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ABSTRACT Due to the equivalent relation between UAV target tracking in practice and state estimation
in academy, this paper concentrates on state estimation and its application in UAV target tracking. To relax
the strict assumption on white noise for classical Kalman filter, we consider the more general bounded
noise, being included in an ellipsoid. Then for better understanding our proposed ellipsoidal state estimation,
three continuous processes are shown sequently, i.e. ellipsoidal approximation of arithmetic sum, ellipsoidal
approximations of intersections between ellipsoid and strip, real time recursive form for generating a
sequence of ellipsoids, including each state estimation at each time instant. To combine the theoretic result
and engineering application, the detailed simulation example is given to prove the efficiency of our real time
ellipsoidal state estimation algorithm.

INDEX TERMS UAV target tracking, state estimation, ellipsoidal algorithm, real time.

I. INTRODUCTION
Unmanned aerial vehicle (UAV) is one kind of machine,
equipped with flight control chips. Compared with traditional
aircraft, UAV has some better characters or properties, such
as small size, strong maneuverability, simple structure, low
cost and convenient maintenance. Moreover, UAV does not
require onboard personnel, so it can perform tasks through
remote control or autonomous flight without causing driver
casualties during the task. As UAV can replace manned air-
craft in carrying out some dangerous tasks around narrow
areas, so it has received significant attention and widespread
application for military.

Traditional UAV remotely issues tasks or missions through
control terminals and operators,located on the ground sta-
tion, then UAV only responsible for executing control com-
mands. However in actual combat, due to the limitations
of transmission distance, transmission delay, communication
technology, and electromagnetic interference in some urgent
regions, UAV controlled remotely does not work well, thus
making autonomous flight control be important. Generally,
autonomous flight technology for UAV will be a major
research direction in future. By the way, autonomous slight
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technology for UAV can be divided into path planning and
tracking control. More Specifically, path planning refers to
the ability to meet constraints and avoid surrounding obsta-
cles in a given three dimensional space,while reformulating
a path curve that connects the original point and terminal
position. To deal with path planning, there are various optimal
algorithms to plan the optimal path form one expected goal,
for example, artificial potential field algorithm, star algorithm
etc. On the other hand, tracking control means one process
of finding or locating a tracked target, while keeping UAV
within the view field and then continuously following the
target motion. On this basis, various state estimation and con-
trol algorithms exists. Specifically, state estimation includes
UAV’s own state estimation and also state estimation for other
tracking targets. As some important physical variables are
reformulated as some corresponding elements for the con-
structed state vector. More information are yielded from state
estimation process about its own and other tracking target,
thus it is possible to achieve reasonable and optimal control-
lable planning by virtue of some advanced control algorithms
for example, model predictive control, adaptive control and
optimal control etc. As different control algorithms are usu-
ally adopted to satisfy different flight performance, therefore
our main mission in this paper is state estimation to guarantee
UAV track target well. State estimation is an important tool
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for identifying, understanding and controlling system. State
estimation, also named as filtering, is mainly used to estimate
and calculate some unmeasurable variables from the mea-
sured data, thus applying these unmeasurable variables for
latter research, such as power network, battery parameter and
the working state of robot. Generally, that about estimating
the motion state of ship, vehicle, and aircraft (UAV) will
make their movements more reasonable, so the research on
state estimation is the future development trend. As early
in 1960s, classical Kalman filter was proposed to estimate
the unknown state only for linear discrete system. Then its
extended form includes unscented Kalman filter for nonlinear
discrete system. But classical Kalman filter and its extended
form work well only under the condition that the white noise
with Gaussian distribution and the known original state with
known mean and variance. To relax above strict requirements
for classical Kalman filter and consider more actual situa-
tion, research about setmember filter appeared in 1990s for
unknown noise. Generally, setmember filter is to predict the
range of unknown state into one interval for the unknown but
bounded noise, existing in real life. Compared with Kalman
filter and setmember filter, the strict requirement on noise is
relaxed, i.e. unknown but bounded noise, not the white noise.

