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ABSTRACT In the conventional successive cancellation (SC) decoder for polar codes, all the future bits to
be estimated later are treated as random variables. However, polar codes inevitably involve frozen bits, and
their concatenated coding schemes also include parity bits (or dynamic frozen bits) causally generated from
the past bits estimated earlier. We refer to the frozen and parity bits located behind a target decoding bit as
its future constraints (FCs). Although the values of FCs are deterministic given the past estimates, they have
not been exploited in the conventional SC-based decoders, not leading to optimality. In this paper, with a
primary focus on the binary erasure channel (BEC), we propose SC-check (SCC) and belief propagation SCC
(BP-SCC) decoding algorithms in order to leverage FCs in decoding. We further devise an improved
tree search technique based on stack-based backjumping (SBJ) to solve dynamic constraint satisfaction
problems (CSPs) formulated by FCs. Over the BEC, numerical results show that a combination of the
BP-SCC algorithm and the SBJ tree search technique achieves the erasure recovery performance close to
the dependence testing (DT) bound, a bound of achievable finite-length performance.

INDEX TERMS Constraint satisfaction problem, future constraint, maximum a posteriori, polar code,
SC check, stack-based backjumping.

I. INTRODUCTION
Polar codes are error-correcting codes first proved to
achieve the symmetric capacity of an arbitrary binary-input
discrete memoryless channel (B-DMC) under successive-
cancellation (SC) decoding [1]. By polar coding, physical
parallel B-DMCs are transformed into virtual channels
(called sub-channels) whose symmetric capacities are either
extremely high or low as the code length increases. Based
on this channel polarization, the total capacity is readily
achieved by assigning information bits to reliable sub-
channels while allocating frozen bits to unreliable ones. Also,
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excellent performance is achieved in practical applications
by concatenating appropriate outer codes and employ-
ing improved decoding schemes such as SC-list (SCL),
SC-stack (SCS), SC-fip (SCF), SC-Fano, and SC inactivation
(SCI) algorithms [2], [3], [4], [5], [6]. Due to the good
performance especially for short code lengths, polar codes
are now being used to transmit control information in the 5th
Generation (5G) communication standard, the 3rdGeneration
Partnership Project (3GPP) New Radio (NR) [7].

In SC decoding, encoder input bits are sequentially
estimated, assuming that previous estimates are true. Arıkan
pointed out in his seminal work [1] that the SC decoder
treats all future bits as random variables (RVs), even though
there are frozen bits whose values are known. It was
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repeatedly noted in [8] that they are regarded as pure noise
in sequential decoding. This relaxation brings suboptimality
with respect to the maximum likelihood (ML) decision,
but allows efficient computation using recursive formulas.
The recursive decoding operations are tractable for the
performance analysis, and the achievability of the channel
capacity is proved despite its suboptimality.

The relaxation that assumes all future bits as RVs has
also been generally taken in improved SC-based decoding
schemes including SCL, SCS, SCF, SC-Fano, and SCI
algorithms [2], [3], [4], [5], [6]. These schemes estimate each
information bit without using future bits with deterministic
values, but they compensate for the relaxation by directly
processing them later. For example, the SCI decoder [6]
performs SC decoding without taking future bits into account
and replaces a bit decoded as an erasure by a dummy variable.
After estimating all bits, the values of the dummy variables
are identified by solving the linear equations formulated
by gathering information from subsequently decoded frozen
bits.

In this paper, we aim to settle the suboptimality of
the SC decoder for finite-length polar codes. Specifically,
our goal is to immediately incorporate all future bits into
decoding each bit, in contrast to the existing methods.
We define a future constraint (FC) as a bit behind the
target decoding bit, whose value is deterministic given the
estimates for the past bits. In general concatenated polar
coding schemes, there are two categories of FCs: frozen bits
and parity bits. Polar codes inevitably involve frozen bits
whose values are generally fixed to zero. Parity bits (also
called dynamic frozen symbols [9]) are typically generated
by concatenating an outer code such as a cyclic redundancy
check (CRC) code [10] and a parity-check (PC) code [11].
A recursive construction method for precoded polar codes
was also proposed in [12] as a way of producing parity
bits for SCL decoding. They are exploited to increase the
minimum distance and identify invalid candidate codewords
during and after decoding. Recently, polarization-adjusted-
convolutional (PAC) codes were proposed by Arıkan [13] as a
new concatenated coding scheme, where the constrained bits
after the first information bit are all to be generated as parity
bits by convolutional coding.

Using the fact that the values of FCs are deterministic
given the previous estimates, we first show the advantages
of exploiting them by presenting a bitwise maximum
a posteriori (MAP) SC decoding method. Then, two elemen-
tary algorithms are proposed to immediately incorporate the
FCs in sequential SC decoding for practical applications as
follows:
• In sequential decoding of a certain target bit, we suspend
its estimation until the next information bit. Instead, two
hypotheses for bit values 0 and 1 are established, and the
FCs in between are completed using the previous bits
of each hypothesis. The proposed decoder computes the
likelihood and/or performs a validation check for the two
hypotheses, and then, chooses one of them depending on

the decoding results. In this way, the FCs ahead of the
next information bit are to be directly captured. We refer
to this approach as an SC-check (SCC) algorithm.

• To further cover the FCs behind the next information
bit, we derive conversion rules to find the constraints on
the encoder output, equivalent to the FCs given on the
encoder input. The constraints appearing at the encoder
output (i.e., decoder input) can now be incorporated
into decoding of each bit. In detail, a polar code graph
is modified by connecting new vertices corresponding
to the converted constraints, and belief propagation
(BP) decoding is performed over the graph. Combining
this idea with SCC decoding, we propose a BP-SCC
algorithm.

BP decoding is combined with SC decoding in existing
hybrid BP-SC schemes [14], [15]. Yuan and Parhi [14]
proposed a hybrid architecture that uses SC and BP
decoding individually, with BP employed to enable early
termination and potentially enhance the input for subsequent
SC decoding. Similarly, Zhou et al. [15] presented a single
decoder architecture that mixes SC and BP algorithms to
reduce the latency of serial operation. Although the proposed
BP-SCC algorithm may be regarded as a hybrid BP-SC
scheme, the aim of BP in this algorithm is to incorporate FCs
into the decoding process, unlike the conventional hybrid BP-
SC schemes.

The proposed SCC and BP-SCC decoding algorithms are
closely related to the look-ahead algorithms in that decoding
is performed by including future bits. The most related
work is the SC look-ahead (SC-LA) decoding algorithm with
constant delay D proposed in [16]. In the SC-LA algorithm,
D bits are estimated at once after exploring all 2D paths in
the decision tree. Some future frozen bits may naturally be
involved in decoding a target information bit depending on
the code structure due to the delay. Also, fat-tree decoders
(FTDs) were proposed in [17] to generalize SC decoding
with look-ahead. The FTDs perform message-passing over
the cyclic-free factor graph derived from the generator matrix
in order to compute posterior probabilities more accurately.
In simplified SC-based decoding schemes including [19],
some future bits might be incorporated in simultaneous
operation for fast processing. Recently, a hypothesis-testing-
based hard decision (HTHD) algorithm was proposed in [18]
to simplify the decoding operation of unstructured nodes,
possibly including future bits.

The most distinct feature of the proposed BP-SCC
decoding algorithm is that it incorporates all future frozen bits
and parity bits into the estimation of a target bit. As depicted
in Fig. 1, the FCs close to the target bit are taken directly
by the SCC algorithm, while the others are incorporated by
converting them into equivalent constraints on the decoder
input so that they are leveraged by the BP operations. For
general concatenated coding schemes considered in this
paper, the FCs induced by parity bits play a significant role
in improving their performance.
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Based on the proposed BP-SCC algorithm, an improved
tree search technique is further developed. Sequential esti-
mation for polar codes is essentially accompanied by tree
search, and the SC and SCL decoding algorithms exploit
a depth-first search (DFS) method and a breath-first search
(BFS) method with limited branching (also called beam
search), respectively [13]. Parity-check equations involving
FCs are adaptively changed in response to the decisions
made during sequential estimation and the assignment of
values is accordingly determined. For this reason, sequential
decoding with FCs may be viewed as constraint satisfaction
problems (CSPs) [20] and the dynamic CPS framework [21]
is considered in our work. Inspired by a conflict-directed
backjumping (CBJ) method [22], a stack-based backjumping
(SBJ) technique is proposed to efficiently explore the tree
while avoiding invalid partial solutions in terms of the full
space of FCs.

