
Received 4 July 2023, accepted 26 August 2023, date of publication 6 September 2023, date of current version 12 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3312383

Contrastive Learning Methods for Deep
Reinforcement Learning
DI WANG , (Member, IEEE), AND MENGQI HU , (Member, IEEE)
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60609, USA

Corresponding author: Di Wang (dwang66@uic.edu)

This work was supported by the National Science Foundation under Grant CMMI 1634738.

ABSTRACT Deep reinforcement learning (DRL) has shown promising performance in various application
areas (e.g., games and autonomous vehicles). Experience replay buffer strategy and parallel learning strategy
are widely used to boost the performances of offline and online deep reinforcement learning algorithms.
However, state-action distribution shifts lead to bootstrap errors. Experience replay buffer learns policies
with elder experience trajectories, limiting its application to off-policy algorithms. Balancing the new and
the old experience is challenging. Parallel learning strategies can train policies with online experiences.
However, parallel environmental instances organize the agent pool inefficiently with higher simulation or
physical costs. To overcome these shortcomings, we develop four lightweight and effective DRL algorithms,
instance-actor, parallel-actor, instance-critic, and parallel-critic methods, to contrast different-age trajectory
experiences. We train the contrast DRL according to the received rewards and proposed contrast loss,
which is calculated by designed positive/negative keys. Our benchmark experiments using PyBullet robotics
environments show that our proposed algorithmmatches or is better than the state-of-the-art DRL algorithms.

INDEX TERMS Contrastive learning, deep reinforcement learning, different-age experience, experience
replay buffer, parallel learning.

I. INTRODUCTION
Deep neural network provides powerful representation capa-
bilities [1] for reinforcement learning. In the past few years,
deep reinforcement learning (DRL) has achieved great suc-
cess in various areas, such as market strategy [2], [3], robot
control [4], [5], and task planning [6], [7], [8]. Through
repeated interactions among agents and environments, DRL
learns a policy to maximize the expected return, represented
as a state or state-action value function. The actor-critic
architecture [9] is commonly used in DRL, where the actor
network generates actions based on state input, and the
critic network approximates the state or state-action value
function.

The effectiveness of the experience Replay buffer strategy
is proven to boost the performances of deep reinforcement
learning algorithms. Experience data is stored in an extra
buffer and sampled for model training. The replay buffer
can only be adopted by off-policy algorithms (e.g., deep

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Abdur Razzaque .

deterministic policy gradient) since it stores data related to
older policies. Lee et al. [10] observe that for the off-policy
algorithms, state-action distribution shift leads to severe boot-
strap error. Kaplanis et al. [11] study the balance between
the new and the old experiences. If primarily focusing on
recent experiences, the agent can easily forget what to do
when it revisits states it has not seen in a while, resulting in
catastrophic forgetting and instability. However, by retaining
too many old experiences, the agent might focus too much
on replaying states that are irrelevant to its current policy,
resulting in a sluggish and noisy improvement in its perfor-
mance. Similarly, Zhang and Sutton [12] prove that using
‘‘different-age’’ experiences directly influences performance.
Novati and Koumoutsakos [13] emphasizes the importance
of the similarity between the old and most recent policies.
Wang et al. [14] analyze the challenges of balancing policy
regularization and policy cloning in offline RL methods.
In this paper, we try to solve this issue from the perspective
of the contrastive learning aspect. The proposed algorithm
balances the trade-off between the old and the current policies
through policy regularization. Another issue caused by the

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 97107

https://orcid.org/0000-0002-7992-7743
https://orcid.org/0000-0001-5012-3066
https://orcid.org/0000-0002-2542-1923

D. Wang, M. Hu: Contrastive Learning Methods for DRL

unbalanced usage of ‘‘different-age’’ policies is the compati-
bility issue [15].

Parallel learning strategies are effective for the online
DRL algorithms, where asynchronous execution on par-
alleled environment instances [16] collects less correlated
online experiences for training purposes. However, paral-
leled execution of multiple environment instances requires
a large overhead of computational resources for environ-
mental simulations or physical environmental resources.
Besides, Clemente et al. [17] study the issues of effective-
ness of using parallel agents’ experiences. On the other
hand, a parallel learning strategy can also be used for
the offline DRL algorithms to fully use the computation
resources, and collected experiences will be stored in a com-
mon replay buffer. The issue of experience replay buffer
discussed before also exists under this case. Moreover, the
parallel learning method provides a promising way to regu-
larize policies by balancing cloned old policies and focus-
ing on current ones. We try to illustrate this critical issue
deeply and propose four possible combination methods.
Based on our experiments, policy regularization and this
balance between old and current policies can improve the
performance of RL. These results match the conclusions of
existing works [11], [12], while we use different methods in
this paper.

This research proposes a contrast learning enhanced DRL
algorithm to address these issues. Contrast learning is an
unsupervised learning approach to distinguishing the positive
examples of similar objects and negative examples of dis-
similar objects [18]. The contrastive examples are stored in
a query dictionary [19]. The representation vectors of target
objects (called a query) should closely approximate the posi-
tive examples (called positive keys) and differentiate negative
examples (called negative keys). It is demonstrated that con-
trast learning can boost data efficiency in image recognition
where the performance of the proposed contrast predictive
model outperforms other semi-supervised and supervised
learning methods using only 1% of the dataset [20]. The
contrast information extracted from experience trajectories
can stabilize the observation data, de-correlate the updating
process, and thus improve the model performances. However,
there are three challenges to integrating DRL with contrast
learning: (i) How to use contrastive learning to balance
‘‘different-age’’ experiences, especially the elder experience
and the newest experiences? (ii) How to generate positive and
negative samples? (iii) How to design an efficient contrast
loss function for the training?

To address these challenges, we proposed four contrast
deep reinforcement learning (CDRL) methods: instance-
actor, parallel-actor, instance-critic, and parallel-critic.

• In the instance-actor method, the target actor network
generates negative keys, and the actor network generates
a query using the same mini-batch sample data from the
experience replay buffer. The target actor network uses

the most recently experienced data to generate positive
keys.

• In the parallel-actor method, an extra actor network is
trained to generate positive/negative keys with the most
recently experienced data. The critic network is used to
classify the positive and negative keys based on value
estimations.

The instance-critic and parallel-critic methods are similar
to the above two methods. More details are provided in
Section IV. To propose a proper contrast loss function,
we measure the distances between the query and posi-
tive/negative keys using the Jensen-Shannon divergence and
add importance weights to adjust the loss function values
based on the quality of positive/negative keys. We hypothe-
size that the quality of positive/negative keys is high when the
distance between the positive and negative keys is significant.
AMonte Carlo method is adopted to calculate the expectation
of the contrast loss function.

