorithm is not prone to GPU porting may signifi-
cantly impact its longevity. Indeed, given the current GPUs
power, even a relatively modest algorithmic improvement
which favours a GPU porting may render CPU-based method
rapidly obsolete and slow. This consideration is a very prac-
tical one and holds even if the algorithm improvement does
not affect scalability theoretically.

In contrast to Gurobi and VMM, D-Wave quantum anneal-
ers tackled only small instances of the benchmark problems.
D-Wave devices have often been tested on spin-glass models,
which are not always representative of several applicative
problems. For example, in [65] the authors suggest than
spin-glass problems could lead to understating the perfor-
mances achievable by AQCs; the study in [66] discusses how
spin-glass benchmarks could advantage Simulated Annealing
approaches with respect to AQCs; Authors in [33] show that
industrially relevant problems are much harder in general
than solving spin-glass models. By testing the device on
real-world problems cast to QUBO forms, we observed that
the solver’s abilities are currently limited. This is also because
on D-Wave one needs to use penalties to enforce constraints,
which is not ideal. The main current bottlenecks for this
technology is the thermal noise, but the technology would
also benefit from an increase in the number of qubits and
a more connected topology. Despite such shortcomings, the
tuning procedure we performed is able to accelerate D-Wave
performances significantly (up to 78 times for the GWP).
Similar approaches could prove to be fundamental in bringing
practical applications of adiabatic quantum computers closer.

VMM proved to be already today a valuable tool for some
problems, also in terms of latency. Promisingly, VMM is only
a circuit emulation, whereas a physical circuit would perform
much faster and would be much more energy efficient albeit
if possibly less flexible than the simulation. Energy efficiency
is a key metric which future computing paradigms ought to
carefully consider to grant a long term sustainability.

We can envision that such non Turing solvers might find
the best application when used in tandem and not in isolation
versus a classical counterpart [67]. We expect that a future
challenge for High Performance Computing will be to get
the best of the two worlds, achieving speed and maintaining
energetic efficiency and programmability.
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