Targeting the binary erasure channel (BEC), we present
a specific decoding algorithm using the proposed FC-aided
techniques. The performance and computational complexity
of the algorithm are then evaluated by considering the
3GPP NR polar coding system specified in [7], where the
polar codes are concatenated by the 11-bit CRC code.
In the proposed decoders, each of the frozen and parity
bits in these concatenated polar codes is captured as an FC.
Numerical results show that FCs play a role in improving
the performance of sequential decoding. In particular, the
BP-SCC algorithm accompanied by the SBJ tree search
technique achieves performance close to the dependence
testing (DT) bound for the BEC, an approximation of the
best achievable performance by any code of given length and
dimension [23].

II. PRELIMINARIES
A. NOTATION
Throughout this paper, we use the following general rules to
represent mathematical symbols.

- We use zero-based numbering, where index 0 is
assigned to the initial element of sets, vectors, and
matrices.

- Calligraphic letters (e.g., A) are used to denote sets.
- The standard notation Ac is used to denote the
complementary set of A.

- Given A and B, we write A\B to denote the relative
complement of A with respect to B.

- Given a set A and any number b, we write b + A to
denote {b+ a | a ∈ A}.

- We use the conventionsN,Z,R, andC to denote the sets
of natural numbers, integers, real numbers, and complex
numbers, respectively.

- We write F2 to denote the binary field.
- For b ∈ F2, let b̌ indicate its one’s complement, that is,
b̌ = b+ 1 over F2.

- For a non-negative integer i, denote Zi as the set of
consecutive integers from 0 to i− 1.

FIGURE 1. Concept of the proposed FC-aided SC decoding algorithm.
In conventional SC-decoding algorithms, FCs are not accessible, so they
are just treated as RVs. In the proposed decoding algorithm for a target
information bit, the FCs located before and after the next information bit
are incorporated by SCC decoding and FC conversion, respectively.

- For two integers i, j such that i < j, a set of consecutive
integers from i to j is denoted by {i : j}. When
this symbol is used in a subscript, parentheses may be
omitted (i.e., i : j) for a concise expression.

- Boldface lowercase letters (e.g., a) and boldface upper-
case letters (e.g., A) are used to denote vectors and
matrices, respectively.

- Given a vector a and a setA, let aA denote the subvector
(ai : i ∈ A).

- Given a vector a and two non-negative integers i, j with
j > i, let aji ≜ (ai, ai+1, . . . , aj).

- Given a matrix A and two non-negative integers i, j, let
Ai,j denote the entry in row i and column j of A.

- Given a matrix A and two non-negative integer sets
R, C, let AR,C be the submatrix of A composed of
the rows and columns whose indices are in R and C,
respectively.

- For simple representation concerning matrix slicing,
we use ∗ in shorthand to indicate all entries in a row or
column dimension. To be specific, for an n × m matrix
A, let AR,∗ ≜ AR,0:m−1, and A∗,C ≜ A0:n−1,C .

B. CONCATENATED POLAR CODES
We briefly introduce an (N ,K ) concatenated polar code,
where N = 2n (n ∈ N) is the code length and K is the
code dimension. Fig. 2 (a) shows the block diagram of the
coding scheme. Let a ∈ FK2 denote an input information
vector. It is encoded by an outer code to generate b ∈ FB2 .
The outer code is systematic in the sense that b consists of
K information bits of a and B − K parity bits generated by
the outer code. Then, the bits in b are mapped to a polar
encoder input vector u ∈ FN2 under the operation of sub-
channel allocation. We write A,P,F ⊂ ZN to denote the
index sets of information bits, parity bits, and frozen bits to be
assigned to u, respectively. Finally, a polar codeword x ∈ FN2
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FIGURE 2. Block diagrams for concatenated polar coding.

is obtained by the linear transformation

x = uG, (1)

where G ∈ FN×N2 is the generator matrix of a length-N polar
code. The generator matrix is given by G = F⊗n, where F⊗n

is the n-th Kronecker power of the 2 × 2 polarization kernel
F =

[
1 0
1 1

]
.

In the concatenated polar coding scheme, the outer
encoding and sub-channel allocation are designed together so
that any parity bit ui (i ∈ P) is generated from the information
bits whose indices are smaller than i. Specifically, ui is a
linear combination of bits in ui−10 = (u0, u1, . . . , ui−1). This
implies that the parity bits are causally generated in terms of
u, and at the receiver, their values can be directly determined
from the bits estimated earlier in sequential decoding.

The combination of outer encoding and sub-channel
allocation can be represented by a different configuration
as depicted in Fig. 2 (b). This just rearranges the order of
operations to obtain an equivalent model. Note that it is useful
in describing general concatenated polar coding schemes
with parity bits [6], [13].

The input information vector a is first mapped to a precoder
input vector v ∈ FN2 using A such that vA = a and vAc = 0.
This bit allocation procedure is called rate-profiling. Then, v
is transformed into u by the linear transformation

u = vT, (2)

where T ∈ FN×N2 is the precoding matrix reflecting the effect
of the outer code. Each column of T is determined as follows:

- For i ∈ A, Ti,i = 1 and Tk,i = 0 for k ̸= i.
- For i ∈ F , T∗,i = 0.
- For i ∈ P , T0:i−1,i is given such that ui = ui−10 T0:i−1,i
and Ti:N−1,i = 0.

It is clear that T is an upper triangular matrix because of the
causal generation of parity bits. A lower triangular generator
matrix G is then multiplied to generate a polar codeword x.
The end-to-end concatenated polar coding is represented by
x = vTG, so that TG is regarded as the generator matrix for
the entire encoding procedure.

Throughout the paper, we use the following polar code as
a toy example.

Example 1: An (8, 3) concatenated polar code is con-
structed withA = {3, 5, 7},F = {0, 1, 2, 4},P = {6}, where
the parity bit u6 is generated by u6 = u3 + u5. From the
definition of T, we have

T =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


and TG =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1


.

C. SC DECODING
Let W : X → Y be a B-DMC, where X (= F2) and Y are
input and output alphabets, respectively. A polar codeword
x ∈ XN is transmitted through N copies of the B-DMC W ,
and the vector channel is denoted byWN

: XN
→ YN . At the

receiver, a channel output y ∈ YN is observed with transition
probability

WN (y | x) =
N−1∏
j=0

W (yj | xj). (3)

The polar encoder combines a bundle of B-DMCs from u to
y to produce a vector channelWN : XN

→ YN in a recursive
manner. The SC decoder splits WN back into a set of N sub-
channels W (i)

N : X → X i−1
× YN , i ∈ ZN , whose transition

probability is defined by

W (i)
N

(
y,ui−10 | ui

)
≜

1
2N−1

∑
uN−1i+1 ∈XN−i−1

WN (y |u) ,

(4)

where WN (y |u) = WN (y | x) because of the one-to-one
correspondence between u and x = uG. Here, ui−10 is
given by earlier operations of the SC decoder, and the
sum over XN−1−i is interpreted as marginalizing out all
the future bits to be decoded later. Arıkan demonstrated
in [1] that the likelihood in (4) can be efficiently calculated
using recursive formulas with a computational complexity of
O(N log2 N ). Furthermore, the recursive decoding operation
makes performance analysis tractable and plays a key role in
proving the achievability of the symmetric capacity.

III. PROBLEM FORMULATION
A. SUBOPTIMALITY OF SC DECODING
As clearly noted in [1], SC decoding is suboptimal because
it treats all the future frozen bits as RVs rather than
known bits. Likewise, the parity bits causally generated in a
concatenated coding scheme make SC decoding suboptimal
when they are dealt with as RVs. The suboptimality comes
from the relaxation of the marginalization space

{
uN−1i+1 ∈

XN−i−1
}

in (4). Even if the relaxation is sufficient in
proving the channel polarization, it would be better to refine
the marginalization space to achieve better performance for
finite-length polar codes.
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FIGURE 3. A binary decision tree constructed for decoding u3 in
Example 1. Two FCs are fixed as u4 = 0 and u6 = u3 + u5, and invalid
paths are depicted as gray dashed lines.

