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ABSTRACT Cardiovascular disease is the main cause of death worldwide. The World Health Organization
(WHO) reports that 17.9 million individuals die yearly due to complications from heart disease and other
heart-related ailments. ECG monitoring and early detection are critical to decreasing myocardial infarction
(MI) mortality. Thus, a non-invasive method to accurately classify different types of MI would be extremely
beneficial. Our proposed study aims to detect and classify Anterior and Inferior MI infarction with advanced
deep and machine learning techniques. A newly created UWB radar signal-based image dataset is used
to conduct our study experiments. A novel Convolutional spatial Feature Engineering (CSFE) technique
is proposed to extract the spatial features from the image dataset. The spatial features consist of both
spatial and temporal information which allows machine learning models to leverage both the spatial and
temporal relationships present in the data. Study results show that using the proposed CSFE technique,
the advanced machine learning techniques achieved high-performance accuracy scores. The K-Neighbors
Classifier (KNC) outperformed with a high-performance accuracy score of 98% for detecting Anterior and
Inferior patients. The applied methods are fully hyperparametric tuned, and performance is validated using
the k-fold cross-validation method.

INDEX TERMS Cardiovascular disease, anterior and inferior, MI infarction, UWB radar, machine learning,
transfer learning.

I. INTRODUCTION
Cardiovascular disease (CVD) is a major public health con-
cern worldwide, responsible for a significant proportion of
global mortality [1]. According to the World Health Orga-
nization (WHO), CVD accounts for 31% of global deaths,
with an estimated 17.9 million people dying each year due to
heart-related complications, including heart disease [2]. Low-
and middle-income countries are disproportionately affected,
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with more than three-quarters of all CVD fatalities occurring
in these regions [2]. Heart attacks and strokes are the lead-
ing causes of CVD-related deaths, accounting for more than
four out of every five fatalities [1]. Several modifiable risk
factors contribute to the development of CVD, including an
unhealthy diet, lack of physical activity, alcohol and cigarette
use, and hypertension [2]. Myocardial infarction (MI), also
known as a heart attack, is a severe form of CVD and is
one of the leading causes of mortality worldwide [3]. Every
year, over 8 million people die due to MI [2]. MI occurs
due to the acute thrombotic blockage of a coronary artery
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at the site of atherosclerotic disease, leading to the destruc-
tion of heart muscle tissue [3]. Clinical symptoms of MI
include chest pain and shortness of breath [4]. However, these
symptoms and physical markers are neither sensitive nor
specific for MI diagnosis [5]. MI can occur in various areas
of the heart, including the Inferior, Anterior, septal, posterior,
lateral, Inferior-lateral, septal-anterior, and posterior-lateral
regions [5], [6]. It causes cardiac tissue damage due to a lack
of oxygen and nutrients [6]. The authors decided to focus on
the examination of Anterior and Inferior MI owing to their
comparatively higher incidence rates. One study [7] found
that about 40% of all MI occur in the inferior wall, whereas
[8], [9] reported that about 33% of all MI instances occur in
the anterior wall.

Anterior MI is distinguished by the occurrence of dam-
age to the myocardium within the (front) Anterior region
of the heart, specifically affecting the Anterior wall of the
left ventricle [10]. The area receives vascular perfusion from
the left anterior descending (LAD) artery, a branch of the
left coronary artery. The manifestation of an Anterior MI
may arise due to the obstruction or occlusion of the LAD
coronary artery [10]. The left ventricle, which is the largest
and most robust chamber of the heart, plays a crucial role in
the circulation of oxygenated blood throughout the body. The
contractile function of the left ventricle experiences notable
impairment due to an Anterior MI [11], [12]. The diminished
contractile function of the left ventricle can lead to a decrease
in cardiac output, which is characterized by a reduction in
the heart’s ability to efficiently circulate blood [13]. Con-
versely, an Inferior MI is distinguished by the damage of
the myocardial tissue, specifically affecting the lower (Infe-
rior) region of the heart [14], [15]. The primary supplier
of blood to this particular area is the right coronary artery
(RCA), occasionally supplemented by the left circumflex
artery (LCx) [15]. The presence of an Inferior MI can have
adverse consequences on both the right ventricle and the
Inferior region of the left ventricle [14]. The contraction of the
right ventricle is responsible for facilitating the transportation
of deoxygenated blood to the lungs, where it undergoes the
process of oxygenation. According to the studies conducted
by Jern et al. [16] and Burns and Buttner [10], it has been
observed that individuals diagnosed with Anterior MI exhibit
a reduced ejection fraction in comparison to those with Infe-
rior MI. The ejection fraction is a quantitative assessment
of cardiac performance, specifically evaluating the efficiency
with which the heart expels blood during each contraction.
According to Jern et al., [16], a reduced ejection fraction indi-
cates impaired cardiac pumping function, potentially result-
ing in the development of heart failure.

Early identification and diagnosis of MI are critical fac-
tors in reducing mortality rates associated with the con-
dition. Currently, electrocardiogram (ECG) monitoring is
one of the most commonly used diagnostic methods for
detecting MI. However, ECG readings can be complicated
and time-consuming to interpret, and the use of ECG elec-
trodes may cause skin irritation and allergies [17], [18], [19].

Moreover, the time-varying dynamics and morphological
properties of a single-lead ECG signal can exhibit signifi-
cant differences among individuals with MI, depending on
the region of MI and the degree of myocardial damage [4].
To address these issues, a non-contact approach to accurately
classify different forms of MI is required. Ultrawideband
(UWB) radar is emerging as a potential non-contact approach
for vital sign monitoring and diagnosis [19], [20], [21], [22],
[23], [24]. UWB transmissions can generate high-bandwidth
signals using very short-duration pulses and can detect and
monitor micro-movements and vibrations like breathing and
heartbeats [25]. Infrared-UWB (IR-UWB) radar, in partic-
ular, has several advantages, such as low emission power,
the ability to penetrate various materials and barriers, and
the absence of privacy concerns related to visible light or
skin color [23], [25]. The non-intrusive nature of IR-UWB
radar and its ability to operate in various settings make it a
promising tool for MI diagnosis.

The scientific research contributions of our proposed study
related to detecting and classifying Anterior and Inferior MI
infarction are followed as:

• A new dataset is collected, which is based on a
total of 858 observations, from Anterior and Infe-
rior MI patients. The dataset is collected from real
patients at Sheikh Zayed Medical College and Hospital
(SZMC&H), Rahim yar khan, Pakistan, under the super-
vision of a resident cardiologist.

• A novel CSFE feature engineering technique is pro-
posed to extract the spatial features from the collected
IR-UWB radar-based image dataset. CSFE features are
extracted from greyscale images, and a new feature set is
formed along with the target labels. Study results show
that using the proposed CSFE technique, the applied
methods achieved high-performance scores.

• An advanced neural network and five machine learning
techniques are applied in comparison to evaluate per-
formance. The hyperparameters optimization and k-fold
cross-validation techniques are employed to validate the
performance scores of each applied method. The com-
putation complexity analysis is also performed to assess
the efficiency of the proposed approach for detecting the
detect Anterior and Inferior MI infarction.

The rest of the article is organized as follows. Section II
comprises a literature review, section III describes methodol-
ogy and experiments while results are described in section IV.
The discussion and conclusion are presented in sections VI.

