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ABSTRACT Testability prediction can help developers identify software components that require significant
effort to ensure software quality, plan test activities, and recognize the need for refactoring to reduce the test
effort. Previous studies have predicted code coverage as a measure of testability based on software metrics.
However, these studies have primarily used object-oriented software with simple code structures. Industrial
software developed using C is often more complex than the object-oriented software used in these studies.
Models trained primarily on low-complexity training data may have insufficient training for the testability
of high-complexity software. In this study, we developed a testability prediction model for C programs
by considering the complexity diversity. We analyzed the impact of the complexity of the training/test
data on the testability prediction model for C programs. The results showed that the model with the best
performance achieves an MAE of 7.436 and an R2 of 0.813. Moreover, the results demonstrated that as the
complexity diversity of the training data decreased, MAE increased from 5.203 to 6.361, and R2 decreased
from 0.809 to 0.725. Furthermore, the performance of the model trained with low complexity-diversity
deteriorated as the complexity level of the test data increased, with MAE increasing from 3.498 to 6.631, and
R2 decreasing from 0.841 to 0.687. Additionally, in the correlation analysis between the model performance
and the difference in the complexity of the training and test data, a strong correlation was observed, with
MAE of 0.898 and R2 of -0.848.

INDEX TERMS Coverage prediction, metrics, regression, software testability, testing.

I. INTRODUCTION
Testing is essential to ensuring the quality of software dur-
ing the software development process. Testing is a costly
activity in the software development industry, accounting for
approximately 50% of total software development costs [1].
In other words, improving the effectiveness and efficiency of
testing can lower software development costs. Testability is
a measure of testing effectiveness and efficiency [2]. High
testability means that the software can be tested effectively
and efficiently.

Testability prediction can help developers identify soft-
ware components that require significant effort to ensure
software quality, plan test activities, and recognize the need
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for refactoring to reduce the test effort. Previous studies
predicted testability through regression analysis usingmetrics
such as cyclomatic complexity, which measures the structural
characteristics of software [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13].

Some testability prediction studies have used testing infor-
mation, such as test case metrics or testing time, as measures
of testability in terms of test effort [3], [4], [5], [6], [7], [8],
[9], [10]. However, accurately predicting testability based on
testing information is challenging because testing depends on
the capabilities of the test team or individual testers.

Among the recent testability prediction methods, existing
studies use code coverage as a measure of testability in
terms of test effectiveness [11], [12], [13]. Code coverage
is one of the representative indicators that can measure test
effectiveness as a test criterion required by ISO 26262 [14],
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IEC 60601 [15], EN 50129 [16], IEC 61508 [17], and
DO 178C [18] industry standards.
Previous studies mainly constructed prediction models for

object-oriented open-source software [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13]. The software used in previous
studies often does not have a complex code structure; there-
fore, these studies were conducted using a high proportion
of low-complexity source code. For example, in SF110 [19],
which consists of 110 open-source Java projects used in
existing studies [12], [13], only 2.9% of the non-abstract
methods have a cyclomatic complexity (CC) exceeding eight
or a number of structuring levels (SL) exceeding four.

However, the upper limitations of the complexity metrics
in C/C++ industry standards such as MISRA [20], JPL [21],
and JSF [22] indicate that a substantially larger proportion
of high-complexity source code may be present in industrial
C/C++ software than in previous studies. In GCC 13.1.0,
a representative C compiler, functions that exceeded a CC of
eight or an SL of four were observed in 7.9% of the functions.
Furthermore, in our analysis of a large-scale C source code,
which consists of 6,873 functions from a real-world automo-
tive industry domain, we found that 9.6% of the functions
exceeded a CC of eight or an SL of four.

If the proportion of high-complexity training data is
low, training for the testability of high-complexity soft-
ware may be insufficient. In other words, to enhance the
testability-prediction performance of high-complexity soft-
ware, it is necessary to use high-complexity training data for
model construction. Low-complexity functions, with fewer
decision statements and lower nesting levels, have relatively
simple conditions. This simplicity of the conditions makes
it easier to achieve high code coverage. However, the condi-
tions for high-complexity functions are relatively complex,
making it difficult to achieve high code coverage. Therefore,
predictions for not only low-complexity functions but also
high-complexity functions are important.

We developed a testability prediction model using training
data with various complexities for C programs. C language
is widely used in embedded systems since it offers efficient
memory management and hardware access. C language is
being used in popular microcontroller platforms such as the
AVR and ARM Cortex-M, as well as in automotive systems.
Moreover, many legacy systems have been written in C,
and these systems still require maintenance and testing. The
testability prediction model for C programs can be usefully
utilized by test engineers who want to develop testability
models, and by developers who aim to evaluate the quality
of C programs.

We then analyzed the differences in prediction per-
formance based on complexity diversity, which refers to
the diversity in program complexity. First, we confirmed
that a model with excellent prediction performance can
be constructed using training data under various complex
conditions. In addition, we analyzed whether the prediction
performance of the model was affected as the complexity
of the training data became biased and diversity decreased.
We also examined whether prediction performance decreased

when high-complexity test data were input into a model
trained with data that exhibited low complexity-diversity.
Finally, we verified whether the difference in complexity
levels between the test and training data affected the pre-
diction performance of the model. Analysis of the impact of
complexity diversity on testability prediction can be useful
for test engineers who want to improve the performance of
testability prediction models.

We developed a methodology and conducted experiments
to address these research questions.

• RQ1: Does a model that considers complexity diversity
for C programs exhibit high prediction performance? Which
model exhibited the best performance?

• RQ2: Do training data with low complexity-diversity
degrade testability prediction performance? Does a lower
complexity diversity of the training data lower the prediction
performance?

• RQ3: Does the model trained with low
complexity-diversity data present lower prediction perfor-
mance depending on the complexity level of the test data?
Does a higher complexity level in the test data result in lower
prediction performance?

• RQ4: Does a larger complexity-level difference between
the training and test data result in a greater performance
difference? Is there a correlation between the complexity
level difference in the training and test data and the prediction
performance?

To answer these questions, we developed a testability
prediction model based on highly diverse training data.
In addition, to analyze the impact of the complexity diver-
sity of the training data on the performance of the model,
we constructed models based on training data with limited
complexity diversity.

