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ABSTRACT In recent years, large data centers have increased significantly as data usage has increased
because of digital innovations. However, data centers are 24-hour operation facilities that consume large
amounts of power, thus causing environmental problems. Recently, research has been conducted using deep
learning methods from various perspectives to predict traffic and reduce power consumption in data centers
and servers. However, the traffic processed by servers is highly variable, which is a factor that makes server
management difficult. Thus, the traffic processed by servers is irregular, and more research is required
on dynamic server management. This study proposes Customized Dynamic Server Management (CDSM)
based on Long-Term Short Memory (LSTM), a neural network that is effective in predicting time-series
data, to address the aforementioned problem. The proposed method can more effectively save the power
used by servers, thereby managing servers more reliably and efficiently than before in the current operating
environment. To validate the proposed model, we collected the traffic data at six Wikipedia data centers. We
then analyzed the relationship between each traffic data using statistical analysis and conducted experiments.
Furthermore, we calculated the server power consumption based on the actual power consumption according
to the CPU usage of different servers provided by SPECpower, a benchmark for evaluating server power
efficiency. Additionally, we calculated the amount of computation required for the program and deep learning
model of the proposed. Based on this, practical results were derived considering the trade-off between the
server’s power saving and computation performance. The experiment results showed that the server power
consumption could be reduced by an average of 68% and a minimum of 32% with CDSM compared to
without. This shows that CDSM can effectively reduce server power, hence saving energy in data centers
and contributing to carbon neutrality.

INDEX TERMS Data center, deep learning, carbon neutralization, quality of service, server management,
traffic prediction.

I. INTRODUCTION

In recent years, large data centers have increased significantly
as data usage has increased because of digital innovations.
However, owing to the nature of data centers, numerous
servers and network devices are operated simultaneously,
requiring a significant amount of power, and cooling devices
are used to address the problem of heat generation. Moreover,
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data centers operate round-the-clock, resulting in high power
usage [1], [2], [3]. Therefore, the amount of electricity used
in data centers has increased, resulting in sharp increase
in greenhouse gas emissions [3], [4], [5], [6]. The global
trend of achieving carbon neutrality requires undertaking
measures to reduce greenhouse gas emissions [7], [8], [9].
Companies are endeavoring to pursue the interests of society
from the perspective of Environmental Social Governance
(ESG) and Corporate Social Responsibility (CSR) [10],
[11], [12].
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Carbon neutrality is the concept of making net emissions
zero by reducing greenhouse gas emissions caused by human
activities as much as possible and increasing carbon absorp-
tion and reproducing oxygen through forests for the already
emitted greenhouse gases. Therefore, it is essential to reduce
the power consumption of data centers to achieve carbon
neutrality [13].

Improper management of servers in the data center can
cause a waste of power as there are more servers turned
on than needed when the traffic is low. This is why some
servers are turned off during low-traffic hours and turned back
on during high-traffic hours. However, if there is a sudden
surge in traffic during off-peak hours, the servers may fail
to respond and may go down [14], [15]. As such, the traffic
handled by the server is irregular, and hence, more research
is required on Dynamic Server Management.

Various studies have been conducted in the past to reduce
the electricity consumption of servers in data centers. Various
methods have been studied to optimize server power con-
sumption, such as concentrating the load on some servers and
turning off the rest of the servers depending on the situation
of the system or analyzing the power consumption trend and
selecting the server with the smallest power consumption and
turning it off [16], [17], [18].

However, these methods are inefficient because they do
not dynamically control the servers and generate a lot of
heat from a large number of servers. They are also unable
to respond quickly to traffic overloads caused by rapid
fluctuations in traffic. Therefore, this study proposes Cus-
tomized Dynamic Server Management (CDSM) using a deep
learning-based traffic prediction model for power saving and
server power control in data centers. CDSM is a method
that reduces power consumption by dynamically manag-
ing servers for a specific data center. Traffic is suggested
through CDSM considering the CPU usage and the scope
of guaranteeing the quality of service (QoS) for network
communication. The traffic suggested by CDSM is used
to control the server and it is varied depending on the
server situation. The proposed method can transfer the work
of low-traffic servers to other servers, and then power off
low-traffic servers. By controlling the power of the servers
with the proposed method, the server power consumption
can be reduced more effectively, and this will contribute
to carbon neutrality by saving the energy used in the data
center.

We implement the proposed method using a Long-
Term Short Memory (LSTM)-based model that is robust to
time-series data prediction [19], [20], [21], [22]. For training
and performance evaluation, we collect the transmission and
reception data traffic from six data centers of Wikipedia
and examined the correlation between the data via statistical
analysis to select input variables.

CDSM provides the maximum traffic throughput that a
server can reliably handle based on the traffic predicted
by a deep learning-based traffic prediction model. This is
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determined by considering that the QoS is ensured while
using energy efficiently when the threshold of CPU usage is
70% [23], [24]. This study suggests the server free resource
as an evaluation metric to validate the CDSM. In addition,
we use statistical methods to evaluate the consistency of
the model’s predicted results with actual values. Further-
more, we calculate the server power consumption based
on the actual power consumption according to the CPU
usage of different servers provided by SPECpower, a bench-
mark for evaluating server power efficiency. Additionally,
we calculate the amount of computation required for the
program and deep learning model of the proposed. Based
on this, we derive practical results considering the trade-off
between the server’s power saving and computational
performance.

The contributions of this study are as follows:

o This study proposes a novel model for predicting irreg-
ular traffic using a time-series deep learning model to
reduce the servers’ energy consumption.

« For practical validation of the CDSM, we use real traffic
and servers’ power consumption based on their CPU
usage.

o To provide a realistic basis for the management of
server free resources and energy, we consider their CPU
usage and the scope of guaranteeing QoS for network
communication.

o« We use statistical methods to validate the proposed
time-series deep learning-based traffic prediction model.

o We propose a new evaluation metric for the validation of
CDSM.

« To validate the proposed method practically, we calcu-
late the amount of computation for the program and
deep learning model and consider the trade-off of server
power savings.

The remainder of this paper is organized as follows.
Section II reviews research papers related to this study.
Section IIT describes in detail the proposed CDSM manage-
ment of server resources. Section IV describes the experi-
mental design, including the details of the experiments to be
conducted in this study and the evaluation metrics. Section V
evaluates whether the CDSM shows significant results com-
pared to conventional management approaches. Section VI
examines three aspects that can be additionally created in the
process of this study. Finally, Section VII summarizes the
findings of this study to present the conclusions and describes
future research.

