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ABSTRACT Robotic prosthetic hands can help perform the intended sophisticated movements of the upper
limb, which can assist amputees to perform their daily activities. Although a robotic prosthetic hand can be
controlled in real-time using the user’s electromyography (EMG), which directly reflects the user’s motion
intention, some important EMG signals are usually lost owing to muscle deficiency. This study proposes a
muscle activity estimator that is inspired by the muscle synergy across subjects to estimate the activity of
the missing muscles in amputees in real-time. The proposed estimator learns muscle synergy from the EMG
balance, finger joint angles, and the grasping force of healthy persons. The proposed estimator is developed
as an artificial neural network (ANN) with a novel cell structure that combines long-short-term memory and
damping neurons to analyze muscle dynamics. Furthermore, to improve the accuracy of learning muscle
synergy, the muscles to be input to the estimator are selected by focusing on the enslavement of muscles
and anatomical relationships. The effectiveness of the proposed estimator is evaluated by experiments. The
results showed that the proposed estimator can contribute well to the realization of the intended sophisticated
motions of the user.

INDEX TERMS Machine learning, muscle synergy, damping neuron, prosthetic robots, EMG estimation.

I. INTRODUCTION
Robotic hands, which mimic the movements of human hands,
are used for various applications, such as extending physical
functions or working in environments inaccessible to humans.
Most anthropomorphic robotic hands are manipulated based
on the operator’s finger movements using data gloves, master
robots, etc. [1], [2], [3], [4], [5], [6], and [7]. Some methods
use inputs from the electromyography (EMG) of the opera-
tor’s hand [8], [9], [10]. Therefore, robot hands are controlled
in several ways to reflect the detailed movements of the
operator’s hand.

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

Conversely, robotic prosthetic hands have become increas-
ingly popular in recent years to improve the daily activities of
persons with upper limb defects owing to accidents, diseases,
congenital defects, etc. [11], [12], [13], [14], [15], [16]. Most
robotic prosthetic hands have fewer finger joints or active
joints than humans owing to link mechanisms. Furthermore,
because it is difficult to operate the robot using a data glove
or EMG balance due to upper limb deficiency in the case
of amputees, limited degree of freedom (DOF) movements
and grasping force control are performed using the EMG
of the remaining muscles in the forearm and other parts of
the body [17], [18]. Some methods are available to estimate
the required hand posture based on the EMG patterns of the
remaining muscles, postural changes in other parts of the
body, and images of the object to be grasped for operating
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a robotic prosthetic hand with relatively high DOF [19], [20].
Although these methods have high accuracy of over 85% in
achieving the target posture and significantly improve the
user’s daily activities, their versatility is limited considering
they cannot achieve postures that have not been previously
defined. Therefore, while robotic prosthetic hands operated
by upper limb amputees can grasp objects such as cups
and blocks well enough, they cannot perform sophisticated
movements such as manipulating forks and chopsticks with
the fingertips.

This study establishes a control method for upper limb
amputees that enables the intended real-time manipulation of
a robotic prosthetic hand with the same degree of freedom
as a human finger. To develop a robotic hand for a per-
son with a wrist deficiency, detailed information is required
to indicate finger motion instead of using such devices as
data gloves. Therefore, this study proposes a muscle activity
estimator for defective muscles based on the activity of the
remaining muscles. The proposed estimator applies the con-
cept of ‘‘muscle synergy’’ and ‘‘enslaving’’ to evaluate the
relationship between defective and non-defective muscles.
Human motion is controlled by a large number of muscles,
however, the burden on the brain is reduced by generating a
signal that indicates the activity relationship of each muscle,
called muscle synergy [21]. Methods for generating muscle
synergies from EMG and vice versa have been proposed [22],
[23]. Furthermore, muscle synergy has been studied in the
field of robotics. There are methods to classify the posture
of the robot hand based on the operator’s muscle synergy or
to realize precise manipulation using EMG through machine
learning [24], [25]. In contrast, D’Avella et al. [26] analyzed
muscle synergy patterns from arm and shoulder EMG in
response to point-to-point movements of the paw of multiple
subjects and concluded that there were similarities between
subjects. Therefore, the activity of the deficient muscle can
be estimated from the activity of the residual muscle of
the prosthetic hand user using an estimator that has learned
the synergy of the muscles that move the finger of healthy
persons. Muscle activity is not only related to the anatomy
but also to ‘‘enslaving.’’ Humans cannot perform an intended
motion entirely independently and are accompanied by other
unintended motions in parts of the body unrelated to the
intended motion. This phenomenon has been investigated
in anatomy and neurophysiology [27], [28]. During index
finger abduction, the linkage of little finger abduction is
prominent. Aoyama et al. [29] reported the neuronal activity
to inhibit enslaving via the cortex by measuring the cor-
ticospinal excitability of the little finger abductor muscle
during selective abduction and adduction of the index finger.
Therefore, the motions of parts of the body not associated
with the targeted muscles for estimation may also provide
features to improve estimation accuracy.