To obtain high-complexity-diversity data, we determined
the maximum/minimum value of the metric based on the
maximum allowed complexity metrics of the MISRA [20],
JPL [21], and JSF [22] C/C++ industry standards and
automatically generated software under test (SUT) that sat-
isfied various metric combinations. In addition, test data
were generated and branch coverage was measured using
search-based test data generation, which is a representative
test data generation method that effectively generates test
data.

A testability prediction model was constructed using a
regression analysis based on the training data of various met-
ric combinations. Metrics applicable to C programs affecting
the search and solution spaces were selected and used as
independent variables for training. When the structure of
the code becomes complicated, the conditions required to
achieve coverage also become complicated, thus reducing
the solution space and making it difficult to find test data
that improve the coverage. Branch coverage, a testability
measure of test effectiveness, was used as the dependent
variable.

The main contributions of this study are as follows:
• Unlike previous studies that have primarily focused on

object-oriented software, we develop a high-performance
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testability prediction model specifically for C programs,
taking into account complexity diversity.

• We empirically investigate that low complexity-diversity
in training data can reduce testability prediction performance.
This demonstrates the importance of complexity diversity
in training data for testability prediction, a problem not
thoroughly examined in previous studies.

• We explore the relationship between training and test
data complexity, proving that testability prediction perfor-
mance decreases with less complex training data and more
complex test data. This finding highlights the need for
high complexity-diversity training data to improve testability
prediction performance for complex C programs.

The structure of the remainder of this paper is as follows:
Section II describes the related work. Section III describes
the methodology used to construct a testability prediction
model with a high complexity-diversity for C programs.
Section IV analyzes the experiments for each research ques-
tion. Section V discusses the results and limitations. Finally,
Section VI concludes the study.

II. RELATED WORK
Several standards have defined testability, none of which
specifies concrete measurement methods, leading to the study
of various approaches. According to Garousi et al. [23], there
are more than 30 definitions of testability. Representative
definitions of testability are as follows:

• ISO 9126 [24]: ‘‘attributes of software that bear on the
effort needed to validate the software product.’’

• ISO 25010 [2]: ‘‘degree of effectiveness and efficiency
with which test criteria can be established for a system, prod-
uct or component and tests can be performed to determine
whether those criteria have been met.’’

Existing studies onmetric-based testability prediction have
focused mainly on testability in terms of test effort, as defined
by ISO 9126, and test effectiveness, as defined by ISO 25010.
Studies have been conducted on testing efforts using test
information [3], [4], [5], [6], [7], [8], [9], [10] and on testing
effectiveness using code coverage [11], [12], [13].
Gupta et al. [3] proposed a testability index defined using a

fuzzy approach to CC and object-oriented metrics for 25 Java
classes. They divided the values into preferred, acceptable,
and not acceptable for each metric and built a fuzzy model to
define the testability index. In their analysis of the correlation
between the testability index and unit testing time, they found
that the testability index was strongly correlated with testabil-
ity. However, generalizing the results is challenging because
the testing time depends on the capabilities of the tester
and SUT features. Bruntink and Deursen [4] analyzed the
correlation between object-oriented metrics and testability
using the lines of code for test classes and the number of test
cases as measures of testability in five Java systems.

Singh and Saha [5] and Badri and Toure [6] constructed
prediction models for object-oriented metrics and testabil-
ity using the lines of code for test classes and the number
of assertions. Singh and Saha [5] used linear regression
and regression trees on three open-source Java systems, and

Badri and Toure [6] used logistic regression analysis on three
open-source Java systems.

Toure and Badri [7] built a testability prediction model
based on LOC and object-oriented metrics using four regres-
sion algorithms on ten open-source Java systems. They clas-
sified a class as tested or untested as a measure of testability,
assuming that the classes selected by the testers required test
effort. They predicted whether a class needed to be tested on
the basis of these metrics.

Albattah [8] built a testability prediction model using
package-level cohesionmetrics and logistic regression on five
open-source Java systems. They measured testability by the
lines of code for test classes.

Terragni et al. [9] conducted a correlation analysis between
28 object-oriented metrics and testability using normalizing
test effort with test quality on open-source Java systems. Six
test-case metrics were used as test effort, while statement
coverage, branch coverage, and mutation score were used as
test quality. They showed that normalizing test effort with
test quality increases the correlation between object-oriented
metrics and test effort.

Testing depends on the capabilities of the test team or
the individual testers. Therefore, it is difficult to predict the
test-case metrics or testing times using only these metrics.
According to Bajeh [10], there is a significant relationship
between the metrics and test-case metrics, but the magnitude
of the relationship is low. This implies that the metrics alone
do not accurately measure the task of developing test cases.

Wang et al. [25] proposed a state-based testability model
for testing systems with multi-state characteristics. They used
fault detection rate, fault isolation rate, and state detection
rate as measures of testability. However, the performance of
the model can vary depending on the domain knowledge and
capabilities of the test engineer constructing the state-based
testability model.

Recent studies have used code coverage as a measure
of testability effectiveness. Grano et al. [11] constructed a
prediction model for package, object-oriented, CK, Halstead
metrics, and branch coverage by using four regression algo-
rithms on seven open-source Java systems. They measured
branch coverage using search-based test data generation with
GA and random approaches.

Zakeri-Nasrabadi and Parsa [12], [13] constructed a testa-
bility prediction model based on object-oriented metrics for
110 open-source Java systems. In [12], five regression algo-
rithms were used to build a prediction model using the
product of the average branch coverage, statement cover-
age, and minimum test case ratio to improve the coverage
as a measure of testability. In [13], seven regression algo-
rithms were used to build a prediction model using the
average branch coverage and statement coverage divided
by the average time to improve coverage as a measure of
testability.

These studies were conducted on object-oriented systems
with a high proportion of simple methods without analyzing
the diversity of complexity in the training data. Accord-
ing to an analysis using Understand [26], a commercial
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FIGURE 1. Testability prediction model construction process.

metric analysis tool, the proportions of non-abstract methods
(excluding the test suite) with a CC of eight or less and
an SL of four or less in the systems used by Grano and
Zakeri-Nasrabadi were both 97.1%. However, a methodology
for constructing a testability prediction model using software
metrics for C programs has not yet been established, and there
has been no detailed analysis of the impact of complexity on
testability prediction.