Il. RELATED WORK

This section introduces previous studies on deep learning-
based time-series prediction, server control for energy saving,
and reduction of electricity usage in data centers. Studies have
been conducted on deep learning-based anomalous traffic
detection, data placement and power management on servers,
and dynamic server power mode control [16], [17], [25], [26],
[27], [28].
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A. NETWORK MANAGEMENT BASED ON A TIME-SERIES
PREDICTION MODEL

A hybrid model that combines Convolutional Neural Network
(CNN), which extracts input features, and LSTM, which
exhibits high performance on time-series data, was proposed
[25]. Time-series traffic provided by Yahoo! was analyzed
using the proposed model. The proposed model was able to
detect abnormal traffic such as Denial of Service, Probe, User
to Root, and Remote to User, and showed superior perfor-
mance over other machine learning models. It showed 98.6%
accuracy and 89.7% recall on test data. Network traffic pre-
diction models were also proposed using LSTM, CNN, and
Seasonal ARIMA (SARIMA) models. The SARIMA model
added seasonal components to the conventional AutoRegres-
sive Integrated Moving Average (ARIMA) model [26]. The
proposed models contributed to efficient network traffic man-
agement with improved performance over the conventional
models. The LSTM and CNN-LSTM hybrid models showed
higher precision than the SARIMA model and reduced the
error rate by 11%.

B. SERVER CONTROL FOR ENERGY SAVING

To reduce the energy consumption of servers, this study pro-
poses a method of concentrating the load on specific servers
and then shutting them down based on the system situation
[16]. Conventional methods require high energy consump-
tion to support load balancing between storage devices in
a multimedia server. The proposed study showed that the
number of servers running was reduced compared to that of
the conventional methods, reducing the energy consumption
significantly.

A method was proposed to reduce energy consumption
by analyzing servers’ power consumption history to predict
whether servers’ power consumption will increase at partic-
ular times, and then operating or stopping the servers based
on this method [17]. After collecting power consumption data
from each server for a certain duration, it predicts whether the
power consumption would increase compared to before. The
proposed study showed a 29% reduction in energy consump-
tion while maintaining the same performance.

C. COOLING CONTROL FOR ENERGY SAVING

An artificial neural network (ANN)-based optimal cooling
water flow control algorithm for data centers has been pro-
posed for efficient cooling systems in data centers [27]. The
ANN-based control algorithm demonstrated performance
improvement in terms of accuracy, stability, and energy sav-
ing compared to conventional methods.

A multi-outside air-cooling system that uses outside air to
save cooling energy in data centers was proposed [28]. The
multi-outside air-cooling system was found to save 26.7% of
the total cooling energy.

D. DYNAMIC SERVER CONTROL FOR SERVER POWER
CONSUMPTION REDUCTION

A resource allocation system has been proposed to reduce the
number of servers while avoiding overloads in the system
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operation of a data center [29]. The resource allocation
system predicted future resource usage through a load pre-
diction algorithm to prevent system overload. Furthermore,
resource skewness for server p was introduced, which mea-
sures the degree of uneven utilization of the server. The
more uneven the server’s utilization, the larger is its value.
By minimizing the server’s resource skewness, the overall
utilization of the server is improved, showing that the pro-
posed algorithm performs well. An optimal power minimiza-
tion approach with improved task scheduling was proposed
for an efficient dynamic resource allocation process [30].
The proposed approach used a prediction mechanism and a
Dynamic Resource Allocation Table updating algorithm to
improve task scheduling. The simulation results showed that
the proposed approach allocates resources efficiently with
an improvement of 8% over conventional methods in terms
of task completion and response time. This improved task
scheduling and contributed to reducing power consumption
in data centers.

By reviewing related studies, we determined that various
studies have been conducted to reduce the energy consump-
tion of servers. However, in terms of traffic prediction,
resource trend prediction, and server control in data cen-
ters, still more improvement is required to respond quickly
to traffic overload caused by sudden fluctuations in traffic.
By contrast, CDSM facilitates response to traffic overload
caused by sudden fluctuations in traffic as it uses a time-series
deep learning model to predict traffic and, simultaneously,
dynamically manages it according to the server situation.
Furthermore, the methods proposed in previous studies do
not dynamically control servers and are thus inefficient in
terms of cooling in the data center because of a lot of heat
being generated by many servers. That is, CDSM can be used
together to reduce the energy consumption in the data center
more effectively. Therefore, research on dynamic server man-
agement methods is still a challenging issue. Accordingly,
this study focuses on a method of dynamically managing
servers according to the server situation through a time-series
deep learning-based traffic prediction model. Based on the
proposed study, energy consumption can be reduced more
efficiently by managing servers reliably and efficiently when
traffic surges or decreases.

lll. CUSTOMIZED DYNAMIC SERVER MANAGEMENT
(cosm)

The proposed method consists of four steps, as described in
Fig. 1.

A. STEP 1: PREDICTING TRAFFIC USING TIME-SERIES
DEEP LEARNING

CDSM uses a time-series deep learning model to predict
irregular traffic to reduce the energy consumed by servers
and uses only the servers needed for the traffic generated. To
reduce the energy used by servers, some servers are turned
off during low-traffic hours and others are turned on during
high-traffic hours. However, during a sudden surge in traffic
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FIGURE 1. Overview of CDSM.

at a certain time, responding immediately is difficult because
predicting how much server capacity should be secured on
the server side is challenging. This situation occurs quite
frequently. For example, Fig. 2 shows a graphical represen-
tation of server traffic trends from August 2 to August 3,
2022 collected from the actual Wikipedia servers located
in Netherlands [31]. In Fig. 2, the Y-axis represents traffic
(byte/s), and the X-axis represents time in 4-min increments.
Fig. 2 shows a spike in traffic at a specific time, in the time
periods of 500s on the X-axis. In this graph, the average rate
of change is approximately 0.001e+9; however, the instanta-
neous rate of change between 500 and 521 is approximately
0.074e+9, which is 74 times higher than the average rate
of change. Therefore, this spike corresponds to a level of
traffic overload that can be considered an outlier. As sud-
den surge in traffic is common, a time-series deep learning
model can be trained on traffic in such situations to predict
sudden traffic overloads in advance. Therefore, if servers are
managed by predicting traffic through a trained time-series
deep learning model, coping with sudden traffic overloads in
advance and responding quickly to sudden traffic surges will
be possible. To predict traffic for server management, a time-
series deep learning model is trained on the servers’ traffic.
However, if there is highly correlated data in the servers’
traffic, it indicates an imbalance of data classes, which can
lead to a multicollinearity problem [32], [32], [34]. This is
a factor that can reduce the model’s performance. Therefore,
to improve the traffic prediction model’s performance in this
study by avoiding the multicollinearity problem, we select
input variables by examining the correlation between the
data through statistical analysis. Then, using the traffic as
input after removing the data imbalance based on statistical
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analysis, we train the prediction model and predict the traffic
to manage the servers according to the system situation. For
the predicted traffic, CDSM suggests the maximum traffic
throughput that the server can handle reliably.