A binary decision tree for decoding the polar code given
in Example 1 is shown in Fig. 3. In the estimation of u3, the
conventional SC decoder marginalizes out the future bits in
u74 according to (4) by treating them as RVs. Accordingly,
all the sixteen paths for u74 ∈ F4

2 are considered as possible
codewords in the decision tree. However, two future bits
u4 and u6 are constrained as a frozen bit and a parity
bit, respectively. Taking these constraints into account, the
number of valid paths is only four for each value of u3.
We define future constraints as the future bits whose values

are fixed or constrained. Specifically, we have the following
definition.
Definition 2 (Future constraint): For two integers i, k ∈

ZN with k ≥ i, bit uk is called a future constraint (FC) of ui
if k ∈ Ac. The index set of future constraints for ui is denoted
by

Li ≜
{
k ≥ i | k ∈ Ac} . (5)

Remark: Clearly, i ∈ Li if ui is either a frozen bit or a parity
bit.

B. PARITY-CHECK MATRIX ON ENCODER INPUT
In order to specify the code space for precoding, we define a
parity-check matrix1 H ∈ FN×N2 such that uH = 0 for any
precoded word u. Based on (2), we have

0 = uH = vTH (6)

for any valid precoding input vector v. Therefore, the
parity-check matrix H is constructed so that TH = 0 is
satisfied. The i-th column of H is chosen as follows:

- For i ∈ A, H∗,i = 0
- For i ∈ F , Hi,i = 1 and Hk,i = 0 for k ̸= i.
- For i ∈ P ,H0:i−1,i = T0:i−1,i,Hi,i = 1,Hi+1:N−1,i = 0.

1For simple and concise presentation throughout the paper, we define
the parity-check matrix without taking its transpose, instead of the standard
notion of the parity-check matrix in coding theory.

As an example, the parity-check matrix H for the code in
Example 1 is given by

H =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0


.

Note that H is also an upper triangular matrix, like the
precoding matrix T. Since the columns of H corresponding
to the information bits are zero vectors, uH = 0 can be
simplified to

uH∗,Ac = 0. (7)

Letting H′ ≜ H∗,Ac , we consider the simplified form uH′ =
0 henceforth.

C. BITWISE-MAP-SC DECODING
While maintaining the principle of SC decoding, the bitwise-
MAP estimation is made by modifying the marginalization
space in (4). We refer to such decoding as bitwise-MAP-SC
decoding. Given ui0, we write u

N−1
i+1 : uH

′
= 0 to denote the

set of subvectors satisfying the given parity-check equation,
that is,

uN−1i+1 ∈

{
a ∈ FN−i−12 |

(
ui0, a

)
H′ = 0

}
, (8)

where (ui0, a) ∈ FN2 is the serial concatenation of ui0 and a.
The i-th modified sub-channel after channel splitting is then
defined as

Ẇ (i)
N

(
y,ui−10 | ui

)
≜

1
2K−1

∑
uN−1i+1 :uH

′=0
WN (y |u), (9)

where the marginalization space is refined to have valid uN−1i+1
in terms of uH′ = 0.

Using (9), the bitwise-MAP estimation is achieved in
sequential decoding for polar codes.
Theorem 3: Given y and ui−10 , the bitwise-MAP estimate

for ui is given by

ûMAPi

(
y,ui−10

)
= argmax

ui∈{0,1}
Ẇ (i)
N

(
y,ui−10 | ui

)
. (10)

Proof: Let p(ui | y,ui−10 ) denote the a posteriori
probability of ui given y and ui−10 . The statement is proved
by

ûMAP
i (y,ui−10 ) = argmax

ui∈{0,1}
p
(
ui | y,ui−10

)
= argmax

ui∈{0,1}

∑
uN−1i+1

p
(
ui,uN−1i+1 | y,u

i−1
0

)
= argmax

ui∈{0,1}

∑
uN−1i+1

p
(
y |u

)
p
(
u
)

p
(
y,ui−10

)
VOLUME 11, 2023 97703
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= argmax
ui∈{0,1}

∑
uN−1i+1

WN
(
y |u

)
· 1(uH′ = 0)

= argmax
ui∈{0,1}

∑
uN−1i+1 :uH

′=0
WN

(
y |u

)
,

where 1(·) is the indicator function that returns 1 if the
given argument is true, and 0 otherwise. Note that the fourth
equality holds because p(y,ui−10 ) is constant with respect to
both ui and uN−1i . □

D. COMPARISON AND REMARKS
Given the code in Example 1, the performance of decoding
algorithms is evaluated over the binary-input additive white
Gaussian noise channel (BI-AWGNC). A polar codeword x
is mapped to the symbol vector s ∈ RN such that sj = 1−2xj
for j ∈ ZN . The symbol vector s is transmitted through N
copies of the BI-AWGNC, and y ∈ RN is received such that
yj = sj + zj for j ∈ ZN , where zj ∼ N (0, σ 2) and σ 2 is the
noise variance. The channel transition probability is given by

W (yi | xi) =
1

√
2πσ 2

exp
(
−

1
2σ 2 (yi−si)

2
)
. (11)

The following three decoding algorithms are considered in
the evaluation.

1) SC DECODING
The SC decoder makes an estimate of ui for i ∈ A by

ûSCi
(
y,ui−10

)
= argmax

ui∈{0,1}
W (i)
N

(
y, ûi−10 | ui

)
= argmax

ui∈{0,1}

∑
uN−1i+1 ∈XN−i−1

N−1∏
j=0

W (yj | xj).

(12)

Note that the SC decoder in (12) yields the same results as
those of the decoders in [24] and [25], which are implemented
using the log-likelihood ratio (LLR) in a recursive way.

2) BITWISE-MAP-SC DECODING
Like SC decoding, the bits in u are sequentially estimated in
ascending order of the bit index. By Theorem 3, the bitwise-
MAP-SC estimate is made by

ûMAP
i

(
y,ui−10

)
= argmax

ui∈{0,1}
Ẇ (i)
N

(
y, ûi−10 | ui

)
= argmax

ui∈{0,1}

∑
uN−1i+1 :uH

′=0

N−1∏
j=0

W (yj | xj).

(13)

To compute (13), the valid subvectors uN−1i+1 need
to be identified in terms of the given parity-check
equation uH′ = 0.

FIGURE 4. BI-AWGNC BLER performance of decoding schemes for the
(8, 3) polar code in Example 1.

3) BLOCKWISE-MAP DECODING
The optimal blockwise-MAP estimate is given by

ûMAP(y) = argmax
u

p (u | y)

= argmax
u

WN (y |u) p (u)

= argmax
u

WN (y |u) · 1(uH′ = 0)

= argmax
u:uH′=0

N−1∏
j=0

W (yj | xj). (14)

As described in [27, Chapter 2], the estimate of ui in ûMAP(y)
can be written as(

ûMAP(y)
)
i
= argmax

ui∈{0,1}
max

∼ui:uH′=0

N−1∏
j=0

W (yj | xj), (15)

where ∼ ui ≜
{
ui−10 ,uN−1i+1

}
with an abuse of notation.

Fig. 4 shows the block error rate (BLER) curves of the
above three decoding schemes for the code in Example 1.
The BLER is evaluated over the BI-AWGNC with signal-to-
noise ratio Es/N0, where Es is the coded bit energy and N0 is
the one-sided noise power spectral density. Due to the small
code dimension, the estimates in (13) and (14) are feasible,
even though they are NP-hard in general. The bitwise-MAP-
SC decoder performs better than the SC decoder thanks
to refining the likelihood as in (9). For the given code,
the bitwise-MAP-SC decoder behaves almost the same as
the blockwise-MAP decoder due to the short block length,
although the estimate in (13) is different from that in (15) in
principle.

The bitwise-MAP-SC estimation in (13) is, however,
not generally feasible, because it is NP-hard. Besides,
sequentially performing the bitwise-MAP decoder on
every information bit is more complicated than the
optimal blockwise-MAP decoder. Roughly analyzing, the
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blockwise-MAP and bitwise-MAP-SC estimations require
approximately 2K × N and

∑
i∈A 2N−i × N multiplications,

respectively, where the latter is generally larger than the
former. The development of practical decoding schemes that
resemble the bitwise-MAP-SC decoder is hence a compelling
issue.

From the literature, we see that conventional improved
SC-based decoders such as the SCL, SCS, SCF, SC-Fano, and
SCI decoders are also designed to tackle the suboptimality.
In particular, we have a remark on the SCL decoding
algorithm [2], [25], the most popular practical scheme for
polar codes.
Remark 4: The SCL decoding algorithm is interpreted as

performing post-compensation of the suboptimality brought
by not reflecting FCs. It is worth noting that the SCL decoder
does not skip decoding of frozen and parity bits, even if their
values are deterministic. To be specific, the SCL decoder
estimates information bits based on the original likelihood
in (4) and computes decoding metrics such as LLRs for frozen
and parity bits to update the path metrics (PMs). These
decoding metrics penalize the invalid paths that erroneously
survive due in part to the relaxation for the FCs. Based on
the behavior of SCL decoding, it is possible to show that such
processing for frozen and parity bits is not needed if FCs are
immediately reflected.