III. METHODOLOGY
This section describes the construction of a testability pre-
diction model for C programs based on high-complexity-
diversity training data. It describes a method for generating
software under test (SUT) to obtain training data with high
complexity-diversity, a method for generating test data to
measure coverage, a metric collection used as an independent
variable, and a method for predicting testability using regres-
sion analysis. Fig. 1 illustrates the procedure for constructing
the testability prediction model.

We generated SUTs with high complexity-diversity imple-
mented in C using the metric maximum/minimum range
determined using the upper limit presented in C/C++ indus-
try standards. We performed search-based test data gen-
eration on the generated SUT for the branch coverage
measurements.We analyzed themetrics of SUT and collected
those to be used as independent variables in the construc-
tion of a testability prediction model. We built a testability
prediction model using the measured branch coverage as a
dependent variable, collected metrics as independent vari-
ables, and predicted testability using the constructed model.

A. SUT GENERATION
SUT was automatically generated to obtain training data
with a high complexity-diversity. Complexity and size met-
rics that can affect the performance of search-based test
data generation, such as cyclomatic complexity (CC), num-
ber of structuring levels (SL), number of equality operators
(NOEO), and number of parameters (NOP), were selected as
the criteria for SUT generation. The higher the CC, the higher
the number of branches that must be executed to increase
branch coverage. As SL increases, the maximum nesting
depth of the decision statement also increases, complicating
the conditions that must be satisfied to execute the decision
statement. The larger the NOEO, the more difficult it is to
determine a solution that satisfies the branch conditions. This
is because the proportion of solutions that satisfy the equality

TABLE 1. Metric min/max range.

comparison in the domain space is limited. Therefore, the
search for a solution to the conditions in which the equality
operator exists is more difficult than the search for conditions
in which the relational operator exists. As NOP increases, the
size of the domain space that must be explored for test data
generation becomes wider.

The range of each metric value is determined based on
the upper limit presented in the MISRA [20], JPL [21], and
JSF [22] C/C++ industry standards. Table 1 lists the ranges
of the metric values used to generate SUT.

The standard only provides the upper limit of the metrics
and not the minimum value. In this study, the minimum value
is established by assuming at least one decision statement and
two or more parameters. Because the nesting depth cannot
exceed the number of decision statements, we used a smaller
value between CC-1 and 6 (six being the upper limit in the
standard) as the maximum value for SL. As the standard
does not reference NOEO, we assumed that NOEO would
be used less frequently than the decision statements and used
CC – 1 as its maximum value. Based on these constraints,
3,320 feasible metric combinations were identified.

We generated ten programs for each metric combination,
for a total of 33,200 programs. Because automatically gen-
erated programs may contain infeasible branches, we use
Joggie [27], a tool for detecting infeasible codes, to remove
these infeasible branches. Joggie assessed its feasibility by
using the Princess solver [28]. The Princess solver, a tool
that checks whether the conditions are satisfiable, serves
as an essential feature in infeasible code detection. The
Princess solver is utilized in JavaSMT [29], a unifying Java
interface for SMT solvers, and Eldarica [30], a predicate
abstraction-based model checker.

B. TEST DATA GENERATION
Search-based test data generation is an automatic generation
method of test data that uses search algorithms to explore
test data that meet test goals. We generated test data using
branch coverage as a test goal and the genetic algorithm
(GA), hill climbing (HC), and random (RND) methods as
search algorithms. The GA is a global search algorithm that
finds values that improve branch coverage by changing val-
ues through crossover and mutation operations. Values that
satisfy relational comparisons are found quickly; however,
more searches are required to identify the values that satisfy
equality comparisons. HC is a local search method used to
determine a value that improves branch coverage by changing
the value to a relatively small value, which is the neighboring

98472 VOLUME 11, 2023



H.-J. Choi, H.-S. Chae: Development of Testability Prediction Models Considering Complexity Diversity

TABLE 2. Test data generation parameters.

value of the current value, as the next value. The HC tends
to find values that satisfy the equilibrium comparison more
quickly than the GA. Because RND is a method for generat-
ing arbitrary values without a separate search technique, the
branch coverage is determined by the ratio, the proportion
of the solution space within the domain space. We used the
value from [31] for the crossover probability, and the values
from [32] for the rest of the search algorithm parameters.
Table 2 lists the search algorithm parameters used to generate
test data.

For the range of each variable, [-231, 231-1], which is the
range of values that can be expressed as a variable of 4 bytes,
was used. The results were derived by repeating each pro-
gram ten times to reduce the randomness of the search-based
testing method. According to an existing study [33], search-
based testing results require at least ten repetitions to achieve
minimal statistical power.

C. METRIC COLLECTION
We selected complexity metrics that affected the search for
test data to improve branch coverage and collected the inde-
pendent variables. All the selected metrics were applicable to
C programs. CC, SL, NOP, and NOEO were used to generate
the SUT, and the number of paths (NPath) [34], which are
metrics that express software complexity and Halstead com-
plexity [35], program length, program vocabulary, volume,
and difficulty, were used.

The CC, SL, NOP, and NPath metrics were measured using
Understand [26], a commercial metric measurement tool, and
the Halstead complexity metrics were measured using PC
Lint Plus [36], another commercial metric measurement tool.
NOEO was measured by developing a custom tool to count
the number of == and != operators within the function.

D. TESTABILITY PREDICTION MODEL CONSTRUCTION
The histogram-based gradient boosting regressor (HGBR),
random forest regressor (RFR), multilayer perceptron
regressor (MLPR), decision tree regressor (DTR), linear
regressor (LR), Huber regressor (HR), and stochastic gradient
descent regressor (SGDR) are representative regressors used
to build testability prediction models in existing studies [11],
[12], [13]. HGBR, RFR, and DTR are tree-based methods;

MLPR is a neural network-based method; and LR, HR, and
SGDR are linear-based methods.

HGBR [37] is a representative ensemble machine-learning
method. The training data were separated into bins for each
feature based on feature percentiles. The gradient boosting
algorithm trains a sequence of decision-tree sizes to minimize
the global loss function. Gradient boosting algorithms are
used to train a sequence of decision tree sizes to minimize
the global loss function. This allows the algorithm to leverage
histograms instead of relying on sorted continuous values
when building the trees.