We implement the CDRL algorithms based on a deep
deterministic policy gradient (DDPG), since many advanced
algorithms are developed from DDPG, like twin delayed
deep deterministic (TD3). The performance of our pro-
posed CDRL algorithms is compared with six state-of-the-art
reinforcement learning algorithms, including DDPG [21],
D4PG [22], TD3 [23], PPO [24], SAC [25], and A2C [16].
The simulation results on PyBullet robotics environments
show that the proposed CDRL can boost performances and
convergence speed. The Pybullet environments are widely
used in research of DRL. They are free but a little bit different
from the famous MuJoCo environments.

In summary, our main contributions are:

1) To the best of our knowledge, the integration of
contrast learning and DRL in balancing different-age
experiences is less studied. Contrast learning can
enhance the actor/critic network representation ability
and knowledge learned from different-age trajecto-
ries. The format of the parallel learning method is
not novel. However, it serves as a great cutting point
for the combination of contrastive learning and rein-
forcement learning, and this research aspect is less
studied.

2) To study contrast learning from different viewpoints,
we propose four contrast learning methods, each
of which adopts a different way to generate posi-
tive/negative examples with different merits.

3) A novel contrast loss function is proposed, considering
the quality of positive/negative keys.

The organization of the remainder of this paper is as
follows: Section II illustrates the existing related work.
Section III describes the foundation of reinforcement learning
and contrast learning. In Section IV, we show details of
our proposed CDRL algorithms. Section V demonstrates the
advantages of our proposed method over the state-of-the-
art. In Section VI, we conclude our proposed approach and
discuss future studies.

97108 VOLUME 11, 2023

D. Wang, M. Hu: Contrastive Learning Methods for DRL

II. RELATED WORK
In the past few years, extensive studies have focused on
boosting the performance of DRL with various actor-critic
algorithms. Schulman et al. [26] propose the trust region
policy optimization algorithm for improving the policy
monotonically. Kronecker-factored trust region is introduced
by Wu et al. [27] to calculate the natural gradient effi-
ciently. Silver et al. [21] introduce the deterministic policy
gradient algorithm to replace the stochastic policy gradi-
ent algorithm with the experience replay buffer strategy.
Fujimoto et al. [23] approximate the actual state-action value
function with the minimum values of two critic networks’
estimations. Millán-Arias et al. [28] learn the environmental
dynamics with extra provided advice. Wang [29] combine
Hebbian learning with DRL to boost data efficiency.

Experience replay buffer and parallel learning are hot
research topics in DRL. Kong et al. [30] study the unbal-
anced utilization of the experience replay buffer. A half-
normal sampling probability window is proposed to sample
online experiences with higher probabilities. Li et al. [31]
propose to use the trajectory experience replay buffer to
overcome the disadvantages of offline algorithms. Similarly,
Yang et al. [32] propose an episodic memory as complemen-
tary to the experience replay buffer. Luu andYoo [33] propose
a Hindsight Goal Ranking (HGR) sampling algorithm for the
experience replay buffer.

Schmitt et al. [34] enable the participating agents to share
their experience with a standard replay module. Similar to
A3C, Nair et al. [35] propose a distributed learning architec-
ture for deep Q-network [36], which includes parallel actors,
parallel learners, a distributed neural network, and a dis-
tributed experience replay buffer. Grounds and Kudenko [37]
propose a parallel SARSA algorithmwhere agents are trained
separately and share weights periodically. Horgan et al. [38]
propose using multiple actors with a shared neural network to
interact with environments. A learner is employed to sample
data and update the parameters of the shared neural net-
work. Nair et al. [35] deploymultiple DQN agents on parallel
environment instances to collect massive experience into the
experience replay buffer.

Contrast learning provides a new unsupervised learning
framework, which attracts increasing attention. He et al. [39]
propose a dynamic dictionary constructor with the momen-
tum contrast strategy, which could decouple the dictionary
size from the mini-batch size and maintain consistency.
Wu et al. [40] put all positive/negative keys in a memory
bank. Hadsell et al. [19] propose two loss functions for simi-
lar and dissimilar pairs and restrict the dissimilar pairs within
a margin. Wu et al. [40] propose a non-parametric softmax
loss function to maximize the distinction between instances.
Besides, the noise-contrastive estimation [41] is used to
approximate the softmax value. Moreover, Bell and Bala [18]
focus on learning similarity metrics with contrast learning
and evaluate the performances of embedding by training
with contrastive loss, object classification softmax loss, and
both. Tian et al. [42] propose a contrastive multiview coding

method that captures information shared between multiple
sensory views. Chopra et al. [43] propose a contrast learning
method with a similarity metric to address the data unbalance
issue. Srinivas et al. [44] prove the success of contrastive
unsupervised representations in improving the performance
of DRL by finding better feature vectors of input images.
Like [45], Zhu et al. utilize inputting images to generate
positive and negative keys, restricting the proposed algorithm
to environments with video inputs. Unlike our paper, our
work focuses on efficient parallel learningmethods to balance
different-age experiences instead of finding powerful feature
vectors on image inputs.

III. BACKGROUND
A. ACTOR-CRITIC REINFORCEMENT LEARNING
Reinforcement learning is an efficient approach to learn-
ing the decision-making process through agent-environment
interactions. Given the environment state st ∈ S at time
step t , the agent chooses actions at ∈ A following a policy
π : S 7→ A. Here, S and A denote the state space and the
action space, respectively. After executing the actions at , the
agent receives immediate reward rt from the environment and
transits into the next state st+1 based on the transition function
satisfying p(st+1 | s1, a1, . . . , st , at) = p(st+1 | st , at). Then
the agent generates the next action at+1 and repeats the above
process until the decision process is terminated. The objective
function of DRL is the expectation of return represented as
J (π) = E[Rγ

t | π], where the return is denoted in Eq. (1).

Rγ
t =

∞∑
i=t

γ i−tr(si, ai), 0 < γ < 1 (1)

Here, we take the deterministic policy gradient algorithm
as an example for demonstration [46]. State-action value,
or named as Q value, is the foundation of DDPG. Given
st , at , π and the discounted state distribution ρπ ,Q value can
be represented as in Eq. (2).