State estimation problem has been studied for many years,
and there exist lots of references about it for the case of
white noise. For example, reference [1] presents an improved
extended Kalman filter to identify the unknown state for
battery, whose unknown parameters in one state space model
are estimated through above introduce classical least squares
method [2]. Reference [3] proposes one square root cubature
Kalman filter form to approximate the mean value for state
variable. To improve the efficiency about state estimation,
an improved adaptive cubature Kalman filter is given in
reference [4], where the model parameters are estimated
from the real time forgetting factor recursive least squares
method. Then adaptation is combined with least squares
method to analyze the estimation accuracy and stability [5],
while achieving online adaptive modifications [6].To reduce
the iterative computational complexity, a two stage recursive
least squares is yielded to estimate the unknown state [7],
and a multi-scale parameter adaptive method based on dual
Kalman filter is introduced to identify multiple parame-
ters [8]. Moreover, a variational Bayesian approximation
based adaptive dual extended Kalman filter is given in
reference [9], where the measurement noise variances are
all simultaneously identified within the case of statistical
noise [10]. Generally, above description is around Kalman
filter by virtue of least squaresmethod and its extended forms.

It is well known that extended noise is described by two
kinds, i.e. statistical description and deterministic descrip-
tion. Specifically, statistical description corresponds to the
white noise with zero mean and unit variance, then above
introduced Kalman filter is benefit for state estimation prob-
lem with statistical noise [11]. As white noise is an ideal
case, not exist in practice, so this condition is very strict, thus

making Kalman filter method not suited for practical engi-
neering. To relax this condition about white noise and propose
more advanced filter method for practice, deterministic noise,
i.e. unknown but bounded noise is considered, corresponding
to bounded amplitude on noise, then it means the consid-
ered noise is in one interval or domain. Consider this filter
problem for bounded noise, setmember filter method appears
to achieve state estimation within bounded noise. During
our previous research, we get some new contributions about
setmember filter, i.e. bounded state estimation. For example,
reference [12] considers one ellipsoidal method for UAVs
target tracking and recognition, meaning the bounded noise is
included in one known ellipsoid. Setmember filter is applied
to identify state of charge estimation for Lithium-ion bat-
tery [13], and its iterative multiple form is studied in [14],
while combining adjustable scaling parameters. Furthermore,
reference [15] considers ellipsoidal approximation into target
tracking for UAVs formation,and an improved ellipsoidal
optimization algorithm is used in subspace predictive control,
achieving the filter problem and controller design together.
Generally, our above previous contributions are around state
estimation problem with ellipsoidal description on unknown
but bounded noise [15].

By far, consider the problem of data driven estimation for
state estimation, in case of the number of observations be
more exceed this sample size, then the input is persistent exci-
tation, while the identification model satisfies the expected
accuracy. From the knowledge of system identification the-
ory, the situation with observed disturbance or noise in the
output corresponds to the robust system identification [16],
which being also extended to robust optimal control. When
using the probabilistic or statistical inference in system iden-
tification theory in [17] to measure the asymptotic accuracy
about the final identification model. Furthermore in recent
years, risk sensitive theory and reinforce learning are all intro-
duced in system theory and advanced control theory [18], i.e.
the risk decision and limitations of policies were considered
during the whole process of identification and controller
design. Then the final identification system or plant is more
realistic then classical theoretical result. From these ongoing
subjects about applying risk theory, dynamic programming
and probabilistic limitation for system identification and con-
trol theory, we are thinking to extend graph theory and topol-
ogy to system identification. More specifically, the second
step-model structure choice is related with graph theory, i.e.
the chosenmodel is constructed as one network system, being
formulated as graph theory. System identification theory is
not only for our considered aircraft system identification,
but also for robot system identification in [19], where the
detailed identification steps are all similar with each other,
and only the considered plants are different. As lots of iden-
tification processed are transformed into their corresponding
constrain optimization problems, so some existed optimiza-
tion results can be applied directly, for example, convex
optimization [20], scenario optimization [21], and scenario
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robust control [22], etc. Consider the last step for system
identification-model validation, some nice properties are sat-
isfied for the final identificationmodel or designed controller,
such as controllability, stochastic chance constraints, robust-
ness and nonlinearity, which are seen in reference [23]. For
that nonlinearity in system identification and control, nonlin-
ear identification and nonlinear control are our ongoing work,
whose plant and system is nonlinear form, not the simple
linear form. Roughly the research on nonlinear identification
depends on neural network and other mathematical tools,
being used to change the considered nonlinear plant to its
approximated linear form, then the existed results about linear
identification are all applied directly [24]. In our opinions,
this linearized process is not good in practice, as it is the linear
form that can not be used to replace the original nonlinear
form. Can we find out one direct method to identify or design
the nonlinear plant without the above linearized process? This
problem is our studying case through topology. Due to the
closed relation between system identification theory andUAV
system identification [25], generally the step of experiment
design concerns determining which physical quantities will
be measured, how those quantities will be measured, what
the test conditions will be and how the system being studied
will be excited. For aircraft system identification, selecting
the aircraft configurations and flight conditions, this trans-
lates into specifying the instrumentation and data acquisition
system, and designing inputs for the maneuvers. The goal of
experiment design is to maximize the information content in
the data, subject to practical constraints [26], for example,
limits on input or output amplitude to ensure that a linear
model structure can be used to estimate parameters from the
measured data.