4.0 1e9 Server Traffic Trend

Real Traffic

Traffic (byte/s)
— —_— (3] [y ] w w
= 9 o wn o n

o
n

0.0

0 100 200 300 400 500 600 700
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FIGURE 2. Graph of server traffic trend.

B. STEP 2: CALCULATING TRAFFIC THAT THE SERVER CAN
HANDLE RELIABLY

In the previous step, traffic was predicted to control the
servers based on the amount of traffic generated. To control
the servers reliably, we must determine the maximum traffic
throughput that the server can handle reliably for the pre-
dicted traffic. If this is calculated, the server can be controlled
reliably as it can be prevented from going down even if the
traffic is somewhat underestimated. To manage the server
reliably and efficiently, an efficient CPU usage should be
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considered along with QoS guarantees. For example, in cases
where the traffic is predicted but the server is managed for a
CPU usage of 90% to reduce the number of servers blindly,
a problem will occur where QoS will not be guaranteed
[23], [24]. Therefore, a process is required to convert the
predicted traffic into the maximum traffic throughput of the
server for server control considering an efficient CPU usage
along with QoS guarantee. Therefore, the maximum traffic
throughput that the server can reliably handle for the traffic
is suggested by calculating the adjustment value from the
traffic predicted by the deep learning-based traffic predic-
tion model. As mentioned earlier, the server runs efficiently
with QoS guarantee when its CPU usage is less than or
equal to 70% [35], [36], [37]. Therefore, to increase the
CPU usage to reduce the number of servers running with
QoS guarantees, we change the adjustment value dynamically
between 1.4 (1/1.4=71.4%) and 1.8 (1/1.8=55.6%) in the
predicted traffic depending on the server situation [35], [36],
[37]. For example, when the adjustment value is 1.4, the
server’s CPU usage is 71.8% (Traffic/1.4xTraffic=71.8%).
When the adjustment value is 1.8, it is approximately 55.6%
(Traffic/1.8xTraffic=55.6%). As the CPU usage is below
70%, the server runs efficiently while guaranteeing QoS. For
reliable and efficient management, this method changes the
adjustment value dynamically; it increases the number of
servers by increasing the adjustment value when the server
situation is unstable and decreases the number of servers by
decreasing the adjustment value when the server situation is
stable. Servers can be managed more reliably and efficiently
by reflecting the server situations in the case of dynamically
changing the adjustment value compared to the case of fixing
it. As the adjustment value is used, servers can be managed
smoothly and efficiently. If the predicted traffic is somewhat
lower than the actual value, the servers can be managed
smoothly by increasing the number of servers by increasing
the adjustment value. If the predicted traffic is higher, the
servers can be managed efficiently by decreasing the number
of servers by decreasing the adjustment value.

C. STEP 3: CALCULATING SERVER FREE RESOURCE AND
AVERAGE SERVER FREE RESOURCE

In the previous step, the maximum traffic throughput that the
server can reliably handle for a given traffic was suggested.
This was calculated from the predicted traffic using an adjust-
ment value. The adjustment value is changed dynamically
to manage the server reliably and efficiently to reflect the
server situation. Therefore, we require a baseline to identify
the server situation. Accordingly, we calculate the server
free resource and the average server free resource, which
are the basis for changing the adjustment value according to
the server situation. To calculate the server free resources,
we propose Eq. (1) in this study. The traffic value suggested
by CDSM minus the actual traffic is called the server free
resource, as shown in Eq. (1), which is used to validate the
CDSM.
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Here, CDSM is validated with the minimum, maximum,
and average values of the server’s free resources. The higher
the minimum value of the server free resource, the more
sufficient the capacity to handle traffic reliably, indicating
that the server is managed stably. For example, suppose the
minimum value of the server free resource is 0.1 GB, which
means that the server is not managed reliably because if the
actual traffic was higher than that even slightly, the server
could go down. Also, the lower the maximum and average
values of the server free resource, the less capacity is wasted,
indicating efficient management of the server. The maximum
value of the server free resource is a metric for evaluating
the degree of efficient management under high traffic con-
ditions. On the other hand, the average value of the server
free resource is a metric for evaluating the degree of efficient
management in the overall situation. For example, suppose
the average value of the server free resource for a reliable
operating server is 1 GB, and the maximum and average
values of the server free resource obtained through CDSM
are 3 GB and 2 GB, respectively. The server is then judged to
be managed inefficiently because their difference in capacity
is wasted while managing the server. These values are real
numbers, and the higher the minimum value of the server free
resource and the lower the maximum and average values of
the server free resource, the higher the server management
performance.

Therefore, to obtain the average value of server free
resources, this study proposes and calculates Eq. (2). If the
average server free resource is calculated by storing all the
server free resources, the amount of computation required is
too large. Therefore, we use Exponentially Weighted Aver-
ages to reduce the amount of computation. Using Expo-
nentially Weighted Averages results in a slightly inaccurate
average server free resource, but over time, as the average
free resource is calculated repeatedly using Exponentially
Weighted Averages, it gets closer to the exact value of the
server free resource. Therefore, the average free resource
calculated by Exponentially Weighted Averages is sufficient
as a baseline for identifying the server situation. Furthermore,
if the average server free resource is calculated accurately
by storing and computing all server free resources, it will
increase the amount of computation and power consumption,
reducing the advantages of using CDSM. The server free
resource and the average server free resource are used in
changing the adjustment value to manage servers dynami-
cally. The average server free resource is used as a baseline to
evaluate the state of the server up to this point, and the server
free resource is used to evaluate the situation according to this
baseline. For example, if the server free resource is higher
than the baseline, the server is considered to be in a state with
spare resources; conversely, if it is lower, the server state is
considered to be unreliable.