As shown in Remark 4, the conventional improved
SC-based decoders do not consider FCs in each bit decoding
in order to keep the operation simple and recursive. Instead,
they compensate for this relaxation by directly processing
frozen and parity bits afterward. In contrast to these
conventional methods, our goal is to develop practical
techniques that immediately incorporate entire FCs while
still maintaining the recursive formulas of SC decoding. The
efficient recursion of SC decoding is possible because all
future bits are treated as pure noise, as noted in [8]. Since this
treatment is no longer valid, integrating FCs into the recursive
decoding operation is not straightforward.

IV. FC-AIDED DECODING
In this section, we propose two elementary FC-aided
decoding techniques. An SCC decoding algorithm is first
developed to directly incorporate FCs close to the target
information bit. To further leverage the other FCs that the
SCC technique does not cover, we find their equivalent
constraints on the encoder output (i.e., the decoder input),
which are available to the recursive decoding operation.
We then devise a BP-SCC decoding algorithm that runs
message-passing over the converted equivalent constraints
in order to enhance decoding symbols or metrics. Based on
the above two proposed decoding algorithms, a tree search
technique is further designed to solve the CSP formulated by
the FCs.

A. SCC DECODING
Consider decoding an information bit ui (i.e., i ∈ A).
In conventional SC-based decoders, a decoding metric for

ui is computed and its estimate ûi is obtained accordingly.
On the other hand, in the proposed SCC decoding algorithm,
the estimation of ui is suspended until the next information
bit, and decoding is performed by capturing all the FCs in
between.

Letting ui be the target information bit to be decoded, we
write uℓi to denote its corresponding processing bit, where ℓi
is given by

ℓi ≜ min{k ≥ i | (k + 1 ∈ A) ∨ (k + 1 = N )}. (16)

In other words, the processing bit is the bit right ahead of
the next information bit. If i + 1 ∈ A, the processing
bit is determined to be the target bit itself (i.e., ℓi =
i), and normal SC decoding is performed. If ℓi > i,
a hypothesis Hi,b is established to check ui = b for b ∈ F2.
Specifically, let ū⟨Hi,b⟩ ∈ Fℓi+12 denote the binary vector
tentatively generated forHi,b. The j-th component of ū⟨Hi,b⟩

is generated by the applied code construction rule, that is,

ū⟨Hi,b⟩j =


ûj, for j < i,
b, for j = i,

ū⟨Hi,b⟩
j−1
0 · T0:j−1,j, for i < j ≤ ℓi,

(17)

For the code in Example 1, two information bits u3 and
u5 are handled by the SCC approach. In decoding u3,
the processing bit is determined to be u4 and two vectors
ū⟨H3,0⟩ = (0, 0, 0, 0, 0) and ū⟨H3,1⟩ = (0, 0, 0, 1, 0) are
made. For u5, the processing bit is given as u6 because
the next information bit is u7. According to (17), we have
ū⟨H5,0⟩ = (0, 0, 0, û3, 0, 0, û3 + 0) and ū⟨H5,1⟩ =

(0, 0, 0, û3, 0, 1, û3 + 1). As a result, the SCC decoder
traverses valid partial paths from ui to uℓi in the binary
decision tree shown in Fig. 3.
After establishing the hypotheses, the bits in ū⟨Hi,b⟩ are

cancelled out by assuming them as true. Then, the original
SC-based decoding operation employing the recursive for-
mula is exploited to process uℓi and determines the hypothesis
that is most likely, based on the given channel observations.
The SCC decoding operation is interpreted as making a
decision on ui by additionally using ū⟨Hi,b⟩

ℓi
i+1, leading to

better estimation than (4). In this way, the FCs with indices
in {i+1 : ℓi} are directly reflected in the process of estimating
ui.
Subsequently, the SC-based decoding, employing the

recursive formula, is employed to decode uℓi and determine
the hypothesis that is most likely based on the observed
channel conditions.

B. FC CONVERSION
When applying the SCC decoding technique, the FCs with
indices in Ac

∩ {i + 1 : ℓi} are incorporated into the
decoding process of the target bit ui, while the other FCs are
left unused. In this subsection, we introduce FC conversion
rules designed to harness the potential of these untapped FCs,
which are not addressed within the overarching recursive
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FIGURE 5. Bipartite graph of the polar code given in Example 1 with
constraints induced by frozen bits and parity bits. The components drawn
in the center represent a typical polar code graph, in which each
2 × 2 polarization kernel is depicted in more detail by using three CNs.
Gray-filled CNs at both ends correspond to constraints (left, uH′

= 0) and
their conversions (right, xQ = 0). Two subgraph structures for the
component codes of lengths 2 and 4, which involve u5, are highlighted by
using dashed-lined boxes.

SC decoding formula by the SCC decoding approach.
Specifically, we convert the FCs with indices inAc

∩{ℓi+1 :
N − 1} into equivalent ones for x.
We begin by presenting the following proposition to derive

a parity-check equation for x.
Proposition 5: Assume that an encoder input vector u is

constrained by uH′ = 0. For its encoder output vector x =
uG, the equivalent parity-check equation is given by

xQ = 0, (18)

where Q = GH′.
Proof: Note that u = xG−1 = xG because G is

an involutory matrix over F2. Hence, we get an equivalent
parity-check equation on x given by

0 = uH′ = xGH′. (19)

□
For the code in Example 1, we have

Q =


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1


T

,

whose corresponding polar code graph is shown in Fig. 5.
This bipartite graph consists of two kinds of vertices: variable
nodes (VNs, circles) and check nodes (CNs, squares). A VN
corresponds to a bit, while a CN represents a parity-check
equation showing that the binary sum of all connected VNs
equals 0. Typical graph components representing x = uG are
drawn in the center, where each 2× 2 polarization kernel for
F =

[
1 0
1 1

]
is depicted using three CNs with more accuracy

and detail than the conventional polar code graph. The graph
is derived from the recursive construction of polar codes

and consists of n + 1 stages indexed from 0 (leftmost) to
n (rightmost). The VNs at stages 0 and n correspond to the
encoder input u and the encoder output x, respectively.
New components representing the constraints on u and x

are added to the graph by using gray-filled CNs. The original
constraints given by uH′ = 0 are shown on the left side of the
graph, while the equivalent parity-check equation xQ = 0 is
depicted on the right side. Each constraint is presented by a
corresponding CN. By Proposition 5, the constraint u3+u5+
u6 = 0 on the left side is converted into the equivalent one
x3 + x5 + x6 + x7 = 0 on the right side, and so on.
Looking at Proposition 5, the FCs that cannot be utilized in

conventional SC decoding now appear on the encoder output.
It turns out that they are available to the decoder input at
the receiver. To be specific, xQ = 0 is modified into use
as sequential decoding proceeds, and the following theorem
presents how to obtain an instant parity-check equation for
each bit.
Theorem 6: Assume that we are in a position to decode ui

based on past estimates ûi−10 . Then, the parity-check equation
on x induced by FCs is given by

ûi−10 H0:i−1,Li + xQ(i)
= 0, (20)

where Q(i)
= G∗,i:N−1Hi:N−1,Li .

Proof: Given ûi−10 , the parity-check equation uH = 0
is broken down into

ûi−10 H0:i−1,∗ + uN−1i Hi:N−1,∗ = 0. (21)

Since u = xG and uN−1i = xG∗,i:N−1, we have

ûi−10 H0:i−1,∗ + xG∗,i:N−1Hi:N−1,∗ = 0. (22)

By removing the columns corresponding to past estimates and
information bits for which parity-check equations do not need
to be identified, we make (22) into (20) in a more compact
form. □
The parity-check equation in (20) is tractable in decoding

ui, where the first term corresponds to the past estimates
ûi−10 while the second one is determined by x. The number
of converted constraints on x is exactly the same as that of
the FCs on u (i.e. |Li|).
Corollary 7: Applying the SCC decoding algorithm

together, we have

ū⟨Hi,b⟩H0:ℓi,Lℓi+1 + xQ(ℓi+1) = 0 (23)

for the hypothesisHi,b.
Proof: It is simply derived from (20) by considering

the processing bit index ℓi instead of the target bit index i
and replacing ûi−10 with ū⟨Hi,b⟩ to model the SCC decoding
behavior. □

C. SUBGRAPH-BASED FC CONVERSION
In (20) and (23), each row of Q(i) and Q(ℓi+1) generally
exhibits a high degree, indicating a substantial number of
ones. Consequently, the number of variables in x associated
with each component parity-check equation tends to be
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notably large. This characteristic may give rise to under-
determined or ill-posed decoding. Based on the fact that a
polar code graph is recursively constructed by polar codes
of smaller lengths, we find a compact conversion rule in this
subsection.