Based on above descriptions about state estimation prob-
lem and our previous research on ellipsoidal state estimation,
this new paper continues to derive more innovative findings
on ellipsoidal state estimation and also apply them into UAV
target tracking with one real time form. For the sake of
completeness, firstly after reviewing UAV target tracking
in some interesting backgrounds, some important physical
variables, such as position, velocity and acceleration etc, are
combined together to construct one state vector. Then our
mission is changed to use some measurements or observed
output data to estimate this unknown state vector, while
considering the external noise be in one ellipsoid, i.e. cor-
responding to above defined setmember filter or ellipsoidal
state estimation. Secondly, our contributions about ellipsoidal
state estimation are shown to generate one sequence of
ellipsoids, which terminal ellipsoid corresponds to the final
state estimation. Furthermore, three aspects or properties are
derived through our own mathematical derivations, for exam-
ple, ellipsoidal approximation of arithmetic sum, ellipsoidal
approximation of intersections between ellipsoid and strip,
real time ellipsoid algorithm etc. Thirdly, to do the combina-
tion about theoretical analysis and engineering application,
our theoretical results on ellipsoidal state estimation are
applied into UAV target tracking to estimate some physical

FIGURE 1. Main mission for UAV.

variables, thus giving more information to UAV in real time
way.

This paper is organized as follows. In section II, prelimi-
naries about UAV target tracking is reviewed, and the detailed
connection between UAV target tracking and state estimation
is explained under the circumstance of bounded external
noise. Section III gives our new theoretical contributions on
ellipsoidal state estimation form three different aspects, cor-
responding to the setmember filter in section II. Section IV is
to prove the efficiency of our new theoretical results through
applying into one practical example. Section V ends the paper
with a final conclusion and proposes the next subject.

II. UAV TARGET TRACKING
The main missions for UAV include intelligence reconnais-
sance and surveillance, target attack, communication relay,
and electronic disturbance etc. UAV mission process can be
divided into patrol, search, location-tracking and attack. The
transformation relationships for each above phase are shown
in following Figure 1, where the location-tracking phase
occurs after the target is detected, then more accurate and
continuous information from the tracking target are provided.

From above Figure 1, UAV target tracking problem is
defined as follows. Assume one UAV flying in sky, and one
target moving on ground. UAV wants to acquire more accu-
rate information about target in order to attack it. Roughly
UAV applies its radar or other physical devices to collect
lots of measurements or data, corrupted with external noises.
Then the flight controller starts to deal with these data to
get the accurate position, velocity, and acceleration about the
moving target. The above principle is plotted in following
Figure 2.
From Figure 2, to attack that moving target on ground,

UAV flying in sky needs to obtain the position, velocity and
acceleration about the moving target. After combining above
three physical variables into one state vector, constructing
within the framework of state space model, then UAV target
tracking problem is transformed into our mentioned state
estimation problem.