Qπ (st , at) = Es∼ρπ ,a∼π [R
γ
t | st , at] (2)

where ρπ (s′) :=
∫
S
∑
∞

t=1 γ t−1p1(s)p(s → s′, t, π)ds [21].
According to the chain rule, Q value can be calculated by
Eq. (3).

Qπ (st , at) = Es∼ρπ (r(st , at)

+ γ Eat+1∼π [Qπ (st+1, at+1)]) (3)

Experience replay buffer is utilized in DDPG. β is the elder
stochastic behavior policy sampled from the replay buffer.
ρβ (s′) :=

∫
S
∑
∞

t=1 γ t−1p1(s)p(s → s′, t, β)ds. The actor
network and the critic network are parameterized by φ and
θ , respectively. The performance objective and its gradient
can be written as

Jβ (πφ) =
∫
S
ρβ (s)Qπ (s, πφ(s))ds (4)

h

θ

Jβ (πφ) ≈ Es∼ρβ [
h

θ

πφ(s)
h

a

Qπ (s, a) |a=πφ (s)] (5)

VOLUME 11, 2023 97109

D. Wang, M. Hu: Contrastive Learning Methods for DRL

FIGURE 1. Contrastive learning mechanism (The parameters of the query
encoder are optimized based on the contrastive loss. The parameters of
the key encoder are optimized with soft update strategy or trained
separately.).

The loss function of the critic network can be approximated
as in Eq. (6).

L(θ) = Est∼ρβ ,at∼β [(yt − Qθ (st , at | θ))2] (6)

where yt = r(st , at) + γQθ ′ (st+1, µθ ′ (st+1) | θ ′), and target
critic network and target actor network are parameterized by
θ ′ and θ ′, respectively.

B. CONTRAST LEARNING
Contrast learning is to build an encoded keys dictionary
{k−1 , k−2 , . . . , k−M , k+}. When an encoded query representa-
tion vector q comes, one positive key representation vector,
k+, matches q. The remaining M keys {k−1 , k−2 , . . . , k−M }
are negative keys k−. A contrastive loss is a function
L ′(q, k+, k−) whose value is low when q is similar to its
matched k+ and dissimilar to k−. As illustrated in Fig. 1, the
parameters of the query encoder are trained to minimize the
contrastive loss. The main challenges of contrastive learning
are the selection of key encoders and the contrast loss con-
struction. In the traditional application of contrast learning
in vision tasks, the positive key inputs are generated easily
by a data augmentation strategy like picture rotation. The
negative key inputs indicate the picture of other categories.
Thus, the quality of the key dictionary is guaranteed. How-
ever, in DRL, the environment states and the actions may
be continuous. The quality of the keys dictionary can not be
taken for granted. Moreover, the size of the ideal dictionary
is enormous. According to these observations, we propose a
new contrast loss function considering the quality of the key
dictionary.

C. CONTRAST LOSS FUNCTION
One challenge of contrastive learning is to find a proper
loss function. Unimodal loss functions, like mean squared
error, are not very useful because representation vectors can
be represented as a high-dimensional conditional probabil-
ity distribution. The contrast loss is designed to minimize
D(P(q | inputq),P(k+ | inputk+)) and maximize D(P(q |

inputq),P(k− | inputk−)), where D is the distance estimator.
inputq, inputk+ , and inputk− are the corresponding encoder
inputs. Using the Jensen-Shannon divergence as a distance
estimator, we propose a new contrast loss function for its
application in DRL, as shown in Eqs. (7-8).

L ′ =
M∑
i=1

(exp(D(k+, q))− exp(D(k−i , q)))wi (7)

wi =
exp(D(k+, k−i))∑M
j=1 exp(D(k+, k−j))

(8)

where wi is an importance weight parameter measuring the
quality of the pair of keys (k+, k−i). If the distance between
k+ and k−i is small, the key pair provides less information.
If the above distance is large, the key pair provides more
information. From the viewpoint of the expectation, L ′ can
be rewritten as (9).

L ′ = Epk+,k−
(exp(D(k+, q))− exp(D(k−, q))) (9)

where pk+,k− refers to the quality probability of the sampled
keys dictionary. The Jensen-Shannon divergence operator
D(a, b) is calculated according to (10-11).

D(a, b) =
1
2
KL

(
a
∣∣∣∣a+ b

2

)
+

1
2
KL

(
b
∣∣∣∣a+ b

2

)
(10)

KL(a||b) = −
∑
x∈X

a(x) log
a(x)
b(x)

(11)

Thus, the actor’s parameters φ are updated according to the
gradient calculated in (12), and the critic’s parameters θ are
updated according to the gradient calculated in (13).

h

φ

J̃ (φ) =
h

φ

J (φ)+ β1

h

φ

L ′(φ) (12)

h

θi

L̃(θ) =
h

θ

L(θ)+ β2

h

θ

L ′(θ) (13)

where β1 and β2 are hyperparameters. In this paper, we set
β1 = 0.5 and β2 = 0.5.
We referenced and tested several popular loss functions.

Based on our experiments, the JSD-based loss function is
better than the others. A potential reason is that trajectories
in the replay buffer are collected with different policies and
may differ from the current policy. The probability distribu-
tions of some policies may have less overlapped areas. The
JSD-based loss function is symmetric and is designed to solve
this headache. As for the training process, we do not pass the
gradient through the parallel networks. Of course, thismethod
is feasible. In this paper, we add extra sample batches in each
time step. Compared with the baseline, we use the ‘‘bigger’’
batch size. However, this operation will not influence the
complexity largely.

IV. CONTRASTIVE DEEP REINFORCEMENT LEARNING
METHODS
This section discusses the four CDRL methods. The differ-
ences lie in the approaches to generating positive and negative
keys.

97110 VOLUME 11, 2023

D. Wang, M. Hu: Contrastive Learning Methods for DRL

Algorithm 1 Pseudocode of the Instance-Actor Method
1: Initialize critic networks Qθ1 (s, a | θ1), target critic net-

works Qθ ′1
(s, a | θ ′1) with θ ′1 ← θ1, actor network πφ(s),

target actor network πφ′ (s) with φ′ ← φ, experience
replay buffer with size N .

2: for episode k = 1 to K do
3: for t = 1 to Tk do
4: Observe state st , and generate action at =

πφ(st)+ ηt where ηt denotes a random process.
5: Execute action at , receive reward rt , next state
st+1.

6: Add one transition (st , at , rt , st+1) to replay
buffer.

7: Sample a minibatch of b1 transitions
[st , at , rt , st+1]b1 . Calculate the query vector πφ(sb1)
and the negative keys πφ′ (sb1).