II. LITERATURE REVIEW
Myocardial infarction (MI) is a major cause of mortality and
morbidity worldwide, with the highest risk of death occurring
in the first few hours after onset. Therefore, early detection of
myocardial ischemia is crucial for the effective management
and screening of MI patients. However, various studies have
found that the initial diagnosis of patients with chest pain
often leads to inappropriate admissions of patients who do not
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have MI, and vice versa. In order to achieve early diagnosis,
a combination of physical examination, precise electrocardio-
gram findings, assessment of cardiac troponins, and patient
history are critical.

To aid in the diagnosis of MI, researchers have developed
various systems to detect different types of MI. One such
system is an 11-layer deep convolutional neural network
(CNN) developed by [26] for automated diagnosis of MI.
The CNN utilized electrocardiogram (ECG) signals from the
publicly accessible Physikalisch-Technische Bun-desanstalt
(PTB) dataset, and applied noise reduction and baseline wan-
der removal using the Daubechies wavelet 6 mother wavelet
function. The Pan Tompkins technique was then used to
identify R-Peaks. The CNN achieved accuracy rates, sen-
sitivities, and specificities of 93.53%, 93.71%, and 92.83%
for noisy ECG signals, and average accuracy, sensitivity, and
specificity of 95.22%, 95.49%, and 94.19% for noise-free
ECG signals. The study [27] proposed a method for MI
diagnosis using harmonic phase distribution patterns in ECG
data. Two unique features reflecting variations in the ECG
waveform’s morphology and timing were detected for each
of the three conventional ECG leads. Logistic regression (LR)
and a threshold-based classification method were applied to
distinguish between normal and MI subjects. The suggested
method has successfully identified various forms of MI data
with high accuracy rates.

A multi-lead attention mechanism (MLA-CNN-BiGRU)
framework for detecting MI using 12-lead ECG signals from
the PTB database was proposed in [28]. Intra-patient and
inter-patient accuracy rates for the model are 99.93% and
96.5%, respectively. DCNN and Gabor-filter DCNN models
were by study [29] compared to classify four cardiovas-
cular disease subtypes: normal, CAD, MI, and CHF. The
Gabor-filter DCNN model outperformed the DCNN model,
achieving 99.55 percent accuracy versus 98.74 percent. The
study [30] proposed a unique hybrid network, the multiple
feature-branch convolutional bidirectional recurrent neural
network (MFB-CBRNN), to identify MI from 12-lead ECGs.
They also developed an optimization strategy called lead ran-
dom mask (LRM) to reduce the likelihood of overfitting and
improve MI detection accuracy. The MFB-CBRNN achieved
high accuracy rates in class and subject-based experiments
using the PTB dataset. The study [31] presented an automatic
and precise approach based on sparse autoencoder (SAE) and
TreeBagger to identify and localizeMI from single-lead ECG
data. The method achieved higher accuracy, sensitivity, and
specificity than existing algorithms for MI detection using
the PTB dataset. The study [32] developed two methods
for MI identification and localization using 12-lead ECG,
discrete wavelet transforms (DWT), and end-to-end deep
machine learning algorithms. The proposed models were
tested on the PTB dataset, achieving high accuracy rates.
The study [33] proposed a multi-channel, multi-scale, two-
phase deep learning-based approach for detecting MI using
VCG signals. The proposed method achieved high accuracy,

specificity, and sensitivity using the PTB dataset. The
study [34] presented a CNN-based method for automatic MI
detection using a novel loss function called focused loss. The
proposedmethod achieved high accuracy, precision, F1 score,
and recall using the PTB dataset.

Reference [35] proposed a method for the timely and accu-
rate diagnosis of Inferior MI. They used stationary wavelet
transform to decompose the segmented multi-lead ECG sig-
nal into sub-bands, and features such as estimated sample
entropy, normalized sub-band energy, log energy entropy, and
median slope were extracted. The features were then used
in combination with gain ratio-based parameter selection to
differentiate between healthy participants and Inferior MI
patients using support vector machine (SVM) and K near-
est neighbor (KNN) algorithms. ECG data from leads II,
III, and aVF of participants with IMI and healthy subjects
were obtained from the PTB dataset. The proposed method
was evaluated from both a theoretical (class-oriented) and
practical (subject-oriented) perspective. The class-oriented
approach achieved a sensitivity of 98.67%, specificity of
98.72%, positive predictivity of 98.79%, and accuracy of
98.69% using KNN, and a sensitivity of 99.35%, speci-
ficity of 98.29%, positive predictivity of 98.41%, and accu-
racy of 98.84% using SVM, with a ROC of 0.9945% and
0.9994%, respectively. On average, the subject-oriented strat-
egy achieved an accuracy of 81.71%, sensitivity of 79.01%,
specificity of 79.26%, and positive predictivity of 80.25%.

The study presented in [36] proposes a CNN architecture
to distinguish Inferior MI from healthy signals using raw
ECG signal data from leads II, III, and AVF. Using a subject-
oriented approach, the model was tested on one patient and
trained on the remainder of the PTB database’s Inferior MI
and healthy signals. The model has 84.54% accuracy, 85.33%
sensitivity, and 84.09% specificity. The study [37] developed
domain-inspired neural network models to detect myocardial
infarction. Initially, they conducted a systematic analysis to
determine the contribution of different ECG leads and dis-
covered that data from the v6, vz, and ii leads were crucial
for correctly identifying myocardial infarction, which had
not been previously reported in the literature. They used this
discovery to adapt the ConvNetQuake neural network model
for earthquake detection to classify myocardial infarction.
Their model had 99.43% record-wise and 97.83% patient-
wise classification accuracy.

In addition, the study [38] proposed a ResNet++ model
to detect a variety of cardiovascular diseases, including
infarction and arrhythmias, using limited ECG leads. The
model was trained on the PTB dataset, which includes data
from both healthy and unhealthy individuals, and achieved
F1-scores of 87% and 89% for identifying Inferior and
Anterior wall MI, respectively, outperforming ResNet, which
achieved F1-scores of 84% and 87% for Inferior and Anterior
wall MI, respectively. The study [39] designed a multi-lead
residual neural network (ML-ResNet) model with three resid-
ual blocks and feature fusion to detect MI using 12-lead
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TABLE 1. Comparison of studies on anterior and inferior MI.

ECG signals from the PTB database. Inter- and intra-patient
accuracy rates for the model are 95.49 and 99.92%, respec-
tively. The study [40] proposed an automated approach to
detect Posterior MI (PMI) using a 3-lead vector cardiogram
(VCG). Thismethod leverages the spatially variable electrical
conduction features of cardiac tissue. To address the class
imbalance, they introduced a cost-sensitive weighted support
vector machine (WSVM) classifier. The proposed method
was validated using the publicly available PTB diagnostic
dataset, achieving high accuracy, sensitivity, and geometric
mean.

Cardiac diagnosis using ECG data with machine learning
or deep learning approaches has achieved excellent accuracy.
Table 1 presents the comparison of the different studies about
Inferior and Anterior MI.