Suppose that ui is a target bit and uj (j ∈ Li) is its FC.
If both ui and uj belong to the same component polar code
of a smaller length, the converted constraint brought by uj
can be identified in this code, rather than the mother code.
In Fig. 5, two subgraph structures including u5 are depicted,
where u54 and u

7
4 are to be encoder input vectors for the polar

codes of length 2 and 4, respectively. Clearly, the additional
constraint induced by the parity bit u6 can be found in the
polar code of length 4.

For i ∈ ZN and t ∈ {1 : n}, we write T (i, t) ≜
{s(i, t)+ k | k ∈ Z2t } to indicate the index set of the bits in
u that together belong to the subgraph of size 2t , where
s(i, t) ≜ 2t × ⌊i/2t⌋. Clearly, T (i, t) ⊃ T (i, t − 1). For
example, we have T (5, 1) = {4 : 5} and T (5, 2) = {4 : 7} as
shown in Fig. 5. Let x(t)i ∈ F2t

2 be the intermediate codeword
generated by encoding uT (i,t) ∈ F2t

2 , that is,

x(t)i = uT (i,t)F⊗t , (24)

where F⊗t ∈ F2t×2t
2 is the generator matrix of the component

polar code of length 2t . Note that x(t)i appears at stage t in the
polar code graph as shown in Fig. 5. In addition, let T ′(i, t) ≜
T (i, t) ∩ {i : N − 1} denote the index set of the bits in uT (i,t)
behind ui−1, and let Li,t ≜ Li ∩ (T (i, t)\T (i, t − 1)) be the
index set of the FCs only belonging to the subgraph of length
2t , but not to its nested subgraph of length 2t−1.
Theorem 8: Assume that we are in a position to decode ui

based on past estimates ûi−10 . For t ∈ {1 : n}, the parity-check
equation on x(t)i induced by the FCs in the subgraph of length
2t is given by

ûi−10 H0:i−1,Li,t + x(t)i Q(i,t)
= 0, (25)

where Q(i,t)
=

(
F⊗t

)
∗,−s(i,t)+T ′(i,t)HT ′(i,t),Li,t .

Proof: Since F⊗t is an involutory matrix, we clearly
have

uT (i,t) = x(t)i F⊗t . (26)

The generation of uT ′(i,t) is then written by

uT ′(i,t) = x(t)i
(
F⊗t

)
∗,−s(i,t)+T ′(i,t) , (27)

where −s(i, t) + T ′(i, t) = {−s(i, t) + a | a ∈ T ′(i, t)}.
Focusing only on the subgraph of interest, we have

ûi−10 H0:i−1,Li,t + uT ′(i,t)HT ′(i,t),Li,t = 0 (28)

in the same way as in Theorem 6, where the bits of u
behind the subgraph do not contribute to (28) because of
the upper-triangular structure of H. By putting (27) into the
second term of (28), we have (25). □

By the subgraph-based conversion for decoding ui, the set
Li is divided into disjoint subsets Li,t for t ∈ {1 : n}, that is,

n⋃
t=1

Li,t = Li. (29)

Therefore, the total number of constraints is preserved even
under the subgraph-based conversion.
Considering the processing bit index ℓi for (25) instead of

the target bit index i, we have the following result for SCC
decoding.
Corollary 9: Under SCC decoding for ui with hypothesis

Hi,b, the subgraph-based FC conversion gives a parity-check
equation

ū⟨Hi,b⟩H0:ℓi,Lℓi+1,t + x(t)ℓi+1Q
(ℓi+1,t) = 0. (30)

D. GRAPH CONSTRUCTION AND BELIEF PROPAGATION
A given polar code graph is modified by the FC conversion.
In sequential decoding of each bit, a part of the full graph
(e.g., Fig. 5) is selectively active while the previous estimates
are cancelled. The instantly constructed graph for decoding
each bit looks like a tree in which there are 2t VNs at stage t .
For t ∈ {0 : n−1} and k ∈ Z2t , a VN corresponding to x(t)k has
two child VNs for x(t+1)k and x(t+1)k+2t , where their connections
are determined by the current processing bit index ℓi. Let
⟨ℓi⟩t ∈ F2 denote the t-th element of the binary representation
of ℓi such that ℓi =

∑n−1
i=0 ⟨ℓi⟩t2

t . If ⟨ℓi⟩t = 0, a single parity-
check (SPC) node representing

x(t)k = x(t+1)k + x(t+1)k+2t (31)

is constructed. On the other hand, a repetition node of

x(t)k = x(t+1)k + β
(t)
k = x(t+1)k+2t (32)

appears in the graph if ⟨ℓi⟩t = 1, where β(t)k corresponds
to the estimate for x(t)k and is obtained by back-propagating
ū⟨Hi,b⟩0:ℓi−1 to stage t in the sequential cancellation
operation. The construction rule of an instant graph and
the back-propagation operation are well documented in the
literature (cf. [24], [25]).
An instant graph can be constructed by focusing on the

combination of SCC decoding and the subgraph-based FC
conversion given in Corollary 9. According to (30), |Lℓi+1,t |
new CNs are added at stage t , and are associated with two
sets of VNs corresponding to ū⟨Hi,b⟩ and x

(t)
ℓi+1

, respectively.
These CNs are referred to as FC check nodes (FCCNs) at
stage t . We rewrite (30) into

x(t)ℓi+1Q
(ℓi+1,t) = ū⟨Hi,b⟩H0:ℓi,Lℓi+1,t , (33)

where the left-hand side (LHS) is represented by the
connections between the FCCNs and the VNs of x(t)ℓi+1,
while the right-hand side (RHS) is simply given as a linear
combination of the bits whose values are already determined
in ū⟨Hi,b⟩. Clearly, the RHS serves as non-zero constraint
values to check the given parity-check equation. LetQ(ℓi+1,t)

j
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FIGURE 6. Instant graph construction with subgraph-based FC conversion
for decoding u3 in Example 1. White squares represent normal CNs in the
polar code graph, while a gray-filled square corresponds to an FCCN
representing x (2)

1 + x (2)
2 + ū⟨H3,b⟩3 = 0, converted from the FC

u6 = u3 + u5.

be the index set of VNs in x(t)ℓi , connected to the j-th FCCN.
Then, we have

Q(ℓi+1,t)
j ≜

{
q ∈ Z2t |Q

(ℓi+1,t)
q,j = 1

}
. (34)

Fig. 6 shows the instant graph connection when decoding
u3 in the code of Example 1. The processing bit index ℓ3 is
determined to be 4 by (16), and a basic tree-like graph
for uℓ3 = u4 is first formed. From (33), x(2)5 ·[0110]

T
=

ū⟨H3,b⟩·[00010]T is given, and an FCCN representing x(2)1 +

x(2)2 = ū⟨H3,b⟩3 is supplemented to the graph.
The instant polar code graph is modified by supplementing

FCCNs and their corresponding edges, so it is worth introduc-
ing a new decoding scheme to take advantage of these new
components. We apply the iterative BP method [26], [27] to
polar decoding over the modified graph. Two major changes
are made in our scheme. First, message-passing operations
are performed with an appropriate number of iterations in
order to utilize the FCCNs. Second, decoding metrics are
updated in both directions, whereas messages are delivered
only in one direction (descending order of stage index t)
in the conventional SC-based decoding. We formalize a
combination of BP and SCC methods as BP-SCC decoding.

From now on, we present a brief sketch of BP-SCC
decoding operations over the modified graph with FCCNs.
In order to represent decoding metrics, the conventional
notation of the tree-like data structure

{
α
(t)
k | t ∈ {0 : n}, k ∈

Z2t
}
is used, where α(t)k is a decoding metric for the k-th

variable node at stage t . The decoding metrics at stage n
(i.e., α(n)k for k ∈ ZN ) are initialized using the given channel
observations y. Then, the BP-SCC decoding operations for ui
(i ∈ A) are conducted as follows:

1) The processing bit index ℓi is determined by (16)
and ū⟨Hi,b⟩ is generated for b ∈ {0, 1}. A tree-like
graph is constructed for processing uℓi , and FCCNs are
supplemented to each stage by (33).