III. ELLIPSOIDAL STATE ESTIMATION
A. PRELIMINARY
Radar and cameras, installed ahead of UAV, scan the moving
target to generate one sequence of images, so we extract some
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FIGURE 2. UAV target tracking.

interesting physical variables from images through some esti-
mation of filter methods. Before to de estimation of filter
problem, one mathematical model about that moving target
on ground is constructed based on model control theory as
one state space form. Date driven strategies are benefit for
modeling the moving target into one state space form in [27],
where we have directly.{

xk+1 = fk (xk )
yk = hk (xk ), k = 1, · · · , n

(1)

where in above equation (1), xk ∈ Rnx and yk ∈ Rny are state
vector and measurement output at time instant k respectively.
Two maps fk : Rnx → Rnx ; hk : Rnx → Rny correspond to
two unknown functions, n is the number of state variable.

State vector xk includes some physical variables for that
moving target, i.e.

xk = [positon, velocity, acceleration]T (2)

so to get above three physical variables at time instant
k , we want to estimate that state vector xk from only
the measurement output yk , corresponding to blind state
estimation,due to noe input exists.

For convergence, one linearized equation of equation (1) is
yielded only through the linearized process, i.e.{

xk+1 = Axk + wk
yk = Cxk + vk , k = 1, · · · , n

(3)

where

A =


∂f1
∂x1

∂f1
∂x2

· · ·
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · ·
∂f2
∂xn

...
...

...
...

∂fn
∂x1

∂fn
∂x2

· · ·
∂fn
∂xn


(0,0,··· ,0)

;

C =


∂h1
∂x1

∂h1
∂x2

· · ·
∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

· · ·
∂h2
∂xn

...
...

...
...

∂hn
∂x1

∂hn
∂x2

· · ·
∂hn
∂xn


(0,0,··· ,0)

(4)

{wk , vk} are two external noises. If {wk , vk} are all assumed
to be white noises with zero mean and unit variance, then
classical Kalman filter work well to estimate state vector xk
only from measurement output yk .

Comment: During above linearized process, we assume
the equilibrium state be the constant vector (0, 0, · · · , 0),
satisfying f (0, 0, · · · , 0) = 0. Moreover the above linearized
process will generate one linear time invariant system, i.e.
matrices A and C are all constant matrices through substi-
tuting the equilibrium state into matrix operation.

Observing that state space form (1) again, as no control
input uk exist, so state space form (1) ia an autonomous
system. Applying the basic mathematical analysis, we have

f (x1, x2, · · · , xn) =


f1(x1, x2, · · · , xn)
f2(x1, x2, · · · , xn)

...

fn(x1, x2, · · · , xn)



≈


f1(0, 0, · · · , 0)
f2(0, 0, · · · , 0)

...

fn(0, 0, · · · , 0)

 + A


x1
x2
...

xn


+

[
x1 x2 · · · xn

] ∂2f (x1, x2, · · · , xn)
∂x2

×


x1
x2
...

xn


+ high order term

x =
[
x1 x2 · · · xn

]
Using the property of the equilibrium state, i.e.
fk (0, 0, · · · , 0) = 0, k = 1, 2, · · · n and denoting that

high order term as v = [v1, v2, · · · , vn], the condition about
guaranteeing the linearization error be small as possible it the
following case.

∥
∂2f (x1, x2, · · · , xn)

∂x2
∥ ≤ ϵ

where ϵ is one small positive value, for example, ϵ = 0.1,
and ∥.∥ is one norm.

Based on above inequality, then above third term is
neglected to generate our considered autonomous linearized
process (3).

B. ELLIPSOIDAL APPROXIMATION OF ARITHMETIC SUM
Observing equation (3) again, the initial state vector x0 and
initial external noise w0 are assumed to be in two different
ellipsoids, i.e.

x0 ∈ X0;w0 ∈ W0 (5)

where above two ellipsoids are defined as follows

X0 = {x0 + A0u|uT u ≤ 1}
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W0 = {w0 + A1u|uT u ≤ 1} (6)

Then

X0 +W0 = (x0 + w0) + (A0u+ A1u) (7)

where x0 and w0 are two centers of ellipsoids X0 andW0, u is
one virtual variable. Given two ellipsoids X0 andW0, find the
best inner ellipsoid approximations of their arithmetic sum
X0 +W0.