All studies used the PTB dataset, comprising ECG signals
of the MI patients. For ECG successful electrode placement
on the patient’s skin can be uncomfortable, hazardous, and
logistically challenging in remote or rural settings. Addi-
tionally, electrodes may lose adhesion and degrade the sig-
nal, necessitating replacement. To address these challenges,
a non-contact approach utilizing UWB signal with deep
learning has been proposed to diagnose Inferior and Ante-
rior wall MI. This technique eliminates the need for elec-
trode placement and can be used for remote monitoring
or in resource-limited settings. The use of UWB signals
with deep learning has the potential to overcome ECG data
and electrode placement challenges, making it a promising
approach for diagnosing cardiac conditions in challenging
settings.

FIGURE 1. Proposed methodology diagram.

FIGURE 2. (a) Stand designed to mount radar (b) PulseON time
domain 410 UWB radar.

III. MATERIALS AND METHODS
A. PROPOSED METHODOLOGY
Figure 1 shows the methodology diagram of the proposed
system, which consists of three main stages. The first stage
involves data collection. The second stage involves using
the convolutional neural network to extract spatial features,
which were then used to construct a new feature set through
transfer learning. In the third stage, the feature set was split
into two portions, with 80% used for training variousmachine
learning (ML) models, and the remaining 20% used for per-
formance evaluation.

1) UWB RADAR-BASED IMAGE DATA
The data was collected from real patients at Sheikh Zayed
Medical College and Hospital (SZMC&H), Rahim yar khan,
Pakistan, under the supervision of a resident cardiologist. The
Khwaja Fareed University of Engineering and Information
Technology (KFUEIT) ethics committee provided ethical
approval based on the Helsinki Declaration criteria, and a
consent form was signed by each subject. At SZMC&H,
patient data were collected using PulseON time domain
410 (P410) UWB radar as shown in Figure 2. In a monostatic
configuration, separate transmit and receive antennas are used
and positioned near together. The FCC-compliant transceiver
transmits radio waves in the frequency range of 3.1 GHz
to 5.3 GHz (with a central frequency of 4.3 GHz) and a
bandwidth of 2.2 GHz.

97748 VOLUME 11, 2023



K. Zafar et al.: Deep Learning-Based Feature Engineering to Detect Anterior and Inferior MI

Patients were asked to lie comfortably on a bed while
a radar, mounted on a frame at an average height of
50 cm above the patient’s chest, was placed over them,
as shown in Figure 3. The radar system emits electromagnetic
waves, which encounter interactions with the tissues and
structures present in the chest. This interaction results in
the generation of a signal response, which is subsequently
recorded over a specific period of time. The radar signal data
obtained is subsequently recorded in a file format known as
comma-separated values (CSV), wherein each row signifies
a distinct instance of time during the process of scanning,
and each column corresponds to a distinct distance from
the radar sensor. The radar received signal is shown in
Figure 4 (a). The dataset used in this investigation is collected
from 858 patients, with ages ranging between 40 to 70 years,
all diagnosed with either Anterior or Inferior wall MI. The
dataset includes data from two classes: Anterior MI (435) and
Inferior MI (423).

The transmission waveform of a UWB radar is given
by [21]:

xt (t, nT ) = p(t, nT ).sin(ωct) (1)

where the pulse generator, denoted as p(t, nT), with ‘‘t’’
representing the time variable in the fast time domain, and
‘‘T’’ representing the pulse repetition period in the slow time
domain. The pulse that is bounced back by the subject and
detected by the system is presented in Equation (2).

xr (t, nT ) = p(t − tD, nT ).sin(ωct − ωctD) (2)

where ‘c’ is the speed of light and ‘tD’ is the time delay
caused by the transmission path. The pulse of UWB is given
by Equation (3) [41].

p(t) =

{
S(t) a < t < b,
0 otherwise.

(3)

where S(t) is the UWB radar pulse waveform and a, b is the
duration of the pulse, then the pulse train is given by:

Ptr(t) =

k∑
k=1

P(t − (k − 1)Tpr) (4)

where ‘k’ is the number of pulses transmitted, and Tpr is the
pulse repetition interval. The received signals at the antenna
are denoted by a vector Rk = [s1, s2, s3. . . , sk].
The radar scan for the time of 3 minutes yields a radargram

R. A radargram as shown in 4 (b) is a visual representation
of the distribution of reflecting objects in a scanning area
as measured by a radar system. It is created by transmit-
ting a series of short-duration pulses into the scanning area
and recording the reflected signals from each pulse over a
period of time. The recorded data is processed to form a
matrix of amplitude values, where each column represents
the reflected signals from a single transmitted pulse and each
row represents the time delay of the reflected pulse. In the
obtained radargram matrix, each column of the radargram
R, c, denotes the radar return signal vector in the fast time

FIGURE 3. Subject during data collection.

domain corresponding to the kth transmitted pulse. Each row
in the radargram R, r, denotes the radar return signal vector
in the slow time domain corresponding to the fast time.

To remove clutter from the data, a two-pulse canceller is
applied as shown in Figure 4 (c), and the resulting clean
data is stored in matrix A. This matrix is then converted to
a grayscale image I, which represents the radargram in a
visual form. The resulting image can be used to identify and
locate reflecting objects within the scanning area, providing
valuable information for a variety of applications, including
geological surveys, building inspections, and search and res-
cue operations.

2) PROPOSED CONVOLUTIONAL SPATIAL FEATURE
ENGINEERING (CSFE))
The proposed Convolutional Spatial Feature Engineering
(CSFE) technique aims to extract features from spatial data,
using 2D convolutional layers in CNN architectures. These
features provide a rich representation of the data, capturing
the spatial characteristics, and can be used for various tasks.
The spatial features extracted by 2D convolutional layers can
identify subtle patterns and movements. In this manuscript,
CSFE features are extracted from greyscale images, and a
new feature set is formed along with the labels as shown
in Figure 5. This new feature set with the corresponding
labels is used to train and evaluate machine learning mod-
els to accurately diagnose Anterior and Inferior wall MI.
By leveraging the spatial information extracted using the
CSFE technique, these models can potentially capture subtle
patterns and movements that may be missed by traditional
CNNs, leading to improved accuracy in diagnosis.

This new feature set with the corresponding labels can be
used to train and evaluate machine learning models to accu-
rately diagnose Anterior and Inferior wall MI. By leveraging
the spatial information extracted using the CSFE technique,
these models can potentially capture subtle patterns and
movements that may be missed by traditional CNNs, leading
to improved accuracy in diagnosis. The scatter cube plot
of extracted deep learning-based features of Anterior and
Inferior MI is shown in Figure 6 to get a geometric insight
into the newly obtained dataset.
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FIGURE 4. (a) Radar Received Signal (b) Set of received UWB raw data matrix R (b) Two-pulse canceller Matrix.

FIGURE 5. The proposed CSFE feature extraction architecture analysis.

FIGURE 6. Cubic Scatter plot of the features.

From the scatter plot in Figure 6, it is evident that both
Anterior and Inferior MI are easily detectable and both have
different clusters.