8: Fetch the recent experienced minibatch of
b2 transitions [st]b2 . Calculate the positive keys πφ′ (sb2).

9: Update critic with the loss function in Eq. (6).
10: Calculate the contrast loss with the query vector,

positive and negative keys according to Eq. (9). Update
actor with the performance function with the modified
loss function Eq. (12).

11: Update the target actor and the target critic net-
works with the soft update trick.

12: end for
13: end for

FIGURE 2. Instance-actor contrastive learning method.

A. INSTANCE-ACTOR METHOD
In this method, the actor network is considered a query
encoder, and the target actor network is considered a key
encoder. As shown in Fig. 2, in each training time step,
we sample a batch of data [st , at , rt , st+1]b1 from the replay
buffer and [st]b2 indicates the most recent experienced trajec-
tories. Actor network πφ takes [st]b1 as inputs and generates
query. Target actor network πφ′ takes [st]b1 as inputs and
generates the negative key. Because the target actor network
utilizes the temporal difference error strategy and the delay
updating strategy, the target actor network parameters are
updated behind the actor network parameters. To keep explor-
ing new areas in the action space, the output of the actor
network and the target network should be different, which
prohibits falling into near-optimal actions. Thus, we maxi-
mize the distance between the query and the negative keys
according to Eq. (12). On the other hand, the target actor

FIGURE 3. Parallel-actor contrastive learning method.

network πφ′ takes the most recent experienced trajectories
as inputs and generates the positive key. Since the policy
keeps being trained iteratively, the current policy should be
better than the elder policy resulting in the recently experi-
enced state having a higher possibility of being visited by the
optimal policy than the elder state. Thus we should minimize
the distance between the query and the positive key to learn
the knowledge embedded in online policy and mitigate the
side effects of the off-policy. The pseudocode is presented in
Algorithm 1.

B. PARALLEL-ACTOR METHOD
In this method, one actor network is the query encoder,
and the remaining n actor networks are the key encoders.
As shown in Fig. 3, in each training time step, we sample
a batch of data [st , at , rt , st+1]b1 from the replay buffer.
Actor network πφ takes [st]b1 as inputs and generates query.
Meanwhile, wemaintain extra n actor networksπφ1 , . . . , πφn .
These actor networks take most recent experienced trajec-
tories [st]b2 as inputs and generate the dictionary {k+, k−}.
A ranker sorts the keys based on the value estimates provided
by the critic network Qθ1 . The key with the highest Q value
is the positive key k+, and the remaining keys are classified
as the negative keys k−. By minimizing the distance between
the query and the positive key and maximizing the distance
between the query and the negative keys as in Eq. (12),
the actor network πφ directly learns the representations of
online policies from different peers. Since the n actor net-
works are trained separately based on the same experience
replay buffer, we raise the data efficiency by times.Moreover,
we exploit the difference in peers’ training trajectories. The
positive key labels are currently the best policy, and the
negative keys are labeled as bad policy examples. DDPG
algorithm selects actions deterministically without evalua-
tions over the action spaces. Integrating this information
through contrastive learning leads to raising the exploration
ability. The pseudocode is presented in Algorithm 2.

C. INSTANCE-CRITIC METHOD
This method adopts the critic network as the query encoder
and the target critic network as the keys encoder. As shown in
Fig. 4, in each training time step, we sample a batch of data
[st , at , rt , st+1]b1 from the replay buffer and [st , at]b2 denotes
the most recent experienced data. Critic network θ takes
[st , at]b1 as inputs and generates query. Target critic network

VOLUME 11, 2023 97111

D. Wang, M. Hu: Contrastive Learning Methods for DRL

Algorithm 2 Pseudocode of the Parallel-Actor Method
1: Initialize critic networks Qθ1 (s, a | θ1), target critic net-

works Qθ ′1
(s, a | θ ′1) with θ ′1 ← θ1, actor network πφ(s),

target actor network πφ′ (s) with φ′ ← φ, experience
replay buffer with size N .

2: Initialize n extra actor networks πφi (s) i=1,2,. . . n.
3: for episode k = 1 to K do
4: for t = 1 to Tk do
5: Observe state st , and generate action at =

πφ(st)+ ηt where ηt denotes a random process.
6: Execute action at , receive reward rt , next state
st+1.

7: Add one transition (st , at , rt , st+1) to replay
buffer.

8: Sample a minibatch of b1 transitions
[st , at , rt , st+1]b1 . Calculate the query vector πφ(sb1).

9: Fetch the recent experienced minibatch of
b2 transitions [st]b2 . Calculate n ∗ b2 keys πφi (sb2),
i=1,2,..n. and corresponding n ∗ b2 actions an∗b2 .

10: Rank keys according to the estimations of Q
value Qθ1 .(sb2 , an∗b2). b2 Keys with the highest Q values
are viewed as the positive keys, while the remaining serve
as the negative keys.

11: Update critic with the loss function in Eq. (6).
12: Calculate the contrast loss with the query vector,

positive and negative keys according to Eq. (9). Update
actor with the performance function in Eq. (12).

13: Update the extra n actors with the performance
function in Eq. (5).

14: Update the target actor and the target critic net-
works with the soft update trick.

15: end for
16: end for

FIGURE 4. Instance-critic contrastive learning method.

θ ′ takes [st , at]b2 as inputs and generates the positive key.
Meanwhile, target critic network θ ′ takes [st , at]b1 as inputs
and generates the negative keys. Because the target critic
network utilizes the delay updating strategy, the parameters
of the target critic network are updated behind the parameters
of the critic network. Fujimoto et al. [23] prove that more
updates of the critic network will provide more accurate esti-
mations. The output of the critic network and the target critic
network should be different, which overcomes underestima-
tion and overestimation to some extent. Thus, we maximize

Algorithm 3 Pseudocode of the Instance-Critic Method
1: Initialize critic networks Qθ1 (s, a | θ1), target critic net-

works Qθ ′1
(s, a | θ ′1) with θ ′1 ← θ1, actor network πφ(s),

target actor network πφ′ (s) with φ′ ← φ, experience
replay buffer with size N .

2: for episode k = 1 to K do
3: for t = 1 to Tk do
4: Observe state st , and generate action at =

πφ(st)+ ηt where ηt denotes a random process.
5: Execute action at , receive reward rt , next state
st+1.

6: Add one transition (st , at , rt , st+1) to replay
buffer.

7: Sample a minibatch of b1 transitions
[st , at , rt , st+1]b1 . Calculate the query vector
Qθ1 (sb1 , ab1) and the negative keys Qθ ′ (sb1 , ab1).