After determining the server’s situation through the server
free resource and average server free resource, the servers can
be managed reliably and efficiently by dynamically changing
the adjustment value. The number of servers can be reduced
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by decreasing the adjustment value if there are servers with
wasted resources. The number of servers can be increased
by increasing the adjustment value if it is difficult to process
traffic reliably due to traffic overload. Therefore, by changing
the adjustment value with the deep learning model according
to the server situation, the servers can be managed more
reliably and efficiently, even with rapid fluctuations in traffic.

Stree(T) = ¢ x Predicted(T) — —Real(T) €))
S: server free resource , c: adjustment value, 7~ traffic
Savg(T) = 0.01 X Spow(T) ——0.99 X Saye(T) )

S': server free resource, now: current server free resource,
avg: average server free resource

D. STEP 4: CHANGING THE ADJUSTMENT VALUE
ACCORDING TO THE SERVER SITUATION

In the previous step, the server free resource and the average
server free resource were calculated, and they were termed
as the basis for changing the adjustment value according to
the server situation. This is to change the adjustment value
dynamically by reflecting the server situation to manage the
server reliably and efficiently. If the server free resource is
higher than the baseline, the server is considered in a state
with spare resource, and if it is lower, the server is considered
in an unstable state. We require a method to change the
adjustment value dynamically based on this result: if there
are servers that are wasting resources, the number of servers
is reduced by decreasing the adjustment value; if it is difficult
to handle traffic reliably due to traffic overload, the number
of servers is increased by increasing the adjustment value.
Accordingly, the adjustment value is calculated to suggest
the maximum traffic throughput that the server can reliably
handle. The initial adjustment value is set to 1.5, and the
server situation is identified based on the average of server
free resources up to this point. If the server free resource is
greater than or equal to the baseline, 0.001 is subtracted from
the adjustment value. Afterward, if the server free resource
is greater than or equal to the baseline successively, 0.001 is
multiplied by 2 repeatedly to subtract the result from the
adjustment value. Conversely, if the server free resource is
less than the baseline, 0.001 is added to the adjustment value.
Afterward, if the server free resource is less than the baseline
successively, 0.001 is multiplied by 2 repeatedly to add the
result to the adjustment value. The adjustment value is calcu-
lated based on 0.001 to provide a fine-grained change. Here,
the lower and upper limits of the adjustment value are set to
1.4 and 1.8, respectively. This demonstrates that the server
operates efficiently with QoS guarantees when CPU usage is
less than or equal to 70% [35], [36], [37]. Algorithm 1 shows
the pseudocode for this algorithm, and Algorithm 2 shows the
pseudocode for the entire algorithm of CDSM.

If the adjustment value is dynamically adjusted to a value
between 1.4 and 1.8 depending on the server situation, the
servers can be managed more reliably by increasing the
number of servers by increasing the adjustment value when
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traffic increases sharply. Moreover, when traffic declines
sharply, the number of servers can be reduced by decreasing
the adjustment value. That is, the effect of reducing energy
consumption can be expected as the servers are managed
more efficiently.

Algorithm 1 Changing the Adjustment Value According to

the Server Situation
function ModifyAdjustmentValue(Stable,
Free_Resource_Avg, Adjustment_Value)
begin
if Free_Resource>=Free_Resource_Avg then
/I The adjustment value is reduced if the server is in a state with spare
resources.
Stable x =2
Danger = 1
Adjustment_Value -= Stablex0.001
else
/I The adjustment value is increased if the server is in an unstable state.
Stable = 1

Danger, Free_Resource,

Danger * =2
Adjustment_Value + = Danger=0.001

Endif
/I The adjustment value is prevented from exceeding the lower and upper
limits.

if Adjustment_Value<1.4 then Adjustment_Value = 1.4
if Adjustment_Value>1.8 then Adjustment_Value = 1.8
return Adjustment_Value, Stable, Danger

end

Algorithm 2 CDSM

function CDSM()
begin
Stable = 1 // The adjustment value calculation variable used when the server is in
a state with spare resource
Danger = 1 // The adjustment value calculation variable used when the server is in
an unstable state
‘While True
// Calculate server free resources and average of server free resources after
predicting network traffic
Traffic_Predict = Result of Traffic Prediction
Free_Resource = Traffic_Predict x Adjustment_Value - Real_Traffic
Free_Resource_Avg = 0.01xFree_Resource + 0.99xFree_Resource_Avg
// Calculating Adjustment Value
Adjustment_Value, Stable, Danger = ModifyAdjustmentValue(Stable,
Danger, Free_Resource, Free_Resource_Avg, Adjustment_Value)
Endwhile

end

IV. DESIGN OF EXPERIMENTS

In the previous Section III, we proposed CDSM and the
traffic prediction model used in CDSM. It is necessary to
verify whether the actual traffic prediction model is accurate
and whether the CDSM is stable and efficient. First, it is
necessary to select input variables that were used in training
the traffic prediction model and verifying them through per-
formance measurement of the time-series prediction model.
Furthermore, it is necessary to verify the server management
performance of CDSM, as well as the trade-off between
the amount of server power reduction and the amount of
computation in CDSM. To validate the proposed method,
we use correlation analysis and a variance inflation factor
(VIF) for input variable selection and R2 Score for model
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FIGURE 3. Traffic graphs of data centers.

performance measurement. As for the server management
performance of CDSM, we use the server power consumption
measured based on the actual power consumption according
to the CPU usage(provided by SPECpower). Additionally,
we use the minimum, maximum, and average values of server
free resources. Finally, we use floating point operation per
second (FLOPs) to calculate the trade-off between the server
power reduction and the amount of computation in CDSM.

TABLE 1. Descriptions of data centers.

Data Center Description

Eqiad Data center located in Ashburn, USA

Codfw Data Center in Carrollton, Texas, USA

Esams Data center located in Amsterdam, The
Netherlands

Ulsfo Data Center located in San Francisco

Eqsin Data Center located in Singapore

Drmrs Data Center located in Marseille, France.

A. DATA USED

In this study, we collect the traffic data transmission and
reception at Wikipedia’s six data centers (Eqiad, Codfw,
Esams, Ulsfo, Egsin, and Drmrs) in Wikitech [31]. Table 1
provides the descriptions of the data centers. We use
3.600 data, which are 10-day data of 4-minute intervals from
April 1 to April 10, 2022, as the train set, and 1.800 data,
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TABLE 2. Traffic data.