RFR [38] is another representative ensemble machine-
learning method. It combines multiple decision trees, each
built using subsamples of the dataset, and uses averaging.
By averaging these predictions, some errors can be canceled
out because of the tendency of individual decision trees to
overfit.

DTR [39] predicts the value of a target variable by learn-
ing the decision rules inferred from data features in a tree
structure. A decision tree was constructed by dividing the
dataset into smaller subsets. DTR is easy to understand and
interpret. However, it has disadvantages, such as overfitting
and generating biased trees when some classes are dominant.

MLPR [40] is a fully connected class of feedforward
artificial neural networks consisting of multiple layers of
numerous computational neurons. An MLPR consists of at
least three layers of nodes: an input layer, an output layer,
and one or more nonlinear hidden layers. Except for the input
nodes, each node is a neuron that uses a nonlinear activation
function. Neural networks are difficult to tune in terms of
hyperparameter variables but have the advantage of training
nonlinear interactions between features.

LR [41] is the first type of regression analysis used to
model the relationship between a target variable and one or
more input variables. The model parameters were estimated
by minimizing the error between the predicted and actual
values. LR has the advantages of simplicity and ease of
interpretation.

HR [42] is a linear regression method that is robust to
outliers. It uses theHuber loss function, which is less sensitive
to outliers in the data than the mean squared error.

SGDR [43] is a linear regression method that uses stochas-
tic gradient descent as an optimization algorithm to fit the
model. The model is particularly useful for large-scale sparse
datasets.

Scikit-learn [44] was used to build the testability pre-
diction models. Scikit-learn is a representative Python
machine-learning library that provides various classification,
regression, and clustering algorithms.We built testability pre-
diction models using scikit-learn’s HistGradientBoostingRe-
gressor, RandomForestRegressor, DecisionTreeRegressor,
MLPRegressor, LinearRegression, HuberRegressor, and
SGDRegressor. For hyperparameter tuning of the regression
model, GridSearchCV, a search method that investigates all
parameter combinations, was used.

Hyperparameter tuning was performed for each regres-
sion algorithm to identify optimal parameters. The
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TABLE 3. Hyperparameter search range.

hyperparameter is an adjustable parameter whose value is
used to control the model training process. The model
performance significantly depends on the hyperparameters.

We used the values from [13] for HGBR, RFR, DTR,
SGDR, [12] for MLPR, and [11] for HR to tune the param-
eters and search ranges. However, for HR, we added the
max_iter parameter because the regression analysis library
reported a warning message to increase max_iter. Table 3
presents the search scope for hyperparameter determination.

We constructed testability prediction models for the GA,
HC, and RND datasets. Each dataset comprised 33,200 data
points derived from test data generation on SUTs of all
complexity combinations.

The testability prediction models were evaluated using
performance metrics such as the coefficient of determination
(R2), mean absolute error (MAE), mean squared error (MSE),
and root mean squared error (RMSE). R2 represents the
extent to which an independent variable explains a depen-
dent variable. The MAE is an easy-to-interpret error metric
because it has the same units as the actual value. MSE is an
error metric that employs squared operations to sensitively
reflect errors. In other words, if an outlier exists, the value
fluctuates significantly compared with theMAE. RMSE is an
error metric that takes the square root of MSE and converts
it into units similar to the actual values. R2 implies that the
larger the value, the better the performance of the model,
whereas MAE, MSE, and RMSE, as error metrics, indicate

that the smaller the value, the better the performance of the
model.

IV. EXPERIMENTS
This section describes the experiments conducted to
answer the research questions. First, to verify whether a
high-performance testability prediction model can be con-
structed using C programs with complexity diversity, we built
prediction models using complexity diversity training data
and various regression algorithms. The performance of the
models was analyzed using statistical methods. To determine
whether training data with low complexity-diversity reduces
testability prediction performance, we constructed various
prediction models using training data that exhibited different
levels of low complexity-diversity and compared their perfor-
mances. Furthermore, we investigated whether the prediction
performance of models trained with low complexity-diversity
data was degraded as the complexity level of the test data
increased by sampling test data with various complexity lev-
els and comparing their performances. Finally, we analyze the
correlation between the complexity-level differences between
the training and test data and the performance metrics to
determine whether the difference in the complexity levels
between the training and test data leads to performance
degradation.

A. RQ1: CONSTRUCTION OF PREDICTION MODELS
CONSIDERING COMPLEXITY DIVERSITY FOR C
PROGRAMS
Previous studies constructed testability prediction models
using data with low complexity-diversity. In other words,
both the training and test data had a higher proportion of low
complexity. However, low-complexity source codes tend to
have fewer branches and simpler conditions, making it easier
to achieve high code coverage. We investigated whether we
could build high-performance models for C programs using
training data with high complexity-diversity by increasing the
proportion of high-complexity data.

We built models using seven learning algorithms – HGBR,
RFR, DTR, MLPR, LR, HR, and SGDR – with high
complexity-diversity training data generated using a combi-
nation of metrics within the maximum and minimum ranges
determined based on C/C++ industry standards. Because the
coverage achievement varied for each TDG algorithm, the
datasets were used separately for the three TDG algorithms:
GA, HC, and RND. In other words, 21 models were con-
structed by combining the seven regression algorithms with
the three TDG datasets.

We validated the performance of the models using k-fold
cross-validation with randomly shuffled datasets compris-
ing 33,200 data points for each TDG algorithm. K-fold
cross-validation divides the dataset into k parts, using k-1
parts as training data and the remaining one as validation data.
While there is no formal rule for the choice of K, we used five
which is usually selected [45].

The experiment was repeated 30 times to reduce the
data randomness caused by shuffling. Performance metrics
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FIGURE 2. Experimental process of RQ1.

used were MAE, MSE, RMSE, and R2. Fig. 2 shows the
experimental process of RQ1.

We calculated the mean MAE and R2 to verify whether the
models trained with high complexity-diverse data exhibited
a high prediction performance. Fig. 3 shows the mean MAE
and R2 results for RQ1.
We observed a meanMAE between 4.502 and 7.734, and a

mean R2 between 0.579 and 0.866. Tree-based HGBR, RFR,
and DTR showed better mean performances than neural-
network-based MLPR and linear-based LR, HR, and SGDR.
Considering the R2 values of 0.525 [11], 0.680 [12], and
0.678 [13] in previous testability prediction studies, the
results indicate that the model has moderately high perfor-
mance. The mean MAE and R2 performance of the models
improved in the order of HGBR, RFR, DTR,MLPR, LR, HR,
and SGDR for all datasets.