FIGURE 7. Three component operations at stage t in BP-SCC decoding.

2) For t = n−1, . . . , 0 in descending order, the following
component operations are sequentially performed:
a) FCCN operation: The decoding metrics at stage

t + 1 (i.e., α(t+1)k for k ∈ Z2t+1 ) are first updated
via the FCCNs as depicted in Fig. 7 (a). Each
FCCN supplemented at stage t+1 takes variable-
to-check (V2C) messages from its neighbor VNs,
computes check-to-variable (C2V) messages, and
passes them back to its neighbors. Then, VNs
at stage t + 1 update their decoding metrics
based on the delivered C2V messages. In the
message calculation, the bits in ū⟨Hi,b⟩ may
cause non-zero constraint values, and thus, the
message-passing results vary with the hypothesis
value b.

b) CN operation: For each k ∈ Z2t , three decoding
metrics α(t)k , α(t+1)k , α(t)k+2t are mutually updated
by message-passing. The message-passing oper-
ation type at stage t is determined by ⟨ℓi⟩t .
As shown in Fig. 7 (b) and (c), the operation for an
SPC node is carried out if ⟨ℓi⟩t = 0, while that for
a repetition node is done using the past estimate
β
(t)
k if ⟨ℓi⟩t = 1. The message-passing operation

is performed back and forth, that is, not only α(t)k
but also α(t+1)k and α(t)k+2t are updated.

c) Processing bit operation: After finishing the CN
operation at stage t = 0, the final metric α(0)0 is
obtained. It is further updated by considering the
given processing bit ū⟨Hi,b⟩ℓi .

3) The operations at Step 2) are repeated at most Imax
times, where Imax is a predeterminedmaximum number
of iterations. At each iteration, a validation check for
the tentative estimates (including all the intermediate
nodes in the graph) is performed, and the iteration can
be early terminated depending on the check result.

4) After performing the above operations for each b ∈ F2,
a decision on the hypothesisHi,b is made to determine
the traversal over the binary decision tree shown in
Fig. 3. Let r(Hi,b) ∈ {0, 1} denote the report for Hi,b,
where r(Hi,b) = 0 if a conflict between the channel
observations y and the hypothesis ū⟨Hi,b⟩ is detected,
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and r(Hi,b) = 1 otherwise. The decision result r(Hi,b)
is made by the validation check performed at Step 3),
and soft metrics such as LLRs and PMs can be further
applied to elaborate the decision result.

According to the operations described above, the decoding
metrics are improved by additional message-passing over
the FCCNs, compared with conventional SC-based decoding
methods. In fact, the BP-SCC decoding algorithm aided by
FCs enhances the estimation of ū⟨Hi,b⟩. Generally speak-
ing, the specific definition of message-passing operations
depends on the channel type. As an example, that for the BEC
is introduced in the next section.

E. TREE SEARCH WITH STACK-BASED BACKJUMPING
(SBJ)
Sequential decoding for polar codes can be seen as solving
the search problem for a binary decision tree given in Fig. 3.
The original SC decoding algorithm employs a DFS heuristic,
while the SCL decoder exploits a BFS method with limited
branching based on soft metrics (i.e., PMs). In the proposed
decoding algorithms, FCs serve as hard validity conditions
that a given partial solution must satisfy. Therefore, the
FC-aided decoding algorithms are interpreted as solving a
sort of dynamic CSP [20], [21] formulated by FCs, which
adaptively change with the decisions made in sequential
estimation. The dynamic CSP that we have consists of
a set of variables uA, each of them associated with the
alphabet F2, and a set of constraints uH′ = 0, equivalent to
xQ = 0 by Proposition 5. It is decomposed into sub-problems
sequentially making a decision on ui under the dynamically
changed parity-check equation as given in Theorems 6 and 8,
and Corollaries 7 and 9.
The SC-based sequential processing with FCs is modeled

by tree search to solve the dynamic CSP, and this framework
is well-established, especially in the artificial intelligence
(AI) research area [28], [29]. Based on the previous works
in the AI field, a pertinent tree search policy is designed
using SBJ. In the tree search, some techniques for returning
to predecessors (such as backtracking and backjumping)
are generally used to avoid invalid solutions to CSPs and
efficiently traverse other valid candidates. Backtracking
methods triggered by soft metrics were also exploited and
evaluated for the SCwith backtracking (SC-BT) decoder [16]
and Fano decoders [5], [13], [30]. In these schemes, soft
metrics are commonly compared with dynamic thresholds
to determine whether to move forward or backward. On the
other hand, in the proposed method of this paper, we have
hard validity conditions induced by FCs. If the decoder does
not observe any conflict for a certain branch under these
conditions, it can safely jump back to the corresponding node
later when the decoder runs into a dead-end. For a later
visit, we operate a stack S to store branches of which bit
assignments are determined to be valid in terms of FCs.

To minimize the number of node visits, we propose an
efficient tree traversal algorithm as follows:

FIGURE 8. Example of stack-based backjumping (SBJ) using the
constraint satisfaction check results for the code given in Example 1.

• When decoding ui with i ∈ A, we only generate and
verify a hypothesis Hi,0 for bit value 0 using BP-SCC
decoding.
- If no conflict is detected (i.e., r(Hi,0) = 1), the
decoder proceeds to the branch associated withHi,0
and pushes the branch corresponding toHi,1 onto a
stack S for potential later visits.

- If a conflict is detected (i.e., r(Hi,0) = 0), the
second hypothesisHi,1 is generated and verified by
BP-SCC decoding.
∗ If no conflict is detected (i.e., r(Hi,1) = 1), the

decoder proceeds to the branch associated with
Hi,1.

∗ if a conflict is detected (i.e., r(Hi,1) = 0), the
decoder jumps back to the last unvisited branch
retrieved from the stack S. If the stack S is
empty, the decoder declares a decoding failure
and terminates the decoding process.

This opportunistic approach to selectively visiting branches
corresponding to bit value 1 significantly reduces the number
of node visits. If no error occurs over the channel, the
expected number of node visits is 3N/2.

Fig. 8 shows a simple example of the tree search operation
with SBJ for the code given in Example 1. First, suppose that
the proposed decoder identifies that H3,0 does not violate
the given constraints with respect to FCs. According to the
behavior described above, the decoder proceeds to the branch
of H3,0 and pushes the branch of H3,1 to S. After that,
we suppose that neitherH5,0 norH5,1 passes the CSPs given
by FCs. Due to the dead-end identified by the given CSPs,
the decoder abandons the progress so far and jumps back to
the branch ofH3,1, which is popped from S. In this way, the
CSP-based tree traversal finds a consistent bit assignment in
sequential decoding.

The proposed SBJ technique is fundamentally distinct
from SCS decoding [3], although the former is similar to the
latter in the sense that they both use a stack as a data structure.
One distinct point is whether FCs are incorporated or not.
The former is triggered by FCs, while the latter does not
exploit FCs. Another point is how the stack is used. The stack
in the proposed SBJ technique is used to push the unvisited
branches that are identified not to violate the CSPs formulated
by FCs. On the other hand, the stack in SCS decoding is used
to manage the limited set of the most promising nodes in tree
search.
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V. DECODING OVER THE BEC
This section presents a specific BP-SCC decoding algorithm
aided by FCs for the BEC. Because no bit error is assumed,
the decoding operation for the BEC is simple and understood
clearly without any ambiguity.We expect that the study on the
proposed decoding over the BEC provides a vital intuition to
understand that over general B-DMCs.

A. ALGORITHM DESCRIPTION
The transition probability of the BEC is given by

W (yk | xk ) =

{
1− pϵ, for yk = xk ,
pϵ, for yk = ϵ,

(35)

where pϵ is the channel erasure probability and ϵ is the
symbol representing an erasure of the transmitted bit. Unlike
conventional decoding schemes for the BEC, we add another
symbol η to denote a conflict possibly detected during
decoding. Summarizing them, we write E ≜ {0, 1, ϵ, η} to
denote the alphabet of decoding symbols α(t)k for t ∈ {0 : n}
and k ∈ Z2t .
In order to describe the decoding operations, we first define

two elementary operators ⊞,� : E × E → E, where ⊞
is used to identify the sum of two inputs (i.e., SPC node)
while � is employed to check that two inputs are the same
(i.e., repetition node). Specifically, the results of these two
operators are given by

a⊞ b =


η, if a = η or b = η,
ϵ, else if a = ϵ or b = ϵ,
a+ b, otherwise,

(36)

and

a� b =


η, if (a⊞ b = η) or (a⊞ b ̸= η and a ̸= b),
ϵ, else if a = ϵ and b = ϵ,
b, else if a = ϵ,
a, otherwise.