8: Fetch the recent experienced minibatch of
b2 transitions [st , at]b2 . Calculate the positive keys
Qθ ′ (sb2 , ab2).

9: Update actor with the loss function in Eq. (5).
10: Calculate the contrast loss with the query vector,

positive and negative keys according to Eq. (9). Update
critic with the performance function with the modified
loss function Eq. (13).

11: Update the target actor and the target critic net-
works with the soft update trick.

12: end for
13: end for

FIGURE 5. Parallel-critic contrastive learning method.

the distance between the query and the negative keys accord-
ing to Eq. (13). On the other hand, since the policy keeps
being trained iteratively, the current policy should be better
than the elder policy, resulting in the recently experienced
trajectories being more important than the elder trajectories.
As proved in [15], the learned knowledge from the recent
trajectories will solve the compatibility issue among the actor
and critic networks. Thus we should minimize the distance
between the query and the positive key. The pseudocode is
presented in Algorithm 3.

D. PARALLEL-CRITIC METHOD
This method adopts one of the critic networks as a query
encoder and extra critic networks as key encoders. As shown

97112 VOLUME 11, 2023

D. Wang, M. Hu: Contrastive Learning Methods for DRL

TABLE 1. Summary of four contrastive learning methods.

Algorithm 4 Pseudocode of the Parallel-Critic Method
1: Initialize critic networks Qθ1 (s, a | θ1), target critic net-

works Qθ ′1
(s, a | θ ′1) with θ ′1 ← θ1, actor network πφ(s),

target actor network πφ′ (s) with φ′ ← φ, experience
replay buffer with size N .

2: Initialize n extra critic networks Qθ̃i
i=1,2,. . . n.

3: for episode k = 1 to K do
4: for t = 1 to Tk do
5: Observe state st , and generate action at =

πφ(st)+ ηt where ηt denotes a random process.
6: Execute action at , receive reward rt , next state
st+1.

7: Add one transition (st , at , rt , st+1) to replay
buffer.

8: Sample a minibatch of b1 transitions
[st , at , rt , st+1]b1 . Calculate the query vector
Qθ1 (sb1 , ab1).

9: Fetch the recent experienced minibatch of
b2 transitions [st , at , rt , st+1]b2 . Calculate n∗b2 keysQθ̃i

,
i=1,2,..n.

10: Rank keys according to the MSE(Qθ̃i
, yt),

i=1,2,..n). b2 Keys with the lowest MSE values are
viewed as the positive keys, while the remaining serve
as the negative keys.

11: Update actor with the loss function in Eq. (5).
12: Calculate the contrast loss with the query vector,

positive and negative keys according to Eq. (9). Update
critic with the performance function with the modified
loss function Eq. (13).

13: Update the extra n critic with the performance
function in Eq. (6).

14: Update the target actor and the target critic net-
works with the soft update trick.

15: end for
16: end for

in Fig. 5, we sample a batch of data [st , at , rt , st+1]b1 from
the replay buffer, and [st , at , rt , st+1,]b2 denotes the most
recent experienced data. Critic networkQθ1 takes [st , at]b1 as
inputs and generates query. Meanwhile, we maintain n critic
networksQθ̃1

, . . . ,Qθ̃n
. These n critic networks take [st , at]b2

as inputs and generate the dictionary {k+, k−}. A ranker sorts
the keys based on the mean square errors (yt −Qθ̃1,...,n

)2. The
key with the lowest error is the positive key, and the remain-
ing is the negative one. Similarly, we minimize the distance
between the query and the positive key while maximizing the
distance between the query and the negative keys. Since the n

critics are trained separately with the same experience replay
buffer, we increase the data efficiency by times. Moreover,
we exploit the difference in peers’ training trajectories. The
positive key labels are currently the most accurate Q value,
and the negative keys are labeled as less accurate Q val-
ues. The idea of multiple critic networks is similar to TD3,
which has proven performance improvement. However, the
difference is that the most recently experienced trajectories
are utilized instead of randomly sampled from the buffer.
Moreover, Zhang et al. [47] find the underestimation issue in
TD3 in which two critic networks are utilized. They propose
to use three critic networks to find the balanced weights.
However, our proposed methods learn all critic networks’
representations. The pseudocode is presented in Algorithm 4.

Table 1 summarizes the differences among different pro-
posed methods. Policy improvement and policy evaluation
are two essential parts of DRL methods. Based on [48],
better policy evaluations can always lead to better policies.
Parallel-actor and parallel-criticmethodsmaintain extra num-
bers of actor networks and critic networks in the parallel-
learning framework. Besides, the introduction of the ranker
increases the complexity. Furthermore, the inaccurate esti-
mated Q value brings accumulated error in the ranker of the
parallel-actor method in the training process. On the other
hand, the parallel-critic method takes the stable y value in the
ranker.

The complexity of Q learning is intractable for the contin-
uous state-action spaces [49]. In this paper, we analyze the
time complexity of our proposed methods simply. Assume d
is the length of the episode and m is the training episodes.
DDPG visits each data point in the replay buffer multiple
times. s denotes the sampling times of each data point at
each time step. The complexity of DDPG is m2

∗ d2 ∗ s.
The complexity of the instance-actor and the instance-critic
methods are m2

∗ d2 ∗ s + m ∗ d ∗ b2, where b2 is the batch
size of the recent experience trajectories. The complexity of
the parallel-actor and the parallel-critic methods are (n+ 1)∗
m2
∗d2∗s+m∗d∗b2+m∗d∗b2∗log(b2). n extra parallel actor

networks or critic networks are maintained, and a sequencing
operation is required in the ranker operator.

Our proposed contrastive learning methods have higher
data efficiency than DDPG. Assume the batch size of DDPG
is b1. The total number of positive and negative keys is n times
of b1. In instance-actor and instance-critic methods, b2 =
n∗b1. For each time step, extra n times experience trajectories
will be utilized for the training purpose. In parallel-actor
and parallel-critic methods, b2 = b1. For each time step,
an extra 2 ∗ n times experience trajectories will be utilized

VOLUME 11, 2023 97113

D. Wang, M. Hu: Contrastive Learning Methods for DRL

TABLE 2. The maximum mean rewards of five proposed methods in four environments.

FIGURE 6. Performance comparisons among five proposed methods in four environments.

for the training purpose because extra n neural networks are
trained.