We compared the performance of the models built using
each regression algorithm to determine which model exhib-
ited a statistically significant difference. We performed an
ANOVA to analyze the differences among the means for
statistical analysis. Prior to the ANOVA, we performed Lev-
ene’s test [46] to assess the homogeneity of variances for the
measured performance metrics. As Levene’s test did not pass,
we used Welch’s ANOVA, an analysis method applicable
when the homogeneity of variances assumption was not met,
and the Games-Howell post-hoc test [47] for the analysis.
Table 4 presents the experimental results for RQ1 separated

by the dataset and regression algorithms. The experimental
results across Tables 4 through 8 are presented as mean ±

standard deviation (SD), and the letters to the right of the SD
represent the groups with statistically significant differences
according to the Games-Howell test results with a p-value
below 0.05. Different letters indicate statistically significant
differences between the groups.

In all cases, MHGBR exhibited the best performance, fol-
lowed by MRFR. In some cases, no statistically significant
differences were observed betweenMDTR, MMLPR, andMLR;
however, the order of model performance remained consis-
tent: MDTR, MMLPR, and MLR. In all cases, MHR and MSGDR

exhibited the lowest performances.

B. RQ2: PERFORMANCE ANALYSIS BASED ON THE
COMPLEXITY DIVERSITY OF TRAINING DATA
To analyze whether the prediction performance decreased
with lower complexity diversity in the training data, we com-
pared the performances of the models trained using data
with low complexity-diversity. We separated the training data

into low-complexity and high-complexity data and generated
training data with low complexity-diversity by combining
them such that the proportions of low complexity-data were
90%, 95%, 98%, and 99%, respectively. As the criteria for
distinguishing between low and high complexity, we used a
CC of eight or lower and an SL of four or lower. This criterion
was determined based on the observation that SF110, a repre-
sentative SUT used in search-based test data generation [19]
and employed in related studies [12], [13], had 97.1% non-
abstract methods with a CC of eight or lower and an SL of
four or lower. Fig. 4 illustrates the experimental process for
RQ2.

We used 4,800 training data points and 1,200 test data
points for RQ2. MAll was trained using 4,800 training data
samples from the dataset. MLC90 was trained using the train-
ing data sampled from 4,320 low-complexity training data
points (CC≤ 8 and SL≤ 4) and 480 high-complexity training
data points (CC > 8 or SL > 4). In other words, 90% (4,320 out
of 4,800) of the training data comprised low-complexity data,
and 10% (480 out of 4,800) consisted of high-complexity
data. MLC95, MLC98, and MLC99 were trained using the same
method, with the training data consisting of low-complexity
data in proportions of 95, 98, and 99%, respectively. The four
models, MLC90, MLC95, MLC98, and MLC99, are collectively
referred to as LC models.

We used 1,200 samples of test data from the dataset,
excluding the training data. To reduce the randomness of the
training and test data due to sampling, the experiment was
repeated 30 times.

We used HGBR, which exhibited the best performance
for RQ1, as the regression algorithm to build the prediction
model. The experimental results were measured and analyzed
using MAE, MSE, RMSE, and R2, and an ANOVA test was
performed. Fig. 5 shows the mean MAE and R2 results for
RQ2.

The mean MAE and R2 performances of the models were
consistently better in the order of MAll, MLC90, MLC95,
MLC98, andMLC99 across all datasets. In other words, we con-
firmed that the mean prediction performance of the models
decreased as the proportion of low-complexity data increased
and the complexity diversity of the training data decreased.
The differences in the mean MAE and R2 of MAll compared
with those of MHGBR in RQ1 were owing to the use of
sampled training data to limit the complexity diversity of
the training data. Table 5 presents the experimental results
for RQ2 separated by the dataset and the proportion of
low-complexity data in the training data.

The mean performance consistently improved in the
order of MAll, MLC90, MLC95, MLC98, and MLC99 across
all results. The ANOVA results do not always indicate
statistically significant performance improvements. How-
ever, MAll always demonstrated significantly better per-
formance than the LC models. Moreover, MLC90 always
exhibited a significantly better performance than MLC98 and
MLC99, andMLC95 always exhibited a significantly better per-
formance than MLC99. Therefore, the results indicate that the
prediction performance tends to decrease as the complexity
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TABLE 4. RQ1. Performance of regression models in each dataset.

TABLE 5. RQ2. Performance of models with low-complexity of training data in each dataset.

diversity of the training data decreases, following the order
of MAll, MLC90, MLC95, MLC98, and MLC99.

C. RQ3: PERFORMANCE ANALYSIS BASED ON THE
COMPLEXITY LEVEL OF TEST DATA
We investigated whether the prediction performance of mod-
els trained on data with low complexity-diversity decreased

as the complexity level of the test data increased. If the
difference in the complexity levels of the test data reduces the
prediction performance of LCmodels, it could be challenging
to accurately predict the testability of complex source codes.
To distinguish the complexity levels of the test data, we sorted
them by the sum of the CC and SL values. Even if the CC
is high, a low SL indicates fewer nested conditions, which

98476 VOLUME 11, 2023



H.-J. Choi, H.-S. Chae: Development of Testability Prediction Models Considering Complexity Diversity

FIGURE 3. RQ1. Mean MAE and R2 of regression models in each dataset.

FIGURE 4. Experimental process of RQ2.

means that the conditions are relatively easy to cover. Con-
versely, even if SL is high, a low CC implies that there are
fewer conditions to cover. Therefore, we identified a combi-
nation of CC and SL as features that influence code coverage,
which is a measure of testability effectiveness. The sorted test
data are divided into five parts, each representing a different
level of complexity. LC models were constructed using RQ2.
Fig. 6 illustrates the experimental process for RQ3.

We analyzed the performance using test data with divided
complexity levels on models with low complexity-diversity,
which were constructed using the same method as in RQ2.
To identify test data with different levels of complexity,
we sampled 6,000 data points, excluding the training data.
The sampled data were then sorted based on the CC+SL
values and subsequently divided into five parts. We classified
the 1,200 test data points differentiated by complexity level
as CL1 for data with the lowest complexity level and CL5 for
data with the highest complexity level. The experiment was

repeated 30 times because of the randomness of the training
and test data caused by sampling.