X̂0 = {x0 + w0, x0 ∈ X0;w0 ∈ W0} (8)

Consider this ellipsoidal approximation of arithmetic sum,
we need to construct one new ellipsoid to approximate two
ellipsoidal arithmetic sum, i.e. X0 + W0. From our pub-
lished book [26], we directly have the following results,
reformulating as two Theorems.
Theorem 1: An ellipsoid E[Z0] = {x = Z0u|uT u ≤ 1} is

contained in the sum X0 + W0 of the ellipsoid X0 and W0,
if and only if one has

∀x : ∥ZT0 x∥2 ≤ ∥AT0 x∥2 + ∥AT1 x∥2 (9)

Theorem 2: Let A0 and A1 be two nonsingular matrices
with approximated dimension, and let X0 = {A0u|uT u ≤ 1},
and W0 = {A1u|uT u ≤ 1} be two associated ellipsoids. Set
1 = {λ ∈ R+|λ1 + λ2 = 1}, then
(1) Whenever λ ∈ 1 and Z0 is such that

Z0ZT0 ≥ F(λ) = λ1A0AT0 + λ2A1AT1 (10)

the ellipsoid E[Z0] = {x = Z0u|uT u ≤ 1} contains X0 +W0.
(2) Whenever Z0 is such that

AAT ≤ F(λ) = λ1A0AT0 + λ2A1AT1 (11)

the ellipsoid E[Z0] = {x = Z0u|uT u ≤ 1} contained in X0 +

W0, and vice versa.
The detailed proofs about two Theorems can be referred

to our previous contribution [11]. The goals of about two
Theorems are to construct a new ellipsoid X̂0, approximating
the arithmetic sum X0 +W0, i.e.

X̂0 = {x0 + w0, x0 ∈ X0;w0 ∈ W0} = {X0 +W0} (12)

where two ellipsoids X0 and W0 are given in priori, used to
include the initial state vector x0 and initial external noise
w0 at the initial time instant.

C. ELLIPSOIDAL APPROXIMATIONS OF INTERSECTIONS
BETWEEN ELLIPSOID AND STRIP
After given two initial ellipsoids X0 and W0, we apply above
two Theorems to construct a new ellipsoid X̂0, while consid-
ering that state equation in equation (3) as one arithmetic sum
operation. As section III-B only considers that state equation
xk+1 = Axk + wk ,but output equation yk = hk (xk ) exists
still, not neglecting it, or information is incomplete. Before
to consider that output equation, one definition is needed.
Definition 1 (Information State Set [11]): Given the

observed output yk , k = 1, 2 · · ·N at time instant k , where N

is the total number of observed data. information state set Ik is
a set of all feasible states, being consistent with the observed
equation in equation (3) and one upper bound at time instant
k , i.e.

Ik = {xk : −σ ≤ yk − Cxk ≤ σ }

= {xk : |yk − Cxk | ≤ σ }

= {xk : |Cxk − yk | ≤ σ } (13)

where σ is one bound for that observed noise vk , i.e.

|vk | ≤ σ, ∀k (14)

From equation (13), we see information state set Ik at time
instant k is a strip. Combining state equation and observed
output equation together, we need to compute one intersection
between ellipsoid and strip, i.e.

xk ∈ Ik ∩ Xk (15)

whereXk denotes feasible state set at time instant k , expressed
as an ellipsoid. For convergence, feasible state set Xk and
information state set Ik are denoted as follows

Xk = {xk = c+ Bu|uT u ≤ 1}; (DetB ̸= 0);

Ik = {xk : |Cxk − yk | ≤ σ }

= {xk : −σ ≤ yk − Cxk ≤ σ } (16)

where observing output yk is known or collected in priori and
state xk must satisfy xk ∈ Xk and xk ∈ Ik simultaneously, i.e.
equation (15).