(37)

It is clear that both ⊞ and � are commutative.
Using the two component operators, the BP-SCC decoding

algorithm for the BEC is specified. Note that we write a← b
to denote that b is assigned to a or a is updated as b. Given
the channel observations y = (y0, y1, . . . , yN−1), the initial
value of the decoding symbol α(t)k for k ∈ Z2t is determined
by

α
(t)
k ←

{
yk , if t = n,
ϵ, otherwise.

(38)

In the process of decoding ui (i ∈ A), the values of the
FCs preceding the next information bit, i.e., ū⟨Hi,b⟩i+1:ℓi
are determined based on (17) for the hypothesis Hi,b.
Subsequently, the decoding operations for processing uℓi
follow the descriptions outlined in Subsection IV-D. The
following component operations are performed in descending
order of the stage index t ∈ {0 : n− 1}.

1) FCCN operation: For stage t+1, the decoding symbols
are updated by using the given FCCNs. We write
cj to denote the j-th FCCN at this stage and φj ≜
(ū⟨Hi,b⟩H0:ℓi,Lℓi+1,t+1)j to indicate its corresponding
nonzero constraint value given in the RHS of (33). Let
Ck be the index set of FCCNs connected to x(t+1)k , and
let Vj denote the index set of VNs neighbored by cj. The
C2V message from cj to x

(t+1)
k is computed as

γj→k ←

(
⊞l∈Vj\{k}α

(t+1)
l

)
⊞ φj, (39)

where the big operator indicates serially repeated
operations for variables whose indices are designated
by the subscript. Based on these C2V messages, the
decoding symbol for x(t+1)k is then updated as

α
(t+1)
k ←

(
�l∈Ckγl→k

)
� α

(t+1)
k . (40)

2) SPC node operation: If ⟨ℓi⟩t = 0 for the given process-
ing bit index ℓi, then three variables α

(t)
k , α

(t+1)
k , α

(t+1)
k+2t

for each k ∈ Z2t are concurrently updated as

α
(t)
k ← α

(t)
k �

(
α
(t+1)
k ⊞ α

(t+1)
k+2t

)
,

α
(t+1)
k ← α

(t+1)
k �

(
α
(t)
k ⊞ α

(t+1)
k+2t

)
,

α
(t+1)
k+2t ← α

(t+1)
k+2t �

(
α
(t)
k ⊞ α

(t+1)
k

)
. (41)

3) Repetition node operation: If ⟨ℓi⟩t = 1, four
input variables α(t)k , α

(t+1)
k , α

(t+1)
k+2t , β

(t)
k are fed into

this operation, where β(t)k is an estimate of x(t+1)k +

x(t+1)k+2t attained by the previous SC operation as shown
in Fig. 7 (c). The first three decoding symbols are
simultaneously refined as

α
(t)
k ← α

(t)
k �

((
α
(t+1)
k ⊞ β

(t)
k

)
� α

(t+1)
k+2t

)
,

α
(t+1)
k ←

(
α
(t)
k ⊞ β

(t)
k

)
� α

(t+1)
k ,

α
(t+1)
k+2t ← α

(t)
k � α

(t+1)
k+2t . (42)

4) Processing bit operation: The decoding symbol α(0)0 is
obtained after the operation for t = 0. Depending on
the value of α(0)0 , the decoder determines the next action
as follows:

• If α(0)0 = ū⟨Hi,b⟩ℓi , the decoding operation
is immediately terminated and r(Hi,b) = 1 is
reported.

• If α(0)0 ̸= ϵ and α
(0)
0 ̸= ū⟨Hi,b⟩ℓi , the decoder stops

and reports r(Hi,b) = 0.
• If α(0)0 = ϵ, the decoder repeats the operation at
Step 1) again until the number of running iterations
reaches Imax.

During the operations at Steps 1) to 3), the decoder early
terminates the iterative operations and yields r(Hi,b) = 0 as
soon as any of the decoding symbols is updated to be a
conflict η.
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FIGURE 9. Numerical analysis and simulation results for the half-rate 3GPP NR polar codes having code lengths 128 and 512. The number of
maximum iterations Imax is set to one for BP-SCC decoding.

B. NUMERICAL ANALYSIS VIA DENSITY EVOLUTION
The performance of SCC and BP-SCC decoding schemes is
numerically analyzed by density evolution (DE). As usual,
we assume that the all-zero codeword is transmitted without
loss of generality. Then, for each i ∈ A, the proposed DE
method tracks the probability that the decoder does not detect
a conflict η for the hypothesis Hi,1. The partial bit sequence
ū⟨Hi,1⟩ is generated by assuming ui = 1, and the estimates
appearing at the intermediate stages of the instant graph
are accordingly determined by the successive cancellation
procedure. Hence, some estimates used in the repetition node
(i.e. β(t)k in Fig. 7 (c)) are determined to be 1, violating the
all-zero codeword assumption. Nevertheless, if a conflict η is
not detected by the decoder, it leads to a decoding error with
probability 1/2 due to the random selection for r(Hi,0) =
r(Hi,1) = 1.

Since the new symbol η is added to the alphabet of
decoding symbols, the DE procedure is modified to take the
new status into account. Considering the operators ⊞ and
�, we define two elementary functions handling probability
mass functions (PMFs) in order to track the probability of the
conflict η. For two input PMFs p1, p2 : E → [0, 1], the DE
function for SPC is denoted by p⊞ = ψ⊞(p1, p2), where the
output PMF p⊞ : E→ [0, 1] is given by

p⊞[0] = p1[0]·p2[0]+ p1[1]·p2[1];

p⊞[1] = p1[0]·p2[1]+ p1[1]·p2[0];

p⊞[ϵ] = p1[ϵ]·(p2[0]+ p2[1]+ p2[ϵ])

+ p2[ϵ]·(p1[0]+ p1[1]);

p⊞[η] = p1[η]+ p2[η]− p1[η]·p2[η].

For a set of three or more PMFs {p1, p2, p3, . . .}, we have

ψ⊞({p1, p2, p3, . . .}) = ψ⊞(p1, ψ⊞(p2, ψ⊞(p3, . . .)))

because ⊞ is commutative. Similarly, for two input PMFs
p1, p2 ∈ E → [0, 1] and a binary value b ∈ F2, the DE
function for repetition is denoted by p� = ψ�(p1, p2, b) in
which the output PMF p� : E→ [0, 1] is computed by

p�[0] = p1[b]·(p2[0]+ p2[ϵ])+ p1[ϵ]·p2[0];

p�[1] = p1[b̌]·(p2[1]+ p2[ϵ])

+ p1[ϵ]·p2[1];

p�[ϵ] = p1[ϵ]·p2[ϵ];

p�[η] = p1[b]·p2[1]

+ p1[b̌]·p2[0]+ p1[η](1− p2[η])+ p2[η].

Note that the DE operations are established under the
cycle-free assumption, so the results are not accurate for
BP-SCC decoding over the graphwith cycles especially when
Imax > 1. For this reason, we only consider Imax = 1 for
BP-SCC decoding here. Since no iteration is performed, we
only need to consider the forward update, that is, only α(t)k is
updated at SPC and repetition nodes in Fig. 7 (b) and (c).

Let p(t)k be the PMF of the k-th VN at stage t . We first
initialize the PMFs at stage n by setting p(n)k [0] = 1 − pϵ ,
p(n)k [1] = 0, p(n)k [ϵ] = pϵ , and p

(n)
k [η] = 0 for all k ∈ ZN .

Then, by modeling the decoding operations, the PMFs at
stages t ∈ {0 : n−1} are sequentially computed in descending
order of t .