We obtained 25 performance results using five test datasets
from five models. The experimental results were analyzed
using the MAE, MSE, RMSE, and R2, and an ANOVA test
was performed. The experiment was conducted separately
for each dataset, and we subsequently analyzed whether
there was a similar tendency across all the datasets. Fig. 7
presents the mean MAE and R2 results for the GA dataset for
RQ3.

The experimental results indicate that MAll, which was
built using training data without complexity limitations,
demonstrated a mean MAE of 4.579 or less and a mean R2

of 0.866 or higher at all complexity levels of the test data.
For the CL1 test data, all models exhibited a mean MAE of
3.916 or less and amean R2 of 0.871 or higher. In the CL1 test
data, the LC models showed high performance similar to that
of MAll. This was because the LC models were built using
a high proportion of low-complexity training data, similar to
the CL1 test data.

All LC models showed a decrease in prediction perfor-
mance in terms of the mean MAE and R2 as the complexity
level of the test data increased from CL1 to CL4. However,
despite the increase in the complexity level of the test data
fromCL4 to CL5, theMAE decreased slightly forMLC98, and
R2 increased slightly for MLC90, MLC95, and MLC98. Table 6
presents the experimental results for RQ3 in the GA dataset,
separated by the proportion of low-complexity data in the
training data and the complexity level of the test data.

MAll did not exhibit a consistent performance difference
based on the complexity level of the test data in all cases.
The mean performance consistently decreased from CL1
to CL4 across all LC models. In some LC model results,
a reversal of mean performance was observed between
CL4 and CL5.

However, in all LC model results, CL2-CL5 always
showed a statistically significant lower performance than
CL1, and CL4 always showed a statistically significant lower
performance than CL2. Furthermore, except for the MSE
and RMSE between CL4 and CL5 for MLC90 and MLC95,
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FIGURE 5. RQ2. Mean MAE and R2 of models with low-complexity training data in each dataset.

FIGURE 6. Experimental process of RQ3.

no statistically significant performance improvement was
observed between CL4 and CL5. Therefore, despite some
exceptions, the prediction performance tends to decrease as
the complexity level of the test data increases in the GA
dataset. Fig. 8 shows the mean MAE and R2 results for the
HC dataset of RQ3.

The experimental results indicate that MAll demonstrates a
mean MAE of 5.229 or less and a mean R2 of 0.736 or higher
across all complexity levels of the test data. For the CL1 test
data, all models exhibited a mean MAE of 4.458 or less and
a mean R2 of 0.702 or higher, with LC models exhibiting
a slightly lower performance in terms of both MAE and R2

than MAll.
The mean MAE consistently increased from CL1 to CL5

across all LC models. The mean R2 was lower in the order
of CL1, CL2, CL4, and CL5 across all LC models. However,
for MLC90, MLC95, and MLC98, there were instances in which
R2 for CL3 was slightly higher than that for CL2. Table 7
presents the experimental results for RQ3 for the HC dataset.

Similar to the GA dataset, MAll did not exhibit a consistent
performance difference based on the complexity level of the
test data in all cases. The mean performance consistently
decreased in the order of CL1, CL2, CL4, and CL5 across
all LC models. In some LC model results, a reversal of mean
performance was observed between CL2 and CL3.

However, in all LC model results, CL2-CL5 always
showed a statistically significant lower performance than
CL1, and CL5 always showed a statistically significant lower

performance than CL1-CL4. Furthermore, in all LC models,
although there were instances where the performance of the
model significantly decreased as the complexity level of the
test data increased, no instances of a statistically significant
increase were observed. Therefore, for the HC dataset, the
prediction performance decreased as the complexity level of
the test data increased. Fig. 9 presents the mean MAE and R2

results for the RND dataset for RQ3.
The mean MAE consistently increased from CL1 to CL5

across all LC models. Similarly, the mean R2 consistently
decreased from CL1 to CL5 across all LC models. The RND
dataset consistently demonstrated a decrease in mean perfor-
mance in terms of MAE and R2 as the complexity level of the
test data increased. Table 8 presents the experimental results
for RQ3 for the RND dataset.

In all cases, MAll shows statistically significant differ-
ences between CL1 and CL2-CL4. However, there was no
consistent relationship between CL2-CL4. Across all LC
models, the mean performance consistently decreased from
CL1-CL5, except for MLC90 and MLC98, and between CL4
and CL5 in terms of MSE and RMSE.

Furthermore, except for the MAE, MSE, and RMSE
between CL4 and CL5 for all LC models, statistically
significant performance increases were observed in all
cases as the complexity level of the test data increased.
Therefore, for the RND dataset, the prediction perfor-
mance decreases as the complexity level of the test data
increases.

D. RQ4: PERFORMANCE ANALYSIS BASED ON THE
DIFFERENCE IN COMPLEXITY LEVELS OF TRAINING AND
TEST DATA
We investigated whether the larger the difference in the com-
plexity levels between the training and test data, the greater
the difference in the prediction performance of the model.
If the difference in complexity levels between the training
and test data linearly decreases the prediction performance,
it can be expected that the lower the complexity diversity of
the training data, the greater the decrease in the prediction
performance for high-complexity source code.
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FIGURE 7. RQ3. Mean MAE and R2 of models with the different complexity levels of test data in GA dataset.

TABLE 6. RQ3. Performance of models with the different complexity levels of test data in GA dataset.

To measure the difference in complexity levels between
the training and test data, we employed the concept of effect
size, which measures the difference between the means of
the two groups relative to the standard deviation of the data.
Specifically, we use Cohen’s d [48], a representative method
for computing the effect size, which is calculated as the
difference between the means divided by the pooled standard
deviation of the data.

To calculate the difference in complexity levels, we used
the model and test data from RQ3. The experiments were
conducted using 25 combinations of five distinct models and
five CL test data. Each combination was repeated 30 times
to reduce the random sampling effects. Thus, the experiment
was conducted 750 times, and the difference in complexity
levels between the training and test data was calculated each
time.We use the CC+SL complexity level indicator, which is
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FIGURE 8. RQ3. Mean MAE and R2 of models with the different complexity levels of test data in HC dataset.