The muscle activity of living organisms involves dynam-
ics that change depending on the force of contraction of
the muscle and the activity command from the brain [30].
These dynamics are unknown to the estimator. Kiguchi and

Fukuda [31] improved the control accuracy by adding vis-
coelastic properties to each neuron in a multilayer neural
network to compensate for the unmodeled and unknown
dynamics in the environment and the robot. This indicates that
the accuracy of muscle activity estimation can be improved
by using an ANN with viscoelastic properties. Conversely,
recurrent artificial neural networks (RNNs) arewidely used to
estimate continuous data such as EMG. In particular, a long-
short-term memory neural network (LSTM) is often used to
cope with the gradient loss problem in long-term estimation.
Jabbari et al. [32] proposed a method to classify three lev-
els of grasping force based on muscle contractions during
grasping movements measured from the forearms of upper
limb deficiencies. Simão et al. [33] proposed an ANN to
recognize hand posture from forearm EMG patterns while
comparing multiple RNNs, including LSTM. Moreover, sig-
nificant research has been conducted controlling of robot
manipulators in methods that generate linear control signals
rather than posture recognition [34]. Accordingly, the LSTM
with cells containing viscoelastic properties may improve the
accuracy of muscle activity estimation. This study proposes
a method for estimating muscle activity to compensate for
the missing input signal when an upper limb amputee uses
a myoelectric prosthetic hand. Instead of the conventional
method of simple grasping motions and switching between
several different postures, the proposed estimator enables
continuous and detailed manipulation similar to that of a
human hand. The LSTM-D, which is a fusion of an ANN
with viscoelastic properties and an LSTM for learning time-
series data, is proposed for the estimator and its performance
is evaluated.

II. OVERVIEW OF MUSCLE ACTIVITY ESTIMATOR
The proposed muscle activity estimator learns muscle syn-
ergy by taking as input the activity of muscles anatomically or
by enslaving related to the muscle to be estimated, the move-
ment (joint angle) in which the target muscle is involved, and
the grasping force. This study evaluates the performance of
the estimator by assuming the case where the estimator is
incorporated into the prosthetic finger robot system, as shown
in Fig. 1. This finger robot mimics the tendons connected
to the extensor, flexor digitorum profundus (FDP), flexor
digitorum superficialis (FDS), and Volar/Dorsal interosseous
muscle (Volar/ Dorsal IM) that control the movement of the
index finger [10]. The posture of the finger changes according
to the tension balance of the five tendons. The tension balance
of the five tendons is proportional to the EMG balance of
the corresponding muscles, and the EMG signals measured
by the user can be processed by root mean square (RMS)
and normalized by the maximum voluntary muscle contrac-
tion (%MVC). The processed signals are proportional to the
tension of each tendon and are input as command values
to the robot controller. The sampling frequency of EMG is
1000. The recorded EMG data are preprocessed via a band
pass filter of 15-1,000Hz. The processing period of RMS is
200 samples. Because the interosseous muscle signals are
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FIGURE 1. Prosthetic finger control system. (a) Signal flow to the estimator and the robot controller when a
prosthetic hand user operates the finger robot and (b) training of the estimator using the forearm and hand EMG,
finger joint angles, and grasping force of healthy subjects as inputs.