Transmission data

Time in the Esams Data Center (byte/s)
2022-08-01 0:00 876,219,108
2022-08-01 0:04 914,283,844
2022-08-01 0:08 936,286,381
2022-08-01 0:12 878,264,774
2022-08-01 0:16 826,663,298

which are 5-day data of 4-minute intervals from August 1 to
August 5, 2022, four months later, as the test set.

Table 2 shows some of the test set data, and Fig. 3 shows the
graphs of transmission and reception traffic that we collected
from the six data centers. Traffic is high in the afternoon and
low at dawn depending on the activity of the people. In each
graph, the horizontal axis represents time and the vertical axis
represents traffic at that time.

B. DATA PREPROCESSING
In this section, we report statistical experiments to examine
how the transmission and reception traffic of the six data
centers affects the transmission traffic of the Esams data
center. The Pearson correlation coefficient for the traffic is
used to analyze and validate the correlation between each
traffic [38].

Fig. 4 shows the Pearson correlation coefficients for the
transmission and reception traffic of the six data centers.
The correlation coefficients between the transmission and

97967



IEEE Access

S.-G. Ma et al.: Flexible Carbon Neutralization Strategy: Customized Dynamic Server Management

reception traffic of the Drmrs data center/the reception traffic
of the Esams data center, and the transmission traffic of the
Esams data center have values between 0.97 and 0.99. A very
strong correlation was found in the Esams data center’s
transmission traffic, with no significant deviation in values
and an almost perfect linear relationship. The correlation
coefficients between the Ulsfo data center’s transmission and
reception traffic and the Esams data center’s transmission
traffic are —0.62 and —0.47, respectively, indicating that
impacts are not small overall. Finally, the Pearson correlation
coefficients between the transmission and reception traffic of
the Codfw, Eqiad, and Eqsin data centers and the transmission
traffic of the Esams data center are between -0.33 and 0.044,
respectively, indicating almost no correlation.

Table 3 shows the VIF between traffic. If its value is
greater than or equal to 10, it means that the variable is
not independent [39]. As all the VIF values are below 10,
these variables are mutually independent. Thus, there is no
multicollinearity between all the traffic, and the variables are
mutually independent.

Based on the combined results of the two experiments,
we used the transmission and reception traffic of Drmrs and
Esams data centers, among the transmission and reception
traffic of the six data centers, as input variables since they
have very strong correlations with the transmission traffic of
Esams data center and are mutually independent variables.

TABLE 3. Result of VIF.

Feature VIF Factor
Reception codfw 0.345307
Reception drmrs -8.14538
Reception eqiad 0.363808
Reception egsin 2.389091
Reception esams 0.665438
Reception ulsfo -1.50497

Transmission codfw 3.05752
Transmission drmrs -4.15771
Transmission eqiad 0.127355
Transmission egsin 0.043306
Transmission esams 0.3222

Transmission ulsfo -1.47156

C. CONSTRUCTION OF TRAFFIC PREDICTION MODEL

In this study, we used a deep learning model based on Ten-
sorFlow 2.7.0 and Keras 2.7.0, and used LSTM, which has
a high performance in predicting time-series data [19], [20],
[21], [22]. The transmission and reception traffic of Drmrs
and Esams data centers are used as input variables, and the
final output is the future traffic. For the hyper-parameters,
we experimented with various combinations to set the values
that show optimal performance and low time cost. Table 4
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TABLE 4. Values of LSTM Hyper-parameters.

Hyper-parameter Value
Unit [25-100] 50
Dropout [0.05-0.5] 0.2
Activation [Relu, Sigmoid, Tanh]
Tanh
Optimizer [SGD, RMSprop, Adam] Adam
Learning_rate 0.001
Batch_size 32
Epoch 1000

Window size [1-45] 15

shows the hyper-parameters used in the experiments and the
parameter values showing the best performance among them.

Window size is a way to represent temporal characteristics.
As the window size increases, more temporal characteris-
tics are reflected, but at a higher time cost. Conversely,
as the window size decreases, less temporal characteristics
are reflected, but at a lower time cost. Fig. 5 is a graph
showing the experimental results for the window size hyper-
parameter. As the traffic is collected in 4-min intervals,
15 traffic samples are collected in an hour. Accordingly,
we conducted the experiment by increasing the window size
by 15. When the window size is not set, the traffic is not
predicted accurately compared to other results. This can be
confirmed through a lower R2 score compared to the other
results. When the window size is set, traffic is predicted more
accurately unlike when the window size is not set. While
traffic is predicted more accurately compared to the case of
not setting the window size, an overfitting trend is seen as
the window size increases, resulting in lower performance.
Therefore, we set the window size to 15, which shows the
best performance.

D. SETTING THE SERVER POWER CONSUMPTION
MEASUREMENT ENVIRONMENT

This section describes an experiment to measure the server
power consumption for the proposed method based on the
actual power consumption according to the CPU usage of
different servers provided by SPECpower. To include a wide
range of situations, we assumed a total of 250 servers in the
experiment. Assuming that 20, 50, 100, 150, and 200 MB/s
of traffic throughput per server, we conducted the experiment
for four server types. For the servers, there is no actual
power consumption at all CPU utilization rates as shown in
Table 5. Therefore, if a CPU usage is not in the table, the
power consumption is calculated using linear interpolation
with the two closest values among the CPU usages in the
table. For example, if the CPU usage is 65%, we use lin-
ear interpolation with 60% and 70% to calculate the power
consumption equivalent to 65%, as shown in Table 5. CPU
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FIGURE 4. Results of the correlation analysis.

Results of Model Construction Experiment

R2 Score
=)
O
~

1 15 30 45
Window Size

FIGURE 5. Experimental results by changing the window size (R2 Score).

utilization U(T) is calculated as shown in Eq. (3). Among
the existing studies, formulas for CPU utilization using time
metrics have been proposed, but since the experiments in
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this study focus on using traffic metrics rather than time
metrics, a new formula for traffic-based CPU utilization has
been proposed and utilized. Max(T) is the maximum traffic
that can be handled by the minimum server for the traffic
suggested by CDSM, and to calculate it, we propose Eq. (4).
For example, if traffic throughput per server is 50 MB/s while
the traffic suggested by CDSM is 345 MB/s, then Max(T) is
350 MB/s. The servers used in the experiment are as follows,
and Table 5 shows the actual power consumption according
to the CPU usage for each server [40].

a) Inspur Corporation Inspur NF5280M5

b) Lenovo Global Technology Think System SR645 V3

¢) Dell Inc. PowerEdge 2950 III (Intel Xeon E5440)

d) Hewlett Packard Enterprise ProLiant ML350 Gen11

_ Real Traffic
u) = “Max(T) 3)

U: CPU usage, Real Traffic: real traffic,
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Max: maximum traffic that can be handled by servers, T':
traffic
Max(T)

Floor %d(n) x a, &c x Pred (T) %a = 0

Floor (%d(ﬂ) x a+ a, &c x Pred (T) %a > 0
)

Max: maximum traffic that can be handled by servers, c:
adjustment value, 7': traffic, «: traffic throughput per server

TABLE 5. Relationship between CPU usage and power usage.