TABLE 7. RQ3. Performance of models with the different complexity levels of test data in HC dataset.

consistent with RQ3. Scatter plots were drawn to analyze the
relationship between the complexity-level difference and R2.
Fig. 10 presents a scatter plot of the differences in complexity
levels between the training and test data and R2.
It can be observed that in all the datasets, there is a

tendency for R2 to decrease as Cohen’s d increases. To quan-
titatively measure the relationship between Cohen’s d and

the model performance, we conducted a Pearson corre-
lation analysis. Table 9 presents the Pearson correlation
coefficient between Cohen’s d and the model performance.
All correlation coefficients had p-values < 0.05.

The experimental results showed that the absolute value
of the correlation coefficient in all cases was 0.804 or
higher. Assuming a reasonably sized dataset, a correlation

98480 VOLUME 11, 2023



H.-J. Choi, H.-S. Chae: Development of Testability Prediction Models Considering Complexity Diversity

FIGURE 9. RQ3. Mean MAE and R2 of models with the different complexity levels of test data in RND dataset.

TABLE 8. RQ3. Performance of models with the different complexity levels of test data in RND dataset.

value of less than 0.1 is trivial, 0.1-0.3 is minor, 0.3-0.5 is
moderate, 0.5-0.7 is large, 0.7-0.9 is very large, and 0.9-1
is almost perfect [49]. MAE, MSE, and RMSE are error
metrics; the larger their values, the lower the prediction per-
formance. Therefore, a positive correlation implies that the
greater the difference in complexity, the lower the prediction

performance. R2 denotes the model’s explanatory power.
The smaller the value, the lower the prediction performance.
Hence, a negative correlation indicates that the larger the dif-
ference in complexity, the lower the prediction performance.
Based on the experimental results, we discovered a strong
relationship between the prediction performance of themodel
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TABLE 9. RQ4. Correlation between Cohen’d and performance.

and the difference in complexity levels between the training
and test data.

V. DISCUSSION AND LIMITATIONS
This section describes the discussion on the experimental
results and the threats to validity. In the discussion, we sum-
marize the experimental results for each RQ, analyze the
implications of these results, and suggest possibilities for
expanding research on testability prediction. In the threats to
validity, we analyze the possible threats that might affect the
validity of the results.

A. DISCUSSION
We summarize the experimental results by averaging the
outcomes across all datasets. Fig. 11 presents themean results
across all datasets for each RQ. The RQ1 charts depict the
averageMAE and R2 for each regression algorithm. For RQ2,
the charts display the averageMAE and R2 based on the com-
plexity diversity of the training data. The RQ3 charts show the
average MAE and R2 across all LC models, categorized by
the complexity level of the test data. Lastly, the RQ4 chart
exhibits the absolute value of the correlations between the
difference in complexity levels of the training and test data
and the MAE and R2.
In RQ1, the regression algorithm with the highest mean

performance was HGBR, which showed an MAE of
5.125 and an R2 of 0.813. Tree-based HGBR, RFR, and
DTR exhibited better mean performances than the neural-
network-based MLPR and linear-based LR, HR, and SGDR.
HGBR showed an MAE that was 11.6% lower and an R2

that was 4.3% higher than MLPR. Compared to linear-based
algorithms, HGBR showed anMAE that was 24.8% to 31.1%
lower and an R2 that was 12.6% to 26.9% higher.

In RQ2, the performance of the models consistently
decreased as the complexity diversity of the training data
decreased. Compared to All, the MAE of LC90-LC99 was
respectively 5.8%, 10.0%, 16.3%, and 22.3% higher, and the
R2 was respectively 3.3%, 4.8%, 7.8%, and 10.4% lower.

In RQ3, the performance of the models consistently
decreased as the complexity level of the test data
increased. CL1 showed significantly higher performance than
CL2-CL5, as it has a similar proportion of low-complexity
training data used in the construction of the LC models.
Compared to CL2-CL5, the MAE of CL1 was 57.5% to
89.6% lower, and the R2 was 10.2% to 18.3% higher. There
was a smaller performance difference between CL2-CL5,
which have a dissimilar proportion of low-complexity data
compared to LC models, than with CL1. Compared to CL2,
the MAE of CL3-CL5 was respectively 7.7%, 17.7%, and

20.3% higher, and the R2 was respectively 1.4%, 3.8%, and
9.1% lower.

In RQ4, the correlation between the difference in com-
plexity between training and test data and the MAE and R2

were 0.898 and−0.848, respectively. The positive correlation
in MAE and the negative correlation in R2 both imply the
model’s performance decreases as the complexity difference
increases. In the chart, we used the absolute values of the
correlation coefficients to focus on their magnitudes.

The experimental results indicate the following implica-
tions. The high performance of the HGBR model provides
accurate predictions of testability, suggesting that it can
help developers proactively identify software components
that require significant testing effort, plan testing activities,
and recognize the need for refactoring to reduce the test
effort. The findings of this study highlight the importance
of considering complexity diversity in the testability predic-
tion for C programs. The decrease in model performance
as the complexity diversity of the training data decreases,
the variation in model performance based on the com-
plexity level of the test data, and the correlation between
model performance and complexity difference demonstrate
the impact of complexity diversity in testability prediction.
These findings enhance the understanding of the impact of
complexity diversity on testability prediction, an aspect not
thoroughly examined in previous studies. These insights can
assist test engineers in improving the performance of testa-
bility prediction models.

Testability is a multifaceted issue that depends on source
code, design patterns, software architecture, process com-
plexity, domain characteristics, programming language, and
even the programmer’s experience. However, source code is
the most concrete object for testability evaluation, and col-
lecting and measuring source code-based metrics is relatively
easy. Therefore, we focused our research on source code, but
the study can be expanded by considering other factors that
affect testability.

Firstly, the study can be expanded by using test patterns
that consider domain characteristics. By utilizing test patterns
that consider domain-specific behavior and types of defects,
a testing process can be made more systematic and effective.
Therefore, test pattern-based metrics such as the number
of applied test patterns and the complexity of applied test
patterns can be used as variables for evaluating testability in
terms of testing effectiveness.