3) SPATIAL FEATURES SPLITTING
InML, dataset splitting is a critical step that involves dividing
available data into training and testing sets. The primary
objective of dataset splitting is to create a model that can
generalize well to new data, rather than simply memorizing

the training data. The standard approach is to divide data
into two sets, namely, the training set and the testing set,
using a commonly used split ratio of 80:20. In this study,
80% of the data was used for training machine learning mod-
els, while 20% was used to evaluate model performance on
unseen data. This approach is useful in preventing overfitting
and ensuring that the models generalize well to new data.
By using a separate testing dataset, the model’s accuracy and
performance can be assessed on new data, thereby avoiding
bias and gaining insights into the model’s effectiveness.

B. APPLIED MACHINE LEARNING AND DEEP LEARNING
TECHNIQUES
Machine learning and deep learning techniques have demon-
strated remarkable success in diagnosing medical condi-
tions [42]. The availability of large quantities of medical data
has enabled these techniques to learn from the data and extract
valuable insights that enhance the accuracy of disease diag-
nosis. Convolutional neural networks, a type of deep learning
model, have been utilized for image-based diagnosis of dis-
eases, including cancer, Alzheimer’s disease, and retinopathy.
These models can extract relevant features from medical
images, facilitating precise disease classification. Similarly,
machine learning algorithms have been employed for diagno-
sis based on patient medical records and other clinical data.
These algorithms can identify patterns in the data that are not
apparent to human observers, resulting in accurate diagnoses
and tailored treatment recommendations. The application of
machine learning and deep learning techniques in medical
disease diagnosis has the potential to revolutionize healthcare
and improve patient outcomes.

1) CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Networks (CNNs) have gained sig-
nificant attention in the medical field for disease diagnosis
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TABLE 2. The layered architecture analysis of CNN algorithm.

due to their ability to analyze and classify medical images
effectively. CNNs are a type of deep learning model designed
to identify patterns in images through convolutional layers,
which help extract features from the input image [43]. Inmed-
ical diagnosis, CNNs have been used to analyze various
medical images such as X-rays, CT scans, and MRI scans to
identify and classify diseases. With the aid of these models,
doctors and medical professionals can obtain a more accurate
diagnosis, ultimately leading to better treatment decisions
and patient outcomes. Additionally, CNNs can be used to
develop computer-aided diagnosis systems that can provide
automated diagnoses based on medical images [44], which
can be helpful in resource-limited settings or situations where
expert medical opinion is not immediately available. Despite
some limitations, CNNs have shown great potential in medi-
cal diagnosis and are expected to play a significant role in the
future of medical imaging analysis. In addition, the layered
architecture analysis of the CNN algorithm is analyzed in
Table 2.

2) RANDOM FOREST CLASSIFIER
Random Forest Classifier (RFC) is a popular machine
learning algorithm successfully applied to various domains,
including medical disease diagnosis [45]. The working of
RFC involves the creation of an ensemble of decision trees
that make predictions based on the input features. In medical
disease diagnosis, the input features can be clinical or biolog-
ical markers associated with the disease of interest. The RFC
works by randomly selecting a subset of features and a subset
of data samples to build each decision tree in the ensemble.
During prediction, each decision tree in the ensemble makes a
prediction, and the final prediction is obtained by taking the
majority vote of all the decision trees. This approach helps
reduce the model’s overfitting and improve its generalization
ability. Furthermore, the RFC also provides an estimate of the
importance of each input feature, which can be used to iden-
tify the most relevant markers for disease diagnosis. Overall,
the RFC is a powerful tool for medical disease diagnosis that
can improve the accuracy and efficiency of the diagnostic
process.

3) DECISION TREE CLASSIFIER
Decision Tree Classifier (DTC) is a popular algorithm used in
machine learning for solving classification problems. In med-
ical disease diagnosis, DTC can predict the presence or

absence of a particular disease based on a set of symptoms
or risk factors [46]. The DTC creates a tree-like model where
each internal node represents a test on a specific feature, and
each leaf node represents a class label. The DTC algorithm
iteratively partitions the feature space based on the most
informative features, such as the presence or absence of a
particular symptom or risk factor. The partitioning process
continues until the algorithm reaches a stopping criterion,
such as a minimum number of samples per leaf or a maxi-
mum tree depth. The resulting decision tree can classify new,
unseen data by traversing the tree from the root node to a
leaf node corresponding to the predicted class label. In med-
ical disease diagnosis, DTC can provide a transparent and
interpretable way to make predictions and assist healthcare
professionals in making accurate diagnoses.

4) SUPPORT VECTOR MACHINE
Support Vector Machines (SVM) is a popular machine learn-
ing technique applied to various areas, including medical
diagnosis [47]. SVM is a supervised learning algorithm that
can be used for binary or multi-class classification problems.
In medical diagnosis, SVM is used to classify patient data
into healthy or diseased categories based on various clini-
cal parameters. SVM works by finding the best hyperplane
that separates the data into two classes with the maximum
margin. The hyperplane is chosen to maximize the distance
between the closest points of both categories, which results in
better generalization performance of the model. In medical
diagnosis, SVM can be used with different kernels, such as
linear, polynomial, or radial basis functions, to achieve better
classification accuracy. SVMhas been successfully applied to
several medical diagnoses problems, such as diabetes, breast
cancer, and heart disease, with promising results. SVM pro-
vides a robust, efficient, and accurate classification model for
medical diagnosis, which can help improve disease diagnosis
and treatment decisions.

5) SGD CLASSIFIER
A stochastic Gradient Descent Classifier (SGDC) is a pop-
ular machine learning algorithm used for medical dis-ease
diagnosis [48]. The SGDC algorithm is a linear classifier that
uses the stochastic gradient descent optimization method to
minimize the cost function. It is commonly used for binary
classification tasks and is known for its efficiency and speed
in handling large datasets. In medical disease diagnosis,
SGDC can be used to classify patients as either having a
disease or not based on various medical features such as
symptoms, medical history, and test results. The algorithm
learns from historical patient data to identify patterns and
make accurate predictions about the disease status of new
patients. The effectiveness of SGDC formedical disease diag-
nosis depends on the quality of the training data, the selection
of relevant features, and the choice of hyperparameters such
as learning rate and regularization. Despite some limitations,
SGDC has shown promising results in various studies and can
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TABLE 3. The hyperparameters optimization analysis.

be helpful for healthcare professionals in aiding diagnosis and
treatment decisions.

6) K-NEIGHBORS CLASSIFIER
K-Neighbors Classifier (KNC) is a popular machine learning
algorithm that is often used for medical disease diagno-
sis [49]. The KNC algorithm works by classifying new data
points based on their proximity to existing data points in a
training dataset. In the context of medical disease diagnosis,
the KNC algorithm uses features such as symptoms, patient
history, and medical test results to identify patterns indicative
of a particular disease. One of the key advantages of the KNC
algorithm for medical disease diagnosis is that it is a non-
parametric method. Overall, the KNC algorithm is a valuable
tool for medical disease diagnosis, as it can help clinicians
identify patterns in patient data that may indicate particular
diseases.

7) HYPERPARAMETER TUNING
Hyperparameter tuning is a crucial step in developing
machine learning models, where a set of parameters is
selected to optimize the model’s performance hyperparam-
eter. These parameters, known as hyperparameters, are not
learned during training. The process of hyperparameter tun-
ing involves systematically exploring different combinations
of hyperparameters to find the optimal set of values that
leads to the best performance of the model. This is often
an iterative process that can be time-consuming, requiring a
deep understanding of themodel architecture and the problem
domain. Hyperparameter tuning can significantly improve
the accuracy of machine learning models and is essential for
achieving state-of-the-art results in many real-world applica-
tions. The hyperparameters optimization analysis is described
in Table 3.