As the first step of the stage-t operation, the PMFs at stage
t + 1 are updated through FCCNs in the BP-SCC decoder.
This procedure by FCCNs is just skipped for SCC decoding.
Let qj→k denote the PMF of the C2V message from CN cj to
VN x(t+1)k . Based on (39), it is computed as

qj→k ← ψ⊞

(
p′j, ψ⊞

({
p(k+1)l | l ∈ Vj\{k}

}))
, (43)

VOLUME 11, 2023 97711



M. Jang et al.: Successive Cancellation Decoding with Future Constraints for Polar Codes

FIGURE 10. Erasure recovery performance of five decoders over the BEC. The 4GPP NR uplink polar code construction scheme specified in [7] is used,
where the 11-bit CRC code is concatenated. In each subfigure, the simulation-based ML bound, the DT bound, and the MC bound are also presented
as a dash-dotted line, a dashed line, and a solid line without markers, respectively.

where p′j : E → [0, 1] is the PMF for the deterministic
constraint value φj, i.e., p′j[δ] = 1 if δ = φj and p′j[δ] =
0 otherwise. Since there may be cycles between FCCNs
and VNs, the PMF update rule is modified to take only the
most influential C2V message in order to mitigate the cycle
effect. We find CN cj′ whose C2V message has the highest
probability of the conflict η, that is, its index j′ is given
by

j′ = argmaxj∈{0:|Lℓi+1,t+1|−1} qj→k [η]. (44)

The PMF of the decoding symbol α(t+1)k is then updated by
p(t+1)k ← ψ�

(
p(t+1)k , qj′→k

)
.

Based on the decoding symbols at stage t + 1, either an
SPC or a repetition node operation is applied depending on

the processing bit index ℓi to calculate p(t)k as

p(t)k ←

ψ⊞

(
p(t+1)k , p(t+1)k+2t

)
, if ⟨ℓi⟩t = 0,

ψ�
(
p(t+1)k , p(t+1)k+2t , β

(t)
k

)
, if ⟨ℓi⟩t = 1,

(45)

In this way, the conflict probability is gradually computed by
reflecting all the bits in ū⟨Hi,1⟩, and the corresponding final
result is given in p(0)0 .
It is definite that Hi,0 always passes the conflict check

by BP-SCC decoding under the assumption of the all-zero
codeword transmission. If no conflict is also observed for
Hi,1, ûi is determined to be 1 with probability 1/2 due to the
random selection. According to the path selection described
in Subsection IV-E, the bit error probability of ui is given by

Pb(i) =
1
2

(
p(0)0

[
ū⟨Hi,1⟩ℓi

]
+ p(0)0 [ϵ]

)
, (46)
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FIGURE 11. Average number of visited nodes in the binary tree for five decoders over the BEC. The 4GPP NR uplink polar code construction scheme
specified in [7] is used, where the 11-bit CRC code is concatenated.

where p(0)0

[
ū⟨Hi,1⟩ℓi

]
+ p(0)0 [ϵ] is the probability that

r(Hi,1) = 1. Finally, the BLER is estimated by

PB ≈ 1−
∏
i∈A

(1− Pb(i)) . (47)

In Fig. 9, the numerical analysis results derived by the
proposed DE technique are shown and compared with
practical simulation results. We consider four half-rate polar
codes of length N ∈ {64, 128, 256, 512}. The 5G NR
polar code construction method [7] is applied to generate
these codes, in which the 11-bit CRC code with generator
polynomial g(D) = D11

+D10
+D9
+D5
+1 is concatenated as

an outer coding scheme. The eleven parity bits are generated
by the CRC encoder and appended to the input vector a
as shown in Fig. 2 (a). Three decoding schemes, SC, SCC,
and BP-SCC are analyzed by DE and numerically evaluated,
where Imax is set to one for BP-SCC decoding. As depicted in

each subfigure, the proposed numerical analysis method well
estimates the practical BLER performance, which shows that
the behavior of the proposed decoding schemes is analytically
tractable.

C. NUMERICAL RESULTS
We evaluate and compare four decoding algorithms by
numerical experiments in this subsection. Their characteris-
tics are given as follows:

- SC decoding: The original SC decoding algorithm [1]
is considered, where no FC is entailed. The SC decoder
estimates each bit based on the original likelihood (4),
where the DFS is thus used as a tree search method.

- SCC decoding: The FCs close to the target bit are
directly used by establishing hypotheses, while those
behind the next information bit are not taken into
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account. In the case that the processing bit index ℓi is
identical to the target bit index i, standard SC decoding
is performed rather than SCC decoding.

- BP-SCC decoding: All FCs are exploited to improve
the decoding of the target information bit. The FCs
before the next information bit are incorporated by
SCC decoding approach, while the others are employed
by the subgraph-based conversion rule introduced in
Subsection IV-C. Unlike SCC decoding, simple SC
decoding cannot be performed even in the case that
ℓi = i, because the FCs beyond the next information
bit need to be checked. Here, we set Imax = 5 to achieve
better performance. The decoder immediately stops and
reports a decoding failure when it encounters a dead-end
in the tree search.

- BP-SCC-SBJ decoding: In addition to the above
BP-SCC decoding algorithm, the SBJ method is applied
in order to efficiently avoid inconsistent partial solu-
tions. The details about tree search with SBJ are
introduced in Subsection IV-E.

The 3GPP NR polar codes introduced in the previous
subsection are exploited in these simulations. In SCC,
BP-SCC, and BP-SCC-SBJ algorithms, the 11 CRC parity
bits are exploited as FCs along with frozen bits, thereby
improving the likelihood of subchannels by (9). For each
code, we find the minimum non-zero row weights of
the effective generator matrix G′ ≜ GA∪P,∗ and the
corresponding concatenated generator matrix TG, which are
presented in the caption of each subfigure as wmin(G′) and
wmin(TG), respectively.
As performance references, three bounds are drawn

together. One is the simulation-based ML bound emulated
by using the methodology proposed in [2]. Whenever the
SC decoder yields a wrong estimate, we check whether∑N−1

i=0 1
(
yi = x̂i

)
=

∑N−1
i=0 1 (yi = xi), that is, WN (y | x̂) =

WN (y | x). The ML bound is given by measuring the ratio of
such events. Another is the DT bound [23, Th. 37], which is a
strong achievability bound on the average BLER over all the
codes of length N and dimension K . This bound is regarded
as an approximation of the best achievable performance by
any code of length N and dimension K . The last one is
the meta-converse (MC) bound [23, Th. 38], which gives
a lower bound on the BLER of any code of length N and
dimension K .

Additionally, an SCL decoder for the BEC is implemented
by referring to [6] and [31] and its performance results are
provided as a benchmark. The SCL decoding operation for
the BEC in the literature is not directly comparable to the
proposed algorithms, because it declares an error as soon as
the number of current candidate paths exceeds a given list
size. In such cases, the SCL algorithm is slightly modified
to select candidates randomly for fair comparison, instead of
giving up decoding. The list size of SCL decoding is chosen to
be 512, resulting in a similar complexity to the BP-SCC-SBJ
algorithm.

The decoding performance and complexitymeasures of the
five decoding algorithms under consideration are shown in
Figs. 10 and 11. As a complexity measure, we use the average
number of visited nodes in the binary decision tree, which is
a widely accepted metric in the literature [32], [33]. Since the
proposed SCC, BP-SCC, and BP-SCC-SBJ algorithms make
use of FCs in the estimation of each bit, they outperform SC
decoding, as shown in Fig. 10. The more techniques applied,
the better the performance is. The most advanced BP-SCC-
SBJ algorithm outperforms SCL decoding in terms of error
correction performance, and approaches theDT bound at high
channel erasure probability. This near-bound performance is
achieved by existing commercial codes, without the need
for designing specially structured codes. Further refinement
of code design can also be explored while considering the
utilization of the proposed decoding algorithms. At low
channel erasure probability, the performance is bounded by
the ML bound, which is mainly determined by the minimum
distance characteristic of the employed code.

VI. CONCLUSION AND FUTURE WORKS
We settled the suboptimal problem of the conventional
SC-based decoding algorithms, which was raised by Arıkan
when polar codes were first proposed. This paper presented
initial works on FC-aided decoding methods. There are
several important open research items. First, a decoding
algorithm using FCs needs to be developed for more general
B-DMCs. The design of hard-decision decoders for the BEC
is simple, because a conflict is clearly and explicitly detected.
However, the soft-input decoders for general B-DMCs should
be more carefully designed. For this case, the proposed
techniques have the potential to complement existing well-
established decoders, including SCL and SC-Fano decoders,
since the incorporation of FCs is irrelevant to the underlying
decoder structure. In addition, it is interesting to investigate
the structure and characteristics of polar codes suitable to be
decoded by FC-aided schemes. Deep learning techniques are
also expected to be utilized for tree search methods solving
CSPs with low complexity.
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