For example, Siddiqui and Khan [50] proposed test pat-
terns for cloud applications. They proposed a structure of
test patterns and methods for identifying applicable patterns
through feature analysis of the test patterns. The test patterns
include the test situation, test target, and sequence of actions
needed to perform the test. Based on this study, the number of
applicable test patterns, the number of applied test patterns,
and the complexity of applied test patterns can be used in
testability prediction research. And Górski [51] proposed a
test pattern for smart contracts. He proposed a test pattern
that considers symmetric characteristics based on verification
rules for smart contracts. Based on this study, the number of
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FIGURE 10. RQ4. Scatter plot of the difference in complexity levels between training and test data and R2.

FIGURE 11. Summary of experimental results.

necessary test cases and the number of performed test cases
can be used in testability prediction research.

Secondly, the study can be expanded to other lan-
guages. By considering the structural characteristics and
types of defects according to the programming language,
the effectiveness of testing can be enhanced. We discuss
expanding the study to Rust and JavaScript.

Rust is a systems programming language focused on
performance, type safety, and concurrency. Rust ensures
safety by providing ownership and borrowing, memory man-
agement methods that check for memory leaks or invalid
references at compile time and prevent race conditions. Con-
sidering these language-specific characteristics, metrics such
as the number of ownership transfers and the number of
borrow checks can be used for testability prediction in Rust
programs.

JavaScript is a scripting language for web development.
JavaScript supports implicit global, making it easy to use
global variables, and callbacks are widely used for program-
ming in asynchronous web environments. Considering these
language-specific characteristics, metrics such as the number

used of global variables, the number of callbacks, and the
nested callback depth can be used for testability prediction
in JavaScript programs.

B. THREATS TO VALIDITY
Threats to internal validity include the selection of parameters
used in both the generation of test data and the construction
of the model, as well as the reduction of randomness in these
processes. We used parameter values from previous studies
[31], [32] to generate the test data. To obtain reasonable
statistical power for the test data generation, we repeated
the generation ten times [33]. For the model construction,
we tuned the optimal parameters using GridSearchCV based
on the hyperparameter range of existing studies [11], [12],
[13]. The experiments were repeated 30 times to reduce the
randomness caused by sampling.

Threats to construct validity include obtaining the appro-
priate tools for the experiment. We developed tools for test
data generation and SUT generation to collect training data
with high complexity-diversity. Both tools were developed in
Java, and we used the JavaCC C parser available on Java.net
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for the C source code analysis. The test data generation
tool developed is available from Zenodo.1 We automati-
cally generate SUTs with feasible combinations of metric
ranges based on C/C++ industry standards. Because the
generated SUTs may contain infeasible branches, we use
Joggie [27], a tool for detecting infeasible code, to remove
infeasible branches. Joggie used a Principle solver [28] to
assess its feasibility. The Princess solver, a tool that checks
whether the conditions are satisfiable, is an essential feature
in infeasible code detection. The Princess solver won the TFA
division (arithmetic problems) in the 2012 CADE ATP Sys-
tem Competition, a yearly competition for fully automated
theorem provers, and the TFI category (integer problems),
and was runner-up in the TFA division in 2013 and 2014.
Furthermore, the Princess solver is used in JavaSMT [29],
a unifying Java interface for SMT solvers, and Eldarica [30],
a predicate-abstraction-based model checker.

Other threats include the methods of metric collection,
model construction, and statistical analysis. For the metric
collection, we used the commercial metric analysis tools
Understand 6.2 [26] and PC-lint Plus 2.0 [36]. One of the
metrics used, NOEO, was measured using a tool developed
to count the numbers of ’==’ and ’!=’ operators within a
function. We verified the correctness of the measured NOEO
by inspecting a subset of the C source codes. We used scikit-
learn [44], a Python machine-learning library, for model
construction. For statistical analyses, such as ANOVA and
correlation analysis, we used IBM SPSS Statistics 27.

Threats to external validity include obtaining large-scale
data with high complexity-diversity to generalize the results.
Based on the metric upper limits of the MISRA [20],
JPL [21], and JSF [22] standards, we generated ten SUTs
for each of the 3,320 feasible metric combinations, totaling
33,200 SUTs.

We performed a statistical analysis of the experimental
results to ensure the validity of our conclusions. We analyzed
not only the mean and SD but also whether there was a
statistically significant difference using the ANOVA test.

VI. CONCLUSION
In this study, we developed a testability prediction model for
C programs and investigated the impact of the complexity
diversity of training and test data on testability prediction
performance. We built a model to predict branch coverage,
which is a measure of testability effectiveness, using training
data with high complexity-diversity and analyzed the predic-
tion performance. To confirm the importance of complexity
diversity in testability prediction models, we observed per-
formance differences according to the complexity levels of
the training and test data. For the experiment, we generated
33,200 SUTs with high complexity-diversity and measured
their branch coverage using search-based test data genera-
tion. We collected nine metrics affecting branch coverage
achievement. We built a testability prediction model through
regression analysis using branch coverage as the dependent
variable and these metrics as independent variables.

1https://zenodo.org/record/7935356#.ZGGjvnZByUl

The regression algorithm HGBR, which had the best per-
formance metric value, showed a mean R2 of 0.813. Through
ANOVA, we observed a statistically significant decrease in
the performance of the models across all datasets when the
complexity diversity of the training data was low. Com-
pared to All, the mean R2 of LC90-LC99 was respectively
3.3%, 4.8%, 7.8%, and 10.4% lower. In addition, we con-
firmed that the performance of the model trained with low
complexity-diversity data decreased as the complexity of
the test data increased. Compared to CL2, the mean R2 of
CL3-CL5 was respectively 1.4%, 3.8%, and 9.1% lower.
Finally, we observed a strong mean correlation of 0.848 or
higher between the difference in the complexity levels of the
training and test data and the performance of the prediction
model. Our research assists developers in focusing their test-
ing efforts efficiently and highlights the necessity for test
engineers to use training data with complexity diversity. This
approach can improve the training process of the testability
prediction model for C programs.

In future work, we plan to expand our study by using
methods that reflect domain characteristics such as test pat-
terns, and by using language-specific metrics tailored to
other languages such as Rust and JavaScript. By using test
patterns that consider domain-specific behavior and types
of defects in testability predictions, the impact of domain
characteristics can be reflected. In addition, by considering
language-specific features such as memory management and
asynchronous processing methods in testability predictions,
the impact of language characteristics can be reflected.
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