missingwhen the prosthetic finger robot is operated by awrist
amputee, the muscle activity of the Dorsal IM is estimated
by the forearm muscle activity in this paper. The Dorsal
IM contributes significantly to the abduction of the index
finger. Furthermore, because the Dorsal IM is connected to
the metacarpal and basal and metacarpal bones of the index
finger and thumb, respectively, the activity of the Dorsal
IM causes abduction and adduction of the index finger and
thumb, respectively. To selectively operate the index finger,
adduction of the thumb is inhibited by the abductor pollicis
longus (APL) muscle in the forearm. Furthermore, abduction
of the index finger causes muscle activity to abduct or inhibit
abduction of the little finger by enslaving. Therefore, the
muscle activity estimator learns the relationship between the
extensor, FDP, FDS, APL, and the extensor digiti minimi
(EDM) in the forearm and the Dorsal IM, which is the
estimation target. All muscle activities are processed in the
same way as the EMG balance signal. Additionally, the joint
angles (4DOF) and grasping force feedback from the robot
are included as inputs. The joint angles are normalized within
±90◦, and the grasping force is normalized by the maximum
value of the force sensing resistor (FSR). The input and output
signals are shown in Table 1.

III. DESIGN OF LSTM WITH INTEGRATED DAMPING
NEURONS
Fig. 2 shows the cell structure of the LSTM with integrated
damping neurons (LSTM-D), which is the muscle activity

TABLE 1. Input signals for estimator.

estimator. The basic structure is the same as the LSTM struc-
ture along with the forget gate proposed by Gers et al. [35].
In an artificial neural network, the output y of a neuron using
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FIGURE 2. The LSTM-D cell structure. x : inputs to the cell, yc : outputs of the cell, w∗∗: weights, G: sigmoid function
taking values between −2 and 2, H : hyperbolic tangent, and fv : sigmoid function taking values in the range 0 to 1.

the damping neuron concept is given as:

y = fx (wxx) + wvf v(ḟx (wxx)) (1)

where fx is the activation function, wx is the weight of input
x,wv is the weight of the damper terms, and fv is the activation
function of the damper terms [31]. In the proposed LSTM-D,
Scd with a damper term applied to the updated Sc is added to
act on both long-term and short-term memory, given as:

Scd (t) = Sc (t) + wvfv(Ṡc (t)) (2)

The evaluation function E in learning is represented by the
error e from the target value and its derivative ė, given as:

E =
1
2
(Kxe+ Kvė)2 (3)

According to the proposal of Kiguchi and Fukuda [31], Kx
and Kv are coefficients given by the fuzzy rule. However,
in this paper, Kx = 0.9 and Kv = 0.1.

IV. EXPERIMENT TO EVALUATE MUSCLE ACTIVITY
ESTIMATOR
Assuming that the prosthetic finger user uses a pre-trained
muscle activity estimator, the proposed estimator is trained
using a healthy subject’s finger motion data to estimate
the other subjects’ data in the evaluation experiment. Five
healthy, right-handed subjects (age: 20–31 years, males) par-
ticipated. The experimental protocol was approved by the
research ethics committee of the Faculty of Engineering at
Kyushu University (No. 2020-05). The subjects were asked
to repeatedly perform eight index finger postures and three
object grasps, as shown in Fig. 3, and the surface EMG
of the Extensor, FDP, FDS, APL, EDM, and Dorsal IM
were measured using an EMG amplifier (MEG-6116, Nihon
Kohden), as shown in Fig. 4. The robot feedback (joint angle
and grasp force) input to the estimator is the subject’s index
finger, which is measured simultaneously with the EMG. The
joint angles were measured using potentiometers (Murata,

FIGURE 3. Finger movement patterns for estimator evaluation.

FIGURE 4. EMG electrodes location.

SV01A103AEA01B00). The grasping force was measured
using force sensing resistors (FSRs), and one of the three
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FIGURE 5. Sensors attached to the subject’s finger: encoders to measure four joint angles and FSR couples to measure three different GRIPs.

FIGURE 6. Data of subject 1: Each data is normalized. The grasping force is transformed so that three channels of signals are excited by
the combination of four FSRs.

types of grasps was an opposing motion of the tip and the
base of the index finger, while the other was the index finger
and the thumb combined. Therefore, a total of four FSRs
(Interlink Electronics, FSR402 short) were attached to the

index finger and thumb to measure the grasp force. Fig. 5
shows the positions of the encoders for measuring joint angles
and FSRs. In the measurement posture, the forearm is hori-
zontal, and the palm is downward and placed on the table so
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FIGURE 7. Configuration of the estimator evaluation experiment.