Similar to [21] and [39], the convergence of proposed
methods can be proved. According to Eq. 7, when our pro-
posed methods converge, positive keys and negative keys
are similar. Namely, D(k+, q) ≈ D(k−i , q). The proposed
contrastive loss approaches zero. Then we can refer to the
convergence proof of the DDPG method.

V. SIMULATION RESULTS
Our proposed algorithms are tested at six Pybullet environ-
ments (Ant, HalfCheetah, InvDoublePen, InvPenSwingup,
Hopper, Walker2d). Six benchmarks are from Maxim
Lapan [46], involving two popular online methods (A2C,
PPO) and four popular offline methods (SAC, DDPG, D4PG,
TD3). Implementation details of benchmarks can be found
at [46]. To match the basic settings of benchmarks, the actor
and critic networks comprise two fully connected neural
network layers with 400 and 300 hidden units. Here, the
300 hidden-unit layer indicates the logic layer. For simpli-
fication, we decrease the dimension from 300 to 20 with
another mean operator layer, which calculates the mean value
of every 15 dimensions. The sensitive analysis of these hyper-
parameters will be discussed later. The experience replay

buffer and batch size are 50,000 and 128, respectively. We set
the number of keys to 4 times. Thus, in instance-actor and
instance-critic methods, b2 = 4 ∗ 128. Based on our experi-
ments, simply increasing the batch size from 128 to 4∗128 in
the DDPG method can not boost the performance of received
rewards and convergence, which matches the conclusion
of [50]. In parallel-actor and parallel-critic methods, 4 extra
networks are trained, and b2 = 128.The sensitive analysis
of the number of keys will be discussed later. The Adam
optimizer is used for both actor and critic networks. The
ReLU activation operator is used in all layers. The learning
rate is 0.001.

The figure 6 shows the received mean rewards of five pro-
posed CDRLmethods in the training process of four environ-
ments. The total training time steps are 2e6. To plot the figure,
we run the testing every 1e4 time steps. The combined-all
CDRL algorithm means the combination of instance-actor,
parallel-actor, instance-critic and parallel-critic CDRL meth-
ods. These curves clearly show that the combined-all CDRL
method receives the maximum mean rewards and highest
convergency speed in these four environments. Parallel-
critic CDRL is better than parallel-actor CDRL in received
rewards and convergency speed, since inaccurate policy esti-
mations in the training process of parallel-actor CDRL may

97114 VOLUME 11, 2023

D. Wang, M. Hu: Contrastive Learning Methods for DRL

FIGURE 7. Performance comparisons among Parallel-critic CDRL and other benchmarks in six environments.

TABLE 3. The maximum mean rewards of Parallel-critic CDRL and other benchmarks in six environments.

introduce extra errors. In the parallel-critic CDRL method,
the y values are less biased. With the assistance of a parallel-
learning framework, parallel-critic and parallel-actor receive
larger maximum mean rewards and convergence speeds than
instance-critic and instance-actor methods. The convergence
of the instance-actor CDRL method is a little bit worse
than the others since the instance-actor CDRL utilizes the
target actor network to generate positive/ negative keys, and
the target actor network is conservative. Table 2 shows the
maximum mean rewards of five proposed CDRL methods
in four environments. For example, in the Ant environ-
ment, Combined-all CDRL is 3.04% larger than parallel-
critic CDRL, 7.27% larger than parallel-actor CDRL, 10.38%
larger than instance-actor CDRL, and 11.99% larger than
instance-critic CDRL in received maximum mean rewards
respectively. Similarly, in the HalfCheetah environment,
parallel-critic CDRL is 5.04% larger than parallel-actor
CDRL, 7.25% larger than instance-critic CDRL, and 12.75%
larger than instance-actor CDRL in received maximum mean
rewards respectively.

The figure 7 shows the received mean rewards of five
proposed CDRL methods in the training process of four
environments. The total training time steps are 2e6. To plot
the figure, we run ten times of testing every 1e4 time
steps. Typically, online methods require more training steps
than offline methods. But 2e6 is sufficient for the train-
ing purposes of offline methods. These curves clearly show
that the parallel-critic CDRL method receives the maxi-

mum mean rewards and highest convergency speed among
six benchmarks in these six environments. Table 3 shows
the maximum mean rewards of the proposed parallel-critic
CDRL method and six other benchmarks in six envi-
ronments. For example, in the HalfCheetah environment,
parallel-critic CDRL is 5.33% larger than TD3, 24.50%
larger than DDPG, and 41.67% larger than SAC in max-
imum mean rewards, respectively. In the Walker2D envi-
ronment, parallel-critic CDRL is 5.59% larger than TD3,
15.03% larger than DDPG, and 21.48% larger than SAC in
maximum mean rewards, respectively. In the InvDoublePen
environment, our proposed parallel-critic CDRLmethod con-
verges around 7e5 time steps, which is faster than the other
benchmarks.

As mentioned, implementation details of benchmarks can
be found at [46]. For fairness, we set the hidden units as
300 and then compress the dimension to 20 with the mean
operator. Figure 8 shows the sensitive analysis of hidden
units in the HalfCheetah environment of the parallel-critic
CDRL method. Decreasing the number of hidden units
from 300 to 100 causes the maximum mean rewards to
drop from 2010.44 to 1833.28, while increasing the dimen-
sion from 20 to 40 leads to the maximum mean rewards
rising from 2010.44 to 2163.32. In conclusion, reasonably
higher dimension hidden units involve more contrastive
information. However, high dimensions, like increasing the
dimension from 20 to 100, will increase the computation
cost hugely, which is not recommended. Figure 9 shows the

VOLUME 11, 2023 97115

D. Wang, M. Hu: Contrastive Learning Methods for DRL

FIGURE 8. Sensitivity analysis of hidden units in HalfCheetah
environment.

FIGURE 9. Sensitivity analysis of the total number of keys in HalfCheetah
environment.

sensitive analysis of the total number of keys in the HalfChee-
tah environment. The received maximum mean reward of
parallel-critic CDRL with 8 times keys is 2321.52, 6.59%
larger than the method with 6 times keys, and 15.47% larger
than the method with 4 times keys.

The advantages of the proposed contrast deep reinforce-
ment learning algorithm can be summarized below.

• Firstly, the mean maximum rewards of CDRL match
or are vastly better than the state-of-art algorithms.
Besides, the convergence speed of CDRL matches or is
higher than the others, and the standard deviation of the
mean rewards of DRL matches or is less than the others.

• Secondly, with the help of the contrast learning structure,
CDRL balances and learns from different-age experi-
ences. By utilizing online experiences, CDRL can over-
come the shortcomings of off-policy algorithms.