IV. RESULTS
Machine learning has shown great potential in improving
medical diagnosis accuracy and efficiency in recent years.
Much research has been conducted to explore the use of
machine learning models for diagnosing various diseases.
The results validations, and discussions of our proposed study
are analyzed in this section. Results of the applied model in
comparisons and their evaluation metrics are also discussed.

This study’s experimental setup involved utilizing the
Google Colab environment with a graphical processing
unit (GPU) backend, which provides efficient processing

FIGURE 7. Distribution of Labels.

FIGURE 8. The time series-based performance analysis of conventional
neural network during training.

capabilities. The system used in the experiment had 13 GB
RAM and 90 GB disk space, providing sufficient memory
and storage for the tasks at hand. The Python 3 program-
ming language was used to build machine and deep learning
models due to its flexibility and ease of use. The models
were evaluated by measuring parameters such as runtime
computation, accuracy, precision, recall, and F1 score, which
are critical in determining the performance and effectiveness
of the models developed. The dataset includes observations
from two classes: Anterior MI infarction (435) and Inferior
MI infarction (423) as shown in Figure 7.

A. RESULTS WITH CONVENTIONAL NEURAL NETWORK
The performance results with the classical conventional neu-
ral network are analyzed in this section. The time series-based
performance validation of the applied conventional neural
network during training is analyzed in Figure 8. The analysis
shows that the training loss score values are high during the
first three training epochs. Low accuracy scores are achieved
during the first three epochs of training. With the increase
in the number of epochs, the loss scores are decreased, and
the accuracy scores are increased. The analysis concludes that
the applied conventional neural network achieved above 80%
accuracy at the final epoch.

The comparative performance results of applied classical
conventional neural networks for unseen testing data are ana-
lyzed in Figure 9. The bar chart analysis is based on accuracy,
precision, and f1metrics scores. Themodel achieved an accu-
racy score of 87%, a precision score of 76%, and an f1 score of
86%. Only the precision metric scores are less in comparison.
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FIGURE 9. The performance metrics analysis of conventional neural
network for unseen test data.

TABLE 4. Results comparisons with the proposed CSFE-based feature
extraction technique.

The analysis concludes that the applied classical conventional
neural network achieved acceptable scores, however not the
highest, which can be further improved.

B. RESULTS WITH TRANSFER FEATURES
The comparative performance results with the transfer
learning-based features are analyzed in Table 4. The compar-
ative performance analysis is based on accuracy, precision,
recall, f1-score, and class-wise report.

The analysis shows that the appliedDTC, SVM, and SGDC
models achieved poor performance scores. The applied RFC
method achieved an acceptable performance score in compar-
ison, but not the highest. Finally, the proposed KNC model
achieved the highest performance accuracy score of 98% for
detecting the Anterior and Inferior patients using the transfer
features. The bar chart-based performance comparison anal-
ysis of applied machine learning models with the proposed
CSFE feature extraction technique is illustrated in Figure 10.
The analysis shows that SVM and SGDC achieved very poor
performance scores with transfer features. The applied RFC
and DTC techniques achieved an acceptable score but not
the highest. The proposed KNC method achieved the highest
scores for all performance metrics in comparison.

The performance scores of each applied machine learning
method are summarized using the confusion matrix analysis,
as shown in Figure 11. The confusion matrix is based on the
difference between the actual and predicted classes, which
shows the error rate applied models achieve. The analysis
shows that the RFC, DTC, SVM, and SGDC achieved a high
error rate in comparison. The analysis concludes that the
proposed KNC technique achieved less error rate, validating
the high-performance scores.

FIGURE 10. The bar chart-based performance comparison analysis of
applied technique with proposed.

FIGURE 11. The confusion matrix analysis of applied machine learning
techniques.

C. K-FOLD CROSS-VALIDATION ANALYSIS
The k-fold cross-validation analysis is applied to validate
the performance of each machine-learning technique as
described in Table 5. The transfer features dataset is divided
into 10 folds to validate the generalization of applied tech-
niques. The cross-validation analysis shows that the DTC,
SVM, and SGDC techniques achieved low k-fold perfor-
mance scores with high standard deviation values. The
proposed KNC achieved the highest k-fold accuracy score
of 98% with low standard deviation values. The analysis
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TABLE 5. The K-fold cross-validation performance analysis of applied
techniques.

TABLE 6. The runtime computations complexity analysis of applied
techniques.

concludes that all applied techniques are generalized for pre-
dicting the Anterior and Inferior patients using the transfer
features.

D. COMPUTATION COMPLEXITY ANALYSIS
The runtime computation complexity analysis of applied
machine learning with transfer features is analyzed in Table 6.
The analysis shows that the RFC technique achieved the
highest computation score values. The proposed KNC tech-
nique achieves the minimum runtime computation complex-
ity score of 0.018 seconds. The analysis concludes that our
proposed study approach is computationally less complex and
efficient in detecting Anterior and Inferior patients.

The findings derived from the machine learning models
displayed in Table 4 and 5 offer significant insight that can
be applied in clinical settings. In the context of clinical envi-
ronments, achieving a high level of precision is frequently
considered crucial, particularly in situations where the occur-
rence of false positives is a cause for concern, as shown in
disease diagnostics, such as cancer detection. Ensuring a high
recall rate is of utmost importance in situations when the con-
sequences of failing to identify positive cases are significant,
such as in the detection of infectious diseases. Achieving a
favorable equilibrium between precision and recall, as shown
by a high F1-score, is considered optimal for generating
dependable predictions. The computational performance and
results of each model indicate that KNC exhibits efficiency,
rendering it advantageous for the purpose of real-time clinical
decision-making.

E. TRANSFER FEATURE SPACE VALIDATAION
The feature space validation analysis of extracted transfer
learning-based spatial features is illustrated in Figure 6.
The direct visualization of a dataset with a high number
of dimensions poses significant challenges, primarily stem-
ming from the inherent constraints of human perception.
Nevertheless, it is possible to employ dimensionality reduc-
tion techniques and other visualization methods in order
to investigate and acquire valuable insights from datasets

FIGURE 12. The feature space representation analysis of extracted
transfer learning-based spatial features.

with a high number of dimensions. A frequently employed
strategy involves the utilization of dimensionality reduction
methodologies such as Principal Component Analysis (PCA)
or t-SNE to map the data onto a reduced-dimensional space,
either two-dimensional or three-dimensional while maintain-
ing specific structural characteristics intact. Principal Com-
ponent Analysis (PCA) is applied to the dataset, resulting in
the generation of a three-dimensional scatter plot. The first
three principal components are utilized as the respective x,
y, and z axes for the plot. The feature space representation
is based on extracted feature values corresponding to the
target class Anterior and Inferior. The analysis demonstrates
that transfer learning-based spatial features are more linearly
separable compared to the UWB radar-based image data for
applied machine learning techniques. This more linearly sep-
arable behavior of data results in achieving high-performance
accuracy scores in this study.

V. CHALLENGES AND LIMITATIONS
Although the presented study demonstrates significant
advancements in the field of myocardial infarction (MI)
detection and classification, it is crucial to recognize certain
challenges and limitations that necessitate careful attention.