FIGURE 8. Correlation coefficients between the estimated results and
measured data of each subject.

as not to interfere with the finger movements. The postures
shown in Fig. 3 change in the following order: relax (3 s),
change posture (1 s), hold posture (3 s), and return to relax
(1 s). Each subject performed six sets of measurements, each
set comprising data from eight different postures and three
different grasping movements performed once in random
order. The sampling frequency is 1,000 Hz. Each data set
measures about 90,000 samples, which can vary depending
on the speed of the subject’s motions. Fig. 6 shows a part of
the data of subject 1, which was used as training data, while
the data of subjects 2 - 5 were used as test data for training and
evaluation of the estimator. Fig.7 shows the configuration of
the estimator. The hidden layer is one layer, which is either an
LSTM-Dwith 64 cells or a normal LSTM. The output layer is
a linear function. The training coefficient is set to 0.0001 and
the number of training cycles is 1,400.

V. EXPERIMENTAL RESULT
Fig. 8 shows the correlation coefficients between each sub-
ject’s estimated results and the measured data. The values are
the mean values of the correlation coefficients for the six sets
of test data for each subject, and the error bars indicate the
maximum and minimum values. The correlation coefficients
between the LSTM-D results and the measured values are

FIGURE 9. Estimated results for one set of test data for each subject.

TABLE 2. Root mean squared error.

higher than those of LSTM for the data of all subjects, which
indicates that LSTM-D has a higher estimation accuracy than
LSTM. Additionally, the variance is smaller in subjects 2,
3, and 4 considering the damper term absorbs the differ-
ence in muscle activity generated by the subject’s repetitive
movements. Fig. 9 shows the estimated results for one set
of movements for each subject, whereas the LSTM results
show large oscillations and the LSTM-D results suppress the
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TABLE 3. Correlation coefficients for combinations of training and test
data.

vibrations. This is one of the reasons why the correlation
coefficient of LSTM-D is higher than that of LSTM for the
performance of the muscle activity estimator, considering it
can estimate the subject’s muscle tension or relaxation states
in real-time. However, this experiment was evaluated with
pre-prepared data. The mean squared error (RMSE) of the
LSTM-D estimation results for each subject shown in Table 2
is better than that of the LSTM results for all subjects. Several
applications use LSTM to estimate time series data, including
biosignals, weather, energy, and traffic [36], [37], [38], [39],
[40]. In each case, RMSE is approximately 0.1 when the
range of estimated value is set between 0 to 1, which is similar
to the performance of the model proposed in this study.
However, the error is approximately 20%, whereas the range
of muscle activity is between 0 to 1, which indicates that the
accuracy of estimation still needs to be improved. Addition-
ally, the estimated results when the data set of subjects used
for training is changed is shown in Table 3 in correlation
coefficients with the measured data. When subjects 1-4 are
used for training, the test results for subject 3 are better,
but the correlations for subject 5 are low. These results are
the similarity among subjects of muscle synergy shown by
D’Avella et al. [26], but with individual differences, therefore,
more subjects will need to be evaluated in the future.

VI. CONCLUSION
This study proposed a method to estimate the amount of
activity of the interosseous muscles of the missing hand of
a wrist amputee using a humanoid robot prosthesis. An esti-
mator takes as input the muscle activity of the prosthesis
user’s forearm, robot hand posture, and grasping force, and
contains an LSTM that has been previously trained using data
from a healthy subject. Furthermore, we propose LSTM-D,
which combines LSTM with a damping neuron to estimate
the states of muscle tension or relaxation and posture change
in real-time with higher accuracy than conventional LSTM,
allowing continuous control without definition; conversely,
existing multi-fingered robotic prosthetic hands are con-
trolled discontinuously by switching posture patterns. In the
future, the performance of the estimator will be evaluated
using data from upper limb amputees, and real-time estima-
tion will be performed. Although this paper focuses on the
estimation of the activity of interosseous muscles, it can also
be used to estimate the activity of various deficient muscles.
Furthermore, the estimation of muscle activity, which is a

biological signal, can be applied to prosthetic hand operations
as well as rehabilitation.
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