• Thirdly, unlike most parallel learning frameworks,
CDRL is more data-efficient and resource-saving with-
out parallel execution of environment instances.

• Lastly, positive and negative keys provide extra informa-
tion to assist the training process of DRL.

VI. CONCLUSION
The integration of deep learning and reinforcement learning
brings great success. The success of the experience replay
buffer strategy and parallel learning strategy has been proven

recently. The experience replay buffer stores data generated
by elder policies that differ from the current policy. The
state-action distributions shift leads to bootstrap error. If the
most recently experienced trajectories in the buffer keep
being sampled, off-policy algorithms will be degraded to
online policy algorithms. The issue of balancing different-age
experiences is challenging. The parallel learning strategy can
regularize policies via different experiences from parallel
environmental instances. However, these parallel environ-
mental instances require higher simulation or physical costs.
This paper introduces contrast learning into deep reinforce-
ment learning with four different contrast learning methods:
instance-actor, parallel-actor, instance-critic, and parallel-
critic methods. Negative and positive keys provide extra
information about different-age experiences. Our proposed
algorithms can have the advantages of both online and offline
policies. Besides, a new contrast loss is proposed based on
the quality of positive/ negative keys. Experiments prove that
our proposed algorithm can match or perform better than the
state-of-the-art DRL algorithms with six environments.

In the future, we will extend our contrast learning method
to multi-agent reinforcement learning algorithms. Compared
with the single-agent system, multi-agent deep reinforcement
learning is more complicated. Besides, the contrast learn-
ing among different agents will bring many advancements.
Moreover, the graph convolutional neural network [51] is a
promising alternative to the contrast learning method.

REFERENCES
[1] A. Amanlou, A. A. Suratgar, J. Tavoosi, A. Mohammadzadeh, and

A. Mosavi, ‘‘Single-image reflection removal using deep learning: A sys-
tematic review,’’ IEEE Access, vol. 10, pp. 29937–29953, 2022.

[2] Z. Shahbazi and Y.-C. Byun, ‘‘Machine learning-based analysis of cryp-
tocurrency market financial risk management,’’ IEEE Access, vol. 10,
pp. 37848–37856, 2022.

[3] T. Sun, D. Huang, and J. Yu, ‘‘Market making strategy optimization via
deep reinforcement learning,’’ IEEE Access, vol. 10, pp. 9085–9093, 2022.

[4] G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, ‘‘Reinforcement
learning-based cascade motion policy design for robust 3D bipedal loco-
motion,’’ IEEE Access, vol. 10, pp. 20135–20148, 2022.

[5] M. Rothmann and M. Porrmann, ‘‘A survey of domain-specific architec-
tures for reinforcement learning,’’ IEEE Access, vol. 10, pp. 13753–13767,
2022.

[6] D. Wang, M. Hu, and Y. Gao, ‘‘Multi-criteria mission planning for a
solar-powered multi-robot system,’’ in Proc. Int. Design Eng. Tech. Conf.
Comput. Inf. Eng. Conf., Aug. 2018, p. V02AT03A026.

[7] D. Wang, M. Hu, and J. D. Weir, ‘‘Simultaneous task and energy plan-
ning using deep reinforcement learning,’’ Inf. Sci., vol. 607, pp. 931–946,
Aug. 2022.

[8] L. Yun, D. Wang, and L. Li, ‘‘Explainable multi-agent deep reinforcement
learning for real-time demand response towards sustainable manufactur-
ing,’’ Appl. Energy, vol. 347, Oct. 2023, Art. no. 121324.

[9] J. Khalid, M. A. M. Ramli, M. S. Khan, and T. Hidayat, ‘‘Efficient
load frequency control of renewable integrated power system: A twin
delayed DDPG-based deep reinforcement learning approach,’’ IEEE
Access, vol. 10, pp. 51561–51574, 2022.

[10] S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin, ‘‘Offline-to-online reinforce-
ment learning via balanced replay and pessimistic Q-ensemble,’’ in Proc.
Conf. Robot Learn., 2022, pp. 1702–1712.

[11] C. Kaplanis, C. Clopath, and M. Shanahan, ‘‘Continual reinforcement
learning with multi-timescale replay,’’ 2020, arXiv:2004.07530.

[12] S. Zhang and R. S. Sutton, ‘‘A deeper look at experience replay,’’ 2017,
arXiv:1712.01275.

[13] G. Novati and P. Koumoutsakos, ‘‘Remember and forget for experience
replay,’’ in Proc. Int. Conf. Mach. Learn., 2019, pp. 4851–4860.

97116 VOLUME 11, 2023

D. Wang, M. Hu: Contrastive Learning Methods for DRL

[14] Z. Wang, J. J. Hunt, and M. Zhou, ‘‘Diffusion policies as an expressive
policy class for offline reinforcement learning,’’ 2022, arXiv:2208.06193.

[15] D. Wang and M. Hu, ‘‘Deep deterministic policy gradient with compatible
critic network,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 8,
pp. 4332–4344, Aug. 2023.

[16] V. Mnih, Ad. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, ‘‘Asynchronous methods for deep
reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 1928–1937.

[17] A. V. Clemente, H. N. Castejón, and A. Chandra, ‘‘Efficient parallel
methods for deep reinforcement learning,’’ 2017, arXiv:1705.04862.

[18] S. Bell and K. Bala, ‘‘Learning visual similarity for product design with
convolutional neural networks,’’ ACM Trans. Graph., vol. 34, no. 4,
pp. 1–10, Jul. 2015.

[19] R. Hadsell, S. Chopra, and Y. LeCun, ‘‘Dimensionality reduction by learn-
ing an invariant mapping,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. (CVPR), vol. 2, Jun. 2006, pp. 1735–1742.

[20] O. J. Hénaff, A. Srinivas, J. De Fauw, A. Razavi, C. Doersch, S. M. A.
Eslami, and A. van den Oord, ‘‘Data-efficient image recognition with
contrastive predictive coding,’’ 2019, arXiv:1905.09272.

[21] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. Int. Conf. Mach.
Learn., 2014, pp. 387–395.

[22] G. Barth-Maron, M.W. Hoffman, D. Budden,W. Dabney, D. Horgan, T. B.
Dhruva, A. Muldal, N. Heess, and T. Lillicrap, ‘‘Distributed distributional
deterministic policy gradients,’’ 2018, arXiv:1804.08617.