• The present study makes use of a recently developed
dataset that relies on Ultra-Wideband (UWB) radar sig-
nals. Nevertheless, it is important to consider that the
size and variability of this dataset could potentially
impact the extent to which the findings can be applied
to a broader population. The model’s capacity to effec-
tively address the complexities and subtleties inherent in
real-world situations can be augmented by the inclusion
of a more comprehensive and heterogeneous dataset.

• Although the Convolutional Spatial Feature Engineer-
ing (CSFE) technique we have suggested demonstrates
promising outcomes, doing a thorough comparative
analysis with other feature extraction methods or cur-
rent techniques from the literature would enhance our
comprehension of its strengths and weaknesses.

• The dataset and models employed in our inves-
tigation may exhibit specificity towards a certain

97754 VOLUME 11, 2023



K. Zafar et al.: Deep Learning-Based Feature Engineering to Detect Anterior and Inferior MI

community or demographic. Caution and validation are
necessary when extrapolating the findings to diverse
populations characterized by varying genetic back-
grounds, lifestyles, and healthcare systems.

VI. CONCLUSION
Cardiovascular disease is recognized as a prominent world-
wide contributor to mortality. The monitoring of electro-
cardiograms (ECGs) and the timely detection of abnormal-
ities have a crucial role in reducing death rates associated
with myocardial infarction. Therefore, the development of
a non-invasive approach that can effectively and accurately
categorize various forms of myocardial infarction would
be highly advantageous. This study proposes the use of
advanced deep and machine learning techniques for the
detection and classification of patients with Anterior and
Inferior myocardial infarction. To conduct the experiments,
a newly created dataset consisting of Ultra-Wideband radar
signal-based images was used. A novel technique, called
convolutional neural network-based spatial features (CSFE)
was proposed to extract spatial features from the dataset.
The study compares the performance of several machine
learning techniques, including random forest, decision tree,
support vector machine, stochastic gradient descent classi-
fier, and k-nearest neighbors with the applied deep learn-
ing technique, convolutional neural network. The results
of the study indicate that the advanced machine learning
techniques, when used with the proposed CSFE technique,
achieved high-performance accuracy scores. Specifically, the
k-nearest neighbors’ technique outperformed the other tech-
niques, achieving a high-performance accuracy score of 98%
for detecting Anterior and Inferior patients. The methods
used in the study were fully hyperparameter tuned, and the
performance was validated using the k-fold cross-validation
method. For future work, the study aims to apply advanced
pre-trained neural network techniques to enhance perfor-
mance and collect more Anterior and Inferior related patient
datasets.

COMPETING INTERESTS
The authors declare that they have no competing interests.

AUTHORS CONTRIBUTIONS
• Kainat Zafar: Conceptualization, data curation, formal
analysis, writing—original draft, methodology, investi-
gation.

• Hafeez Ur Rehman Siddiqui: Methodology, investiga-
tion, software, supervision.

• Abdul Majid: Investigation, data curation.
• Adil Ali Saleem: Visualization, validation, software,
investigation

• Ali Raza: Writing—original draft, validation, software.
• Furqan Rustam: Writing—review and editing, valida-
tion, investigation.

• Sandra Dudley: Resources, supervision.

ETHICAL AND INFORMED CONSENT FOR DATA
‘‘Ethical considerations and informed consent were obtained
for data collection in this study. The research protocol and
procedures were reviewed and approved by the Khawaj
Fareed University and Sheikh Zayed Medical College and
Hospital, Rahim Yar Khan, Punjab, Pakistan. Participants
involved in the study were provided with a consent form
that outlined the purpose of the research, the nature of their
involvement, and themeasures taken to ensure confidentiality
and data protection. The dataset didn’t contain any personal
information about the Participants.’’

DATA AVAILABILITY
The data used in this study is available upon request. Inter-
ested researchers can contact Dr. Hafeez Ur Rehman Sid-
diqui (hafeez@kfueit.edu.pk) to request access to the data.
Requests will be reviewed and evaluated in accordance with
the ethical and legal guidelines governing data sharing.

REFERENCES
[1] M. Ahsan,M.Mahmud, P. Saha, K. Gupta, and Z. Siddique, ‘‘Effect of data

scaling methods on machine learning algorithms and model performance,’’
Technologies, vol. 9, no. 3, p. 52, Jul. 2021.

[2] World Health Organization, Cardiovascular Diseases. Accessed:
Apr. 10, 2023. [Online]. Available: https://www.who.int/news-room/fact-
sheets/detail/cardiovascular-diseases-(cvds)

[3] E. J. Benjamin, P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway,
A. P. Carson, A. M. Chamberlain, A. R. Chang, S. Cheng, and S. R. Das,
‘‘Heart disease and stroke statistics—2019 update: A report from the
American heart association,’’ Circulation, vol. 139, no. 10, p. 528,
2019.

[4] M. Bećkowski, ‘‘Acute coronary syndromes in young women—The scale
of the problem and the associated risks,’’ Kardiochir Torakochirurgia Pol.,
vol. 12, no. 2, p. 134, 2015.

[5] J. W. Hurst, R. A. Walsh, V. Fuster, and J. C. Fang, Hurst’s the
Heart Manual of Cardiology. New York, NY, USA: McGraw-Hill,
2013.

[6] H. Yang, ‘‘Multiscale recurrence quantification analysis of spatial cardiac
vectorcardiogram signals,’’ IEEE Trans. Biomed. Eng., vol. 58, no. 2,
pp. 339–347, Feb. 2011.

[7] M. J. Warner and V. S. Tivakaran, ‘‘Inferior myocardial infarction,’’ in
StatPearls. Treasure Island, FL, USA: StatPearls, Feb. 2023.

[8] J. D. Newman, D. Shimbo, C. Baggett, X. Liu, R. Crow, J. M. Abraham,
L. R. Loehr, L. M. Wruck, A. R. Folsom, andW. D. Rosamond, ‘‘Trends in
myocardial infarction rates and case fatality by anatomical location in four
United States communities, 1987 to 2008 (from the atherosclerosis risk in
communities study),’’ Amer. J. Cardiol., vol. 112, no. 11, pp. 1714–1719,
Dec. 2013.

[9] K. Bansal, M. Gore, and P. Nalabothu, ‘‘Anterior myocardial infarction,’’
StatPearls. Treasure Island, FL, USA: StatPearls Publishing, 2022.

[10] E. Burns and R. Buttner. (2023). Anterior Myocardial Infarction. LitFL.
Accessed: Jun. 22, 2023. [Online]. Available: https://litfl.com/anterior-
myocardial-infarction-ecg-library/

[11] (Mar. 24, 2015). Left Ventricle. Accessed: 20, 2023. [Online]. Available:
https://www.healthline.com/human-body-maps/circulatory-system

[12] Heart Anatomy. Accessed: May 20, 2023. [Online]. Available:
https://www.texasheart.org/heart-health/heart-information-
center/topics/heart-anatomy/

[13] Dilated Cardiomyopathy. Accessed: May 20, 2023. [Online]. Available:
https://www.hopkinsmedicine.org/health/conditions-and-diseases/dilated-
cardiomyopathy

[14] M. Zehender, W. Kasper, E. Kauder, M. Schonthaler, A. Geibel,
M. Olschewski, and H. Just, ‘‘Right ventricular infarction as an indepen-
dent predictor of prognosis after acute inferior myocardial infarction,’’New
England J. Med., vol. 328, no. 14, pp. 981–988, Apr. 1993.