Aver Aver.
Class U ti(l:izegion Xceti;\l/%e Class U ti(l:izegion /;/:tiz\l/%e
Power(W) Power(W)

99.6% 289 99.6% 658

90.0% 261 89.9% 589

80.2% 242 79.8% 524

70.0% 212 70.0% 483

60.0% 198 59.9% 450

a 50.0% 184 b 50.0% 413
40.0% 175 39.9% 386

30.0% 161 30.0% 355

20.0% 150 20.0% 306

10.0% 138 10.0% 257

0% 112 0% 126

99.7% 276 99.8% 611

90.3% 270 90.0% 573

80.1% 262 80.1% 529

70.3% 253 70.0% 486

60.1% 243 60.0% 445

c 49.7% 230 d 50.0% 409
40.1% 217 40.1% 376

30.2% 204 30.0% 342

20.0% 189 20.0% 308

10.2% 173 10.1% 274

0% 157 0% 154

E. CDSM EVALUATION METRICS

This section describes the evaluation metrics for validating
the CDSM. As for the proposed traffic prediction model’s
performance, R2 score is used as an evaluation metric to com-
pare the difference between the actual and predicted values.
We calculated the server power consumption for the proposed
method based on the actual power consumption according to
the CPU usage of different servers provided by SPECpower.
As CPU usage is highly correlated with server power con-
sumption, we calculated the server power consumption based
on CPU usage [41], [42], [43]. We also calculated the amount
of computation for the program and deep learning model by
quantifying them in FLOPs, and based on this, we validated
the CDSM by considering the trade-off between server power
reduction and computational performance.
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1) R2 SCORE

We used the R2 score to measure the performance of the
traffic prediction model. The R2 score is the sum of the
squared errors divided by the sum of the squared devia-
tions minus one. It is a metric that measures the goodness
of fit of a linear regression model. It has a value between
0 and 1, with higher values indicating higher prediction
performance [44], [45].

2) MINIMUM VALUE OF SERVER FREE RESOURCE

The higher the minimum value of the server free resource,
the more sufficient the capacity to handle traffic reliably,
indicating that the server will not go down and is managed
stably. Conversely, when the value is low, it is determined that
the server is not managed stably. These values are real num-
bers, with higher values indicating higher server management
performance.

3) MAXIMUM AND AVERAGE VALUES OF SERVER FREE
RESOURCE

The lower the maximum and average values of server free
resources, the lesser the wastage of capacity, indicating that
the server is managed efficiently. The higher the value,
as opposed to the case of the minimum value, the more inef-
ficiently the server is managed. The maximum and average
values of server free resources are real numbers such as the
minimum value, and the smaller the value, the higher the
server management performance.

4) FLOPS

FLOPs refer to the number of floating-point operations.
FLOPs are a suitable metric for actual waiting time and
energy usage and a better metric for evaluating energy usage
and waiting time than the parameters [46], [47], [48]. We used
it to express the amount of computation for the program and
deep learning model. It has an integer value, and a smaller
value means a smaller amount of computation.

V. EXPERIMENTAL RESULTS

A. EVALUATION OF SERVER MANAGEMENT
PERFORMANCE BASED ON ANALYSIS OF SERVER FREE
RESOURCE EVALUATION METRICS

Table 6 shows the results of the test set in terms of CDSM
evaluation metrics. The rows of Table 6 show the evaluation
metrics of server free resources introduced in Section IV-E,
and the columns consist of static server management method,
CDMS method proposed in this study, and ratio of the dif-
ference between their results. Fig. 6 is a graph for the period
from August 1 to 2, 2022 in the test set, and Fig. 7 is a graph of
server free resources and average server free resources for the
same period as Fig. 6. The X-axis in Figs. 6 and 7 represents
time in 4-min increments, and the Y-axis represents traffic
(byte/s). Here, Static Server Management refers to a method
of managing servers by fixing the adjustment value to 1.5
[18]. In terms of R2 score, the two results in Table 6 are
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from the same model. The R2 score of 0.991 means that the
proposed model has a 99.1% goodness-of-fit for the actual
values. This implies that the proposed model predicts the
actual traffic with high accuracy, indicating that it is suitable
for server management.

Server free resources are calculated as shown in Eq. (1).
It is an indicator to assess how stably and efficiently the
server is managed. The minimum value of the server free
resource is used to determine whether the server was managed
stably, and the average and maximum values of the server
free resource are used to determine whether the server was
managed efficiently. As aresult of comparing CDSM to Static
Server Management for the average and maximum values of
server free resources, the CDSM reduces the average and
maximum values of server free resources by approximately
12%. By contrast, as a result of comparing CDSM to Static
Server Management for the minimum value of server free
resources, the CDSM reduces the minimum value of server
free resources by approximately 11.8%. This decrease is
because the average server free resource is calculated as
shown in Eq. (2), which is not an accurate average value
of server free resources initially. As shown in Fig. 7, this
can be confirmed by the fact that the average server free
resource initially starts at O and gradually approaches the cor-
rect average server free resource. When the correct average
server free resource is approached after a certain time, the
minimum value of the server free resource is 0.3425, which
is an increase of approximately 70%. Therefore, it is safe to
say that the server is managed reliably. That is, the CDMS
proposed in this study shows excellent experimental results
overall in terms of efficiency and reliability.