[23] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approxi-
mation error in actor-critic methods,’’ 2018, arXiv:1802.09477.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proxi-
mal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[25] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ 2018, arXiv:1801.01290.

[26] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, ‘‘Trust
region policy optimization,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[27] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, ‘‘Scalable
trust-region method for deep reinforcement learning using Kronecker-
factored approximation,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 5279–5288.

[28] C. C. Millán-Arias, B. J. T. Fernandes, F. Cruz, R. Dazeley, and
S. Fernandes, ‘‘A robust approach for continuous interactive actor-critic
algorithms,’’ IEEE Access, vol. 9, pp. 104242–104260, 2021.

[29] D. Wang, ‘‘Meta reinforcement learning with Hebbian learning,’’ in Proc.
IEEE 13th Annu. Ubiquitous Comput., Electron. Mobile Commun. Conf.
(UEMCON), Oct. 2022, pp. 0052–0058.

[30] S.-H. Kong, I. M. A. Nahrendra, and D.-H. Paek, ‘‘Enhanced off-policy
reinforcement learning with focused experience replay,’’ IEEE Access,
vol. 9, pp. 93152–93164, 2021.

[31] S. Li, O. Li, G. Liu, S. Ding, and Y. Bai, ‘‘Trajectory based prioritized
double experience buffer for sample-efficient policy optimization,’’ IEEE
Access, vol. 9, pp. 101424–101432, 2021.

[32] D. Yang, X. Qin, X. Xu, C. Li, andG.Wei, ‘‘Sample efficient reinforcement
learning method via high efficient episodic memory,’’ IEEE Access, vol. 8,
pp. 129274–129284, 2020.

[33] T. M. Luu and C. D. Yoo, ‘‘Hindsight goal ranking on replay buffer for
sparse reward environment,’’ IEEE Access, vol. 9, pp. 51996–52007, 2021.

[34] S. Schmitt, M. Hessel, and K. Simonyan, ‘‘Off-policy actor-critic with
shared experience replay,’’ 2019, arXiv:1909.11583.

[35] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria,
V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, S. Legg,
V. Mnih, K. Kavukcuoglu, and D. Silver, ‘‘Massively parallel methods for
deep reinforcement learning,’’ 2015, arXiv:1507.04296.

[36] W.Meng, Q. Zheng, L. Yang, P. Li, and G. Pan, ‘‘Qualitativemeasurements
of policy discrepancy for return-based deep Q-network,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 10, pp. 4374–4380, Oct. 2020.

[37] M. Grounds and D. Kudenko, ‘‘Parallel reinforcement learning with linear
function approximation,’’ in Adaptive Agents and Multi-Agent Systems III.
Adaptation and Multi-Agent Learning. Berlin, Germany: Springer, 2005,
pp. 60–74.

[38] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. van Hasselt, and D. Silver, ‘‘Distributed prioritized experience
replay,’’ 2018, arXiv:1803.00933.

[39] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, ‘‘Momentum contrast for
unsupervised visual representation learning,’’ 2019, arXiv:1911.05722.

[40] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, ‘‘Unsupervised feature learning
via non-parametric instance discrimination,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3733–3742.

[41] M. Gutmann and A. Hyvärinen, ‘‘Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models,’’ in Proc. 13th
Int. Conf. Artif. Intell. Statist., 2010, pp. 297–304.

[42] Y. Tian, D. Krishnan, and P. Isola, ‘‘Contrastive multiview coding,’’ 2019,
arXiv:1906.05849.

[43] S. Chopra, R. Hadsell, and Y. LeCun, ‘‘Learning a similarity metric
discriminatively, with application to face verification,’’ inProc. IEEECom-
put. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2005, pp. 539–546.

[44] A. Srinivas, M. Laskin, and P. Abbeel, ‘‘CURL: Contrastive unsupervised
representations for reinforcement learning,’’ 2020, arXiv:2004.04136.

[45] J. Zhu, Y. Xia, L. Wu, J. Deng, W. Zhou, T. Qin, T.-Y. Liu, and H. Li,
‘‘Masked contrastive representation learning for reinforcement learning,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3, pp. 3421–3433,
Mar. 2023.

[46] M. Lapan, Deep Reinforcement Learning Hands-On: Apply Modern RL
Methods,WithDeepQ-Networks, Value Iteration, PolicyGradients, TRPO,
AlphaGo Zero and More. Birmingham, U.K.: Packt Publishing Ltd, 2018.

[47] Z. Zhang, Z. Pan, and M. J. Kochenderfer, ‘‘Weighted double Q-
learning,’’ in Proc. Twenty-Sixth Int. Joint Conf. Artif. Intell., Aug. 2017,
pp. 3455–3461.

[48] D. Wang, ‘‘Reinforcement learning for combinatorial optimization,’’ in
Encyclopedia of Data Science and Machine Learning. Hershey, PA, USA:
IGI Global, 2023, pp. 2857–2871.

[49] S. Koenig and R. G. Simmons, ‘‘Complexity analysis of real-time rein-
forcement learning,’’ in Proc. AAAI, 1993, pp. 99–107.

[50] F. He, T. Liu, and D. Tao, ‘‘Control batch size and learning rate to gener-
alize well: Theoretical and empirical evidence,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019, pp. 1–10.

[51] J. Skarding, B. Gabrys, and K. Musial, ‘‘Foundations and modeling of
dynamic networks using dynamic graph neural networks: A survey,’’ IEEE
Access, vol. 9, pp. 79143–79168, 2021.

DI WANG (Member, IEEE) received the B.S.
degree in electrical engineering from Fuzhou Uni-
versity, China, in 2014, and the M.S. degree
in electrical engineering from Tianjin University,
China, in 2017. He is currently pursuing the
Ph.D. degree with the Department of Mechan-
ical and Industrial Engineering, University of
Illinois at Chicago, Chicago, IL, USA. His cur-
rent research interests include disassembly plan-
ning, multi-agent systems, intelligent control, and

energy schedules in the smart city.

MENGQI HU (Member, IEEE) received the Ph.D.
degree in industrial engineering from Arizona
State University, Tempe, AZ, USA, in 2012.
He is currently an Assistant Professor with
the Department of Mechanical and Industrial
Engineering, University of Illinois at Chicago.
He has published more than 30 journal articles,
such as the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, Information Sciences, and Applied
Energy. His current research interests include

multi-agent decision-making and reinforcement learning with applications
in autonomous vehicles and smart grids. He serves as an Associate Editor
for Swarm and Evolutionary Computation journal.

VOLUME 11, 2023 97117