[15] M. J. Warner and V. S. Tivakaran, ‘‘Inferior myocardial infarction,’’ in
StatPearls. Treasure Island, FL, USA: StatPearls Publishing, 2022.

VOLUME 11, 2023 97755



K. Zafar et al.: Deep Learning-Based Feature Engineering to Detect Anterior and Inferior MI

[16] T. Jernberg, P. Hasvold, M. Henriksson, H. Hjelm, M. Thuresson, and
M. Janzon, ‘‘Cardiovascular risk in post-myocardial infarction patients:
Nationwide real world data demonstrate the importance of a long-term
perspective,’’ Eur. Heart J., vol. 36, no. 19, pp. 1163–1170, May 2015.

[17] E. Nemati, M. Deen, and T. Mondal, ‘‘A wireless wearable ECG sensor for
long-term applications,’’ IEEE Commun. Mag., vol. 50, no. 1, pp. 36–43,
Jan. 2012.

[18] A. Khairuddin, K. K. Azir, and P. E. Kan, ‘‘Design and development of
intelligent electrodes for future digital health monitoring: A review,’’ IOP
Conf. Ser., Mater. Sci. Eng., vol. 318, Mar. 2018, Art. no. 012073.

[19] J. Crawford and L. Doherty, Practical Aspects of ECG Recording.
Keswick, U.K.: M&K Update Ltd., 2012.

[20] Y. Lee, J.-Y. Park, Y.-W. Choi, H.-K. Park, S.-H. Cho, S. H. Cho, and
Y.-H. Lim, ‘‘A novel non-contact heart rate monitor using impulse-radio
ultra-wideband (IR-UWB) radar technology,’’ Sci. Rep., vol. 8, no. 1,
p. 13053, Aug. 2018.

[21] L. Ren, Y. S. Koo, Y. Wang, and A. E. Fathy, ‘‘Noncontact heartbeat
detection using UWB impulse Doppler radar,’’ in Proc. IEEE Topical Conf.
Biomed. Wireless Technol., Netw., Sens. Syst. (BioWireleSS), Jan. 2015,
pp. 1–3.

[22] H.-U.-R. Siddiqui, A. Raza, A. A. Saleem, F. Rustam, I. D. T. Díez,
D. G. Aray, V. Lipari, I. Ashraf, and S. Dudley, ‘‘An approach to detect
chronic obstructive pulmonary disease using UWB radar-based temporal
and spectral features,’’ Diagnostics, vol. 13, no. 6, p. 1096, Mar. 2023.

[23] H. U. R. Siddiqui, A. A. Saleem, R. Brown, B. Bademci, E. Lee, F. Rustam,
and S. Dudley, ‘‘Non-invasive driver drowsiness detection system,’’ Sen-
sors, vol. 21, no. 14, p. 4833, Jul. 2021.

[24] H. U. R. Siddiqui, H. F. Shahzad, A. A. Saleem, A. B. Khan Khakwani,
F. Rustam, E. Lee, I. Ashraf, and S. Dudley, ‘‘Respiration based non-
invasive approach for emotion recognition using impulse radio ultra wide
band radar and machine learning,’’ Sensors, vol. 21, no. 24, p. 8336,
Dec. 2021.

[25] S. P. Rana,M.Dey, R. Brown, H. U. Siddiqui, and S. Dudley, ‘‘Remote vital
sign recognition through machine learning augmented UWB,’’ in Proc.
12th Eur. Conf. Antennas Propag., 2018, pp. 1–5.

[26] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, and M. Adam,
‘‘Application of deep convolutional neural network for automated detec-
tion of myocardial infarction using ECG signals,’’ Inf. Sci., vols. 415–416,
pp. 190–198, Nov. 2017.

[27] D. Sadhukhan, S. Pal, andM.Mitra, ‘‘Automated identification of myocar-
dial infarction using harmonic phase distribution pattern of ECG data,’’
IEEE Trans. Instrum. Meas., vol. 67, no. 10, pp. 2303–2313, Oct. 2018.

[28] L. Fu, B. Lu, B. Nie, Z. Peng, H. Liu, and X. Pi, ‘‘Hybrid network with
attention mechanism for detection and location of myocardial infarction
based on 12-lead electrocardiogram signals,’’ Sensors, vol. 20, no. 4,
p. 1020, Feb. 2020.

[29] V. Jahmunah, E. Y. K. Ng, T. R. San, and U. R. Acharya, ‘‘Automated
detection of coronary artery disease, myocardial infarction and congestive
heart failure using GaborCNN model with ECG signals,’’ Comput. Biol.
Med., vol. 134, Jul. 2021, Art. no. 104457.

[30] W. Liu, F. Wang, Q. Huang, S. Chang, H. Wang, and J. He, ‘‘MFB-
CBRNN: A hybrid network for MI detection using 12-lead ECGs,’’ IEEE
J. Biomed. Health Informat., vol. 24, no. 2, pp. 503–514, Feb. 2020.

[31] J. Zhang, F. Lin, P. Xiong, H. Du, H. Zhang, M. Liu, Z. Hou, and
X. Liu, ‘‘Automated detection and localization of myocardial infarction
with staked sparse autoencoder and TreeBagger,’’ IEEE Access, vol. 7,
pp. 70634–70642, 2019.

[32] K. Jafarian, V. Vahdat, S. Salehi, and M. Mobin, ‘‘Automating detec-
tion and localization of myocardial infarction using shallow and end-
to-end deep neural networks,’’ Appl. Soft Comput., vol. 93, Aug. 2020,
Art. no. 106383.

[33] J. Karhade, S. K. Ghosh, P. Gajbhiye, R. K. Tripathy, and U. R. Acharya,
‘‘Multichannel multiscale two-stage convolutional neural network for the
detection and localization of myocardial infarction using vectorcardiogram
signal,’’ Appl. Sci., vol. 11, no. 17, p. 7920, Aug. 2021.

[34] M. Hammad, M. H. Alkinani, B. Gupta, and A. A. A. El-Latif, ‘‘Myocar-
dial infarction detection based on deep neural network on imbalanced
data,’’Multimedia Syst., vol. 28, pp. 1373–1385, Jan. 2021.

[35] L. D. Sharma and R. K. Sunkaria, ‘‘Inferior myocardial infarction detec-
tion using stationary wavelet transform and machine learning approach,’’
Signal, Image Video Process., vol. 12, no. 2, pp. 199–206, Feb. 2018.

[36] T. Reasat and C. Shahnaz, ‘‘Detection of inferior myocardial infarction
using shallow convolutional neural networks,’’ in Proc. IEEE Region
Humanitarian Technol. Conf. (R-HTC), Dec. 2017, pp. 718–721.

[37] A. Gupta, E. Huerta, Z. Zhao, and I. Moussa, ‘‘Deep learning for
cardiologist-level myocardial infarction detection in electrocardiograms,’’
in Proc. 8th Eur. Med. Biol. Eng. Conf., Portoroz, Slovenia: Springer, 2021,
pp. 341–355.