Fig. 8 shows a graph of the adjustment value for the
same period as Fig. 6. The X-axis represents time in 4-min
increments, and the Y-axis represents the adjustment value.
As shown in Fig. 6, the CDSM facilitates more free server
resources than Static Server Management when traffic is
low and when traffic surges. When traffic is high and when
it decreases sharply, the use of CDSM leads to less free
server resources. The reason is that the adjustment value is
reduced to 1.4 in high traffic situations to manage the servers
efficiently because the server free resource is higher than the
average server free resource, as shown in Figs. 7 and 8. In low
traffic situations, on the other hand, the server free resource
is lower than the average server free resource, so the adjust-
ment value is increased to 1.8 for reliable management. This
means that if the adjustment value is changed dynamically
when managing servers, more reliable and efficient server
management will be feasible.

B. EVALUATION OF SERVER POWER CONSUMPTION

Table 7 and Fig. 9 show the results of the experiments
described in Section IV-D. The rows in Table 7 show
the experimental results for the servers introduced in
Section IV-D, and the columns consist of the number of
servers used in the experiment, the traffic throughput per
server, the server management method type, and the power
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FIGURE 6. Traffic graphs of experimental resuilts.

TABLE 6. Summary of experimental results.

Static
Server CDMS gﬁ;‘;og
Management &
R2 score 0.991 0.991 -
Server Free Resources
0.8681GB 0.7827GB -9.8%
Average
Server Free Resources
. 2.3785GB 2.0407GB -14.2%
Maximum
Server Free Resources ;176 0.1778GB -11.8%
Minimum
200 1e9 Server Free Resource Trend
' Server Free Resource Average
1.75 — Server Free Resource
1.50
2125
o
b5
‘; 1.00
g
& 0.75
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025
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FIGURE 7. Graph of experimental results server free resource trend.

consumption. Fig. 9 shows a graph for Table 7, where the
X-axis represents the traffic throughput per server and Y-axis
represents the power consumption.

Metrics such as variance and standard deviation of power
consumption are also available, but they are not suitable for
use as evaluation metrics because the trend of these metrics
changes significantly depending on the power consumption
of the server’s CPU usage.
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TABLE 7. Summary of experimental results.

Number Traftic Server Power Number Traffic Server Power
Class of Throughput Management Consumption Class of Throughput Management Consumption
Servers per Server Type W) Servers per Server Type (W)
Dynamic 26725.4572 Dynamic 60420.9829
20MB/s Static 26976.1840 20MB/s Static 61399.6224
Non 41786.996 Non 90001.1721
Dynamic 10709.7348 Dynamic 24231.8542
50MB/s Static 10822.7640 50MB/s Static 24632.8206
Non 35237.8221 Non 66537.4037
Dynamic 5373.3750 Dynamic 12173.2963
a 250 100MB/s Static 5440.9591 b 250 100MB/s Static 12382.4320
Non 32489.3971 Non 54114.8384
Dynamic 3597.5342 Dynamic 8155.5468
150MB/s Static 3645.1801 150MB/s Static 8294.5186
Non 30996.8436 Non 46599.4736
Dynamic 2708.8243 Dynamic 6143.6489
200MB/s Static 2748.6186 200MB/s Static 6253.0543
Non 30247.6400 Non 42824.6479
Dynamic 31651.4393 Dynamic 60607.7758
20MB/s Static 32468.1264 20MB/s Static 61387.1016
Non 52219.4687 Non 89278.1615
Dynamic 12712.8015 Dynamic 24301.2435
50MB/s Static 13040.5845 50MB/s Static 24613.0869
Non 44750.6590 Non 69233.1973
Dynamic 6402.8682 Dynamic 12202.4051
c 250 100MB/s Static 6568.3875 d 250 100MB/s Static 12359.5182
Non 41962.2100 Non 59211.3083
Dynamic 4299.1741 Dynamic 8169.8785
150MB/s Static 4407.6826 150MB/s Static 8271.7383
Non 41058.0550 Non 52331.5713
Dynamic 3244.5899 Dynamic 6150.3906
200MB/s Static 3329.1955 200MB/s Static 6230.4494
Non 40606.0422 Non 48873.7232

Adjustment Value Trend
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FIGURE 8. Graph of experimental results adjustment value trend.
As shown by the results in Table 7 and Fig. 9, when com-

paring the cases of not managing servers overall, managing
with CDSM, and managing with Static Server Management
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in terms of traffic throughput per server and number of
servers, we have found that server power consumption is
lower when managed with CDSM and Static Server Man-
agement in all experiments. This shows that the power
consumption of servers can be significantly reduced if the
proposed deep learning-based traffic prediction model is used
to manage the servers. Furthermore, the CDSM consumes
less server power than the Static Server Management in all
cases. In particular, the experimental results show that the
difference is the highest for the case of Class b, 250 servers,
and 20 MB/s traffic throughput, and the lowest for the case
of Class a, 250 servers, and 200 MB/s traffic throughput. The
reason is as follows. In the former case, the increase in power
consumption of the servers is large according to the CPU
usage of Class b, and simultaneously, the traffic throughput
per server is low, resulting in many servers operating. In
the latter case, the increase in power consumption of the
servers is small according to the CPU usage of Class a, and
simultaneously, the traffic throughput per server is high, thus
resulting in a small number of servers operating. This shows
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FIGURE 9. Power consumption graphs of experimental results.

that CDSM facilitates more reliable and, at the same time,
efficient operation of servers than Static Server Management.

As shown in Table 7, the difference in power consumption
between CDSM and Static Server Management decreases as
the traffic throughput per server increases. This is because
as the traffic throughput per server increases, the number of
servers reduced by CDSM decreases. For example, suppose
the same traffic is handled with 5 servers in Data Center A
and with 30 servers in Data Center B. Further assuming that
both data centers use CDSM to control servers and have an
adjustment value of 1.4 (1/1.4=71.8%). Data Center A that
has 5 servers will operate with 4 servers (5x0.718=3.59),
which is 1 server less, and Data Center B that has 30 servers
will operate with 22 servers (30x0.718=21.54), which is
8 servers less. Therefore, the power consumption reduction
will be greater in Data Center B where 8 servers are reduced.

Based on this, we can see that CDSM is more effective
in reducing power consumption for data centers that have
many servers due to large traffic throughput. This means
that CDSM facilitates reliable server management and, at the
same time, efficient energy operation.

C. ANALYSIS OF TRADE-OFF BETWEEN PROGRAM AND
DEEP LEARNING COMPUTATIONS AND SERVER POWER
REDUCTION

If CDSM is used to control servers, servers can be man-
aged reliably and efficiently. However, CDSM requires deep
learning and computation to change the adjustment value
dynamically. If the amount of computation is large, the reduc-
tion in power consumption achieved by CDSM is negated
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to an extent, and rather, controlling the servers with CDSM
may increase power consumption. Therefore, we analyzed the
trade-off between program and deep learning computations
and server power reduction.