As it holds that

Ik = {xk : |Cxk − yk | ≤ σ } (17)

substituting xk = c+ Bu into Cxk − yk ≤ σ and considering
uT u ≤ 1 together, we have

uT u ≤ 1 → C(c+ Bu) ≤ yk + σ (18)

i.e.

uT u ≤ 1 → Cc+ CBu− yk − σ ≤ 0 (19)

Then there exists λ1 such that

yk + σ − CBu− Cc− λ1[1 − uT u] ≥ 0

yk + σ − CBu− Cc− λ1 + λ1uT u ≥ 0 (20)

Rewriting above equation (20) into one linear matrix
inequality as[

u 1
] [

λ1 −
1
2CB

−
1
2CB yk + σ − Cc− λ1

] [
u
1

]
≥ 0 (21)

Similarly substituting xk = c+ Bu into Cxk − yk ≥ −σ and
considering uT u ≤ 1 together, then it holds that

uT u ≤ 1 → C(c+ Bu) − yk + σ ≥ 0 (22)

i.e. there exists λ2 such that

− yk + σ + CBu+ Cc− λ2[1 − uT u] ≥ 0

− yk + σ + CBu+ Cc− λ2 + λ2uT u ≥ 0 (23)
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FIGURE 3. Ellipsoidal approximation of intersection.

Similarly one linear matrix inequality is yielded.[
u 1

] [
λ2

1
2CB

1
2CB −yk − σ + Cc+ λ2

] [
u
1

]
≥ 0 (24)

Combining linear matrix inequalities (21) and (24), the
problem about ellipsoidal approximations of intersections
between ellipsoid and strip is solvable by satisfying the
following Theorem 3.
Theorem 3: Given one ellipsoidXk = {xk = c+Bu|uT u ≤

1}; (DetB ̸= 0) and a strip Ik = {xk : |Cxk − yk | ≤ σ }, their
intersection can be approximated by one new small ellipsoid
on condition that there exist two scale values λ1 and λ2 such
that two other linear matrix inequalities hold.[

λ1 −
1
2CB

−
1
2CB yk + σ − Cc− λ1

]
≥ 0;[

λ2
1
2CB

1
2CB −yk − σ + Cc+ λ2

]
≥ 0 (25)

Theorem 3 gives one condition about using one small ellip-
soid to replace the intersection between ellipsoid and strip.

D. REAL TIME ELLIPSOIDAL ALGORITHM
Theorem 3 gives one condition about whether there exists a
new small ellipsoid, using to include the intersection between
one ellipsoid and a strip. Here we give the detailed form of
this new small ellipsoid.

Rewriting equation (16) again, we need to give a new small
ellipsoid Xk+1 such that.

Xk+1 = Xk ∩ Ik ;

Xk = {xk = c+ Bu|uT u ≤ 1};

Ik = {xk : −σ ≤ yk − Cxk ≤ σ } (26)

then construct a new small ellipsoid such that

Xk+1 = Xk ∩ Ik ;

Xk+1 = {xk+1 = c+ + B+u|uT u ≤ 1} (27)

where

c+ = c−
1
nx
Bp;

B+
=

nx√
n2x − 1

B+ (
nx

nx + 1
−

nx√
n2x − 1

)(Bp)pT ;

p =
BTC

√
CTBBTC

(28)

where nx is the dimension of state vector.
If nx = 1,then the new ellipsoid is deemed as follows.

Xk+1 = {xk+1 = c+ + B+u|uT u ≤ 1};

c+ = c−
1
2
Bσ

|Bσ |
;

B+
=

1
2
B (29)

Above construction process about new small ellipsoid is plot-
ted in following Figure 3.

Finally, combining all of ellipsoidal approximations,
our proposed ellipsoidal state estimation algorithm is
reformulated as follows.

Ellipsoidal state estimation algorithm
Step 1: Collect observed output sequence {yk}Nk=0.
Step 2: Given two initial ellipsoids X0 andW0, including
initial state vector x0 and initial external noise w0.
Step 3: Construct one ellipsoid X̂0 to approximate the
arithmetic sum X0 +W0,i.e.