[38] D. Rajan, D. Beymer, and G. Narayan, ‘‘Generalization studies of neural
network models for cardiac disease detection using limited channel ECG,’’
in Proc. Comput. Cardiology Conf. (CinC), vol. 45, Sep. 2018, pp. 1–4.

[39] C. Han and L. Shi, ‘‘ML-ResNet: A novel network to detect and locate
myocardial infarction using 12 leads ECG,’’ Comput. Methods Programs
Biomed., vol. 185, Mar. 2020, Art. no. 105138.

[40] E. Prabhakararao and S. Dandapat, ‘‘A weighted SVM based approach
for automatic detection of posterior myocardial infarction using VCG
signals,’’ in Proc. Nat. Conf. Commun. (NCC), Feb. 2019, pp. 1–6.

[41] M. Ghavami, A. Amini, and F. Marvasti, ‘‘Unified structure of basic UWB
waveforms,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 12,
pp. 1304–1308, Dec. 2008.

[42] A. Dhillon, A. Singh, and V. K. Bhalla, ‘‘A systematic review on
biomarker identification for cancer diagnosis and prognosis in multi-
omics: From computational needs to machine learning and deep learning,’’
Arch. Comput. Methods Eng., vol. 30, no. 2, pp. 917–949, Mar. 2023.

[43] A. Raza, K. Munir, and M. Almutairi, ‘‘A novel deep learning approach for
deepfake image detection,’’ Appl. Sci., vol. 12, no. 19, p. 9820, Sep. 2022.

[44] L. Xie, L. E. M. Wisse, J. Wang, S. Ravikumar, P. Khandelwal, T. Glenn,
A. Luther, S. Lim, D. A. Wolk, and P. A. Yushkevich, ‘‘Deep label fusion:
A generalizable hybrid multi-atlas and deep convolutional neural network
for medical image segmentation,’’ Med. Image Anal., vol. 83, Jan. 2023,
Art. no. 102683.

[45] M. Stojadinovic, B. Milicevic, and S. Jankovic, ‘‘Improved prediction
of significant prostate cancer following repeated prostate biopsy by the
random forest classifier,’’ J. Med. Biol. Eng., vol. 43, no. 1, pp. 83–92,
Feb. 2023.

[46] D. Colledani, P. Anselmi, and E. Robusto, ‘‘Machine learning-decision
tree classifiers in psychiatric assessment: An application to the diagno-
sis of major depressive disorder,’’ Psychiatry Res., vol. 322, Apr. 2023,
Art. no. 115127.

[47] A. Raza, H. U. R. Siddiqui, K. Munir, M. Almutairi, F. Rustam, and
I. Ashraf, ‘‘Ensemble learning-based feature engineering to analyze mater-
nal health during pregnancy and health risk prediction,’’ PLoS ONE,
vol. 17, no. 11, Nov. 2022, Art. no. e0276525.

[48] A. Raza, F. Rustam, H. U. R. Siddiqui, I. D. L. T. Diez, B. Garcia-Zapirain,
E. Lee, and I. Ashraf, ‘‘Predicting genetic disorder and types of disorder
using chain classifier approach,’’ Genes, vol. 14, no. 1, p. 71, Dec. 2022.

[49] R. Arian, A. Hariri, A. Mehridehnavi, A. Fassihi, and F. Ghasemi, ‘‘Pro-
tein kinase inhibitors’ classification using K-nearest neighbor algorithm,’’
Comput. Biol. Chem., vol. 86, Jun. 2020, Art. no. 107269.

KAINAT ZAFAR received the B.S. degree in
software engineering from Bahria University,
Islamabad, Pakistan, in 2016, and the M.S. degree
in computer science from the New Jersey Insti-
tute of Technology. She is currently pursuing the
Ph.D. degree in computer science with the Khwaja
Fareed University of Engineering and Informa-
tion Technology (KFUEIT), Rahim Yar Khan,
Pakistan. Her research interests include biomed-
ical engineering applications, image processing,

artificial intelligence, machine learning, and software project management.

HAFEEZ UR REHMAN SIDDIQUI (Student
Member, IEEE) received the B.Sc. degree in math-
ematics from The Islamia University Bahawalpur
(IUB), Pakistan, and the M.Sc. and Ph.D. degrees
in electronic engineering form London South
Bank University, in 2012 and 2016, respectively.
His research interests include biomedical and
energy engineering applications, data recognition,
image processing, and system embedded program-
ming IoT-based smart system incorporation with

machine learning. He is a Reviewer of the IEEE INTERNET OF THINGS JOURNAL.

97756 VOLUME 11, 2023



K. Zafar et al.: Deep Learning-Based Feature Engineering to Detect Anterior and Inferior MI

ABDUL MAJID is currently an Associate Pro-
fessor and the HOD of the Sheikh Zayed
Medical College/Hospital. His research interests
include biomedical engineering and cardiovascu-
lar disease.

ADIL ALI SALEEM received the B.S. degree in
computer science from The University of Lahore,
Lahore, Pakistan, in 2016, and the M.S. degree in
computer science from the Khwaja Fareed Uni-
versity of Engineering and Information and Tech-
nology (KFUEIT), Rahim Yar Khan, Pakistan,
in 2021, where he is currently pursuing the Ph.D.
degree with the Institute of Computer Science. His
research interests include the IoT-based smart sys-
tem embedded with machine learning, text mining,
and biomedical engineering.

ALI RAZA is currently pursuing the M.S. degree
in computer science with the Khwaja Fareed Uni-
versity of Engineering and Information Technol-
ogy (KFUEIT), Rahim Yar Khan, Pakistan. Since
February 2022, he has been a Visiting Lecturer
with KFUEIT. He is also an active Researcher in
the Internet of Things and data science.

FURQAN RUSTAM received the M.C.S. degree
from the Department of Computer Science,
The Islamia University of Bahawalpur, Pakistan,
in October 2017, and the master’s degree in com-
puter science from the Department of Computer
Science, Khwaja Fareed University of Engineering
and Information Technology (KFUEIT), Rahim
Yar Khan, Pakistan. He is currently pursuing the
Ph.D. degree with the School of Computer Sci-
ence, University College Dublin, Ireland. He is

also a Research Assistant with the Fareed Computing and Research Cen-
ter, KFUEIT. His recent research interests include data mining, machine
learning, artificial intelligence, mainly working on creative computing, and
supervised machine learning.

SANDRA DUDLEY (Member, IEEE) was born in
Carlow, Ireland. She received the B.Sc. (Hons.)
and Ph.D. degrees in physics from the Univer-
sity of Essex, Essex, U.K., in 1998 and 2004,
respectively. She spent two years as a Postdoc-
toral Researcher with the University of Essex
on a British Telecom Project resulting in world-
record broadband-system power consumption for
last mile access. In August 2009, she joined the
School of Engineering, London South Bank Uni-

versity, London, U.K., as a Lecturer, and became a Principal Lecturer,
in March 2014. Her research interests include physical layer system design,
automated health technologies, data recognition, optical-wireless systems,
and solution finding for the broadband urban-rural divide. She is a reviewer
of IET and IEEE journals.

VOLUME 11, 2023 97757