X̂0 = X0 +W0

Step 4: Build a strip that bounds the considered state set
at initial time instant

I0 = {x0 : −σ ≤ y0 − Cx0 ≤ σ }

Step 5: Testify whether th0se two linear matrix
inequalities hold. If yes, then construct a new small
ellipsoid X1 to satisfy

X1 = X̂0 ∩ I0

or return back to step 4 and build a new strip.
Step 6: Compute ellipsoidal arithmetic sum

X̂1 = X1 +W1

Step 7: Build a strip at time instant 1

I1 = {x1 : −σ ≤ y1 − Cx1 ≤ σ }
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Step 8: Construct ellipsoid intersection

X2 = X̂1 ∩ I1

· · ·

Step N: Construct ellipsoid intersection

XN = X̂N−1 ∩ IN−1 (30)

Terminate above repeated steps, then we have

x0 ∈ X0; x1 ∈ X1; · · · , xN−1 ∈ XN−1; xN ∈ XN

An easy way to choose the final state estimate xN is to choose
the center of the Nth ellipsoid XN .

Equation (30) corresponds to the real time strategy due to
its recursive form, so above algorithm is names as real time
ellipsoidal state estimation, plotting in Figure 4.

FIGURE 4. Recursive ellipsoidal state estimation.

IV. SIMULATION EXAMPLE
During this simulation example, one UAV is placed on top
of one turn table, rotating around 360 angle. A camera is
installed in front of this turn table, used to track one moving
vehicle. Figure 5 shows our practical experiment setup, where
that moving vehicle is the tracking target. Let that vehicle
moves with one constant velocity, according to Newton law,
we have

s = s0 + vt +
1
2
at2

v = v0 + at (31)

where s and s0 denote the position and initial position, v and
v0 are velocity and initial velocity, t is the time instant.
Linearized equation (31) to get a linear discrete state space

model for that moving vehicle, i.e.

xk+1 =

[
1 δt
0 1

]
xk + wk ;

FIGURE 5. Experiment setup.

FIGURE 6. Comparison with positions.

yk =
[
1 1

]
xk + vk ;

sk =
[
s v

]T
;

A =

[
1 δt
0 1

]
; C =

[
1 1

]
(32)

where δt is sampled time, state vector is constituted of
position and velocity of that moving vehicle.

When to start our proposed ellipsoidal state estimation, i.e.
identify or estimate the position and velocity of that moving
vehicle. Simulation results are shown in Figure 6, where
black line is the real trajectory, blue and red line correspond
to moving trajectories for observed trajectory and estimated

97204 VOLUME 11, 2023



Y. Guoning, W. Jianhong: Ellipsoidal State Estimation for UAV Real Time Target Tracking

FIGURE 7. Comparison with error curves.

FIGURE 8. Practical scenario.

FIGURE 9. Detailed tracking process.

trajectory respectively. From Figure 6, we see error exists for
the observed trajectory, and the estimated trajectory is closed
to the real trajectory. Furthermore, the detailed error curves
are also shown in Figure 7, where error lies within ten meters.

To let the readers understand our saying more easily, we do
a true practical test in Figure 8, where a small UAV is flying
in sky, and a yellow vehicle is moving on ground at the same
time. The goal of that flying UAV is to track that moving
vehicle, i.e. UAV flies while following vehicle with time
increases. As the vehicle moves continuously, the camera,
installed in front of UAV must grasp that moving vehicle,
meaning the moving vehicle lies in the center of that red
rectangle,plotting in Figure 9.

V. CONCLUSION
On the basis of our previous contributions about state esti-
mation problem, we find UAV target tracking corresponds
to one similar state estimation problem. To relax the strict

assumption on white noise for classical Kalman filter,this
paper turns to study the other setmember filter for one special
case of external noise with unknown but bounded property.
We use ellipsoid to reformulate the bounded initial state
vector and initial external noise, then to get a sequence of
ellipsoids, including each state vector at each time instant. For
convenience to show our contributions, we divide into three
main processes, i.e. ellipsoidal approximation of arithmetic
sum, ellipsoidal approximations of intersections between
ellipsoid and strip, real time recursive form. Generally, this
paper proposes ellipsoidal algorithm into state estimation,
next subject will be concentrated on ellipsoidal algorithm for
controller design.
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