We used PyTorch to calculate the amount of computation
for the deep learning model. The same model as the traffic
prediction model was created and calculated using PyTorch,
and the calculated program and deep learning computations
are as follows.

e 174,000FLOPs per prediction
e 50.112 GFLOPs per train
e 10FLOPs per Adjustment Value Calculation

If CDSM is used for a day, the amount of computation
will be approximately 62.64 MFLOPs. Recently, the Floating
Operation per Second (FLOPS) per watt of a Graphic Pro-
cessing Unit (GPU) has reached approximately 70 GFLOPS
per watt [49], [50]. By comparison, the amount of com-
putation performed by CDSM is very small, assuming that
the deep learning-based traffic prediction model is retrained
every three months. In addition, the time complexity of
the operations used when managing servers with CDSM is
only O(1) [19]. Based on this, the amount of computation
performed by CDSM does not affect the amount of power
reduction on the server.

V1. DISCUSSION

In this section, we discuss the optimal range of CDSM adjust-
ment value, the measurement of server power consumption,
and the reliability of CDSM in the face of rapid fluctuations
in traffic.
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FIGURE 10. Power consumption graphs of discussion experimental result.

A. OPTIMAL RANGE ANALYSIS OF CDSM ADJUSTMENT
VALUE

The adjustment value range is a range that showed the optimal
performance in the experiments. Table 8 shows the experi-
mental results for different CDSM adjustment value ranges.
The rows in Table 8 show the adjustment value ranges used
in the experiment, and the columns consist of the results for
the evaluation metrics of server free resources introduced in
Section IV-E. As shown in Table 8, when the minimum value
of adjustment value is set to 1.5, the minimum value of server
free resource increases, but the average and maximum values
of server free resource also increase, resulting in inefficient
server management. When set to 1.3, the minimum value of
the server free resource is very low, indicating that the servers
are not managed reliably. Therefore, we set the minimum
adjustment value to be used in the experiment to 1.4, which
is the average of 1.3 and 1.5.

When the maximum value of adjustment value is reduced
from 2 to 1.8, the average value of server free resource
decreases, and there is no difference in the minimum value of
server free resource. Therefore, we set the maximum value
of adjustment value to be used in the experiment to 1.4 to
manage the servers efficiently.

B. ANALYSIS OF SERVER POWER CONSUMPTION FOR
CDSM BASED ON SERVER CHARACTERISTICS

As in the experiments conducted in Section V-B, CDSM
does not cause less server power consumption than Static
Server Management in all cases. Table 9 and Fig. 10 (a)
show experimental results using Supermicro Inc SuperServer
SYS-621C-TN12R as servers, assuming a total of 250 servers
with 20 MB/s of traffic throughput per server. Under the
same assumption, Fig. 10 (b) shows the results of an experi-
ment using servers of Inspur Corporation Inspur NF5280MS5.
CDSM reduces the number of servers turned on by reducing
the adjustment value when traffic is high, resulting in lower
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TABLE 8. Results of dynamic adjustment value.

Server Free Resources

Average Maximum Minimum
1.3~2 0.6315GB 1.7029GB  0.0489GB
1.4~2 0.8023GB  2.0407GB  0.2662GB
1.5~2 0.9665GB  2.3785GB  0.2667GB

1.3~1.9  0.6229GB 1.7029GB 0.0489GB

Adjustment  14~19  07915GB  2.0407GB  0.2662GB
Value

15~19  09508GB  23785GB  0.2667GB

1.3~1.8  0.6146GB 1.7029GB 0.0489GB

14~18  0.7768GB 2.0407GB 0.2662GB

15~1.8  09352GB  23785GB  0.2667GB

power consumption than Static Server Management as shown
in Fig. 10 (b). However, in Fig. 10 (a), the power consumption
is higher than that of Static Server Management when traffic
is high. This seems to occur on servers where power con-
sumption increases exponentially with CPU usage. In short,
the performance of CDSM may vary depending on the server
characteristics.

C. RELIABILITY ANALYSIS OF CDSM UNDER RAPID
CHANGES OF TRAFFIC

When managing servers with CDSM, responding quickly to
sharp increase in traffic is very important. To analyze the
CDSM reliability in this case, we determined time periods
when traffic changes rapidly and collected data for those
periods as a test set. Fig. 11 shows the results from August
3 to August 4, 2022, a period when traffic changes rapidly
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TABLE 9. Summary of discussion experimental results.

Number Traffic Server Power
of Throughput per Management Consumption
Servers Server Type W)
Dynamic 77900.9605
250 20MB/s Static 77406.6673
Non 105992.2027
7 1e9 Server Management Model
—— Real Traffic
—— Predicted Traffic
61 Customized Dynamic Server Management
—— Static Server Management
5 4
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FIGURE 11. Traffic graphs of discussion experimental results.

1e9 Server Free Resource Trend

Server Free Resource Average
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FIGURE 12. Graph of discussion experimental server free resource trend.

in the test set. In Fig. 11, traffic occurs at regular intervals
and then increases sharply. Despite the surge in traffic, the
deep learning-based traffic prediction model predicted the
traffic accurately. Simultaneously, CDSM responded to it by
quickly increasing the adjustment value. In addition, Fig. 12
shows the graph of server free resource and average server
free resource from August 3 to August 4, 2022, a period when
traffic changes rapidly in the test set. It shows that, under
the situation where traffic suddenly spikes, the server free
resource drops sharply below the average server free resource
and then rises above the average server free resource. Based

VOLUME 11, 2023

on this, it is confirmed that CDSM is suitable as a server
management method because it can stably manage servers
even when traffic changes rapidly.

VIi. CONCLUSION

In this study, we proposed CDSM for efficient server man-
agement. To validate the proposed method, we collected
actual transmission and reception traffic from Wikipedia’s
six data centers in Wikitech and used the evaluation metrics
of power consumption, FLOPs, R2 score, and server free
resources for objective experiments and validation. The deep
learning-based traffic prediction model showed an R2 score
of 0.991, and it was found that the servers were managed
smoothly through Static Server Management.

However, the average and maximum values of server free
resources were reduced by approximately 12% when man-
aging servers with CDSM compared to that when managing
with Static Server Management. Although the minimum
value of server free resources decreased by approximately
11.8%, it increased by approximately 70% to 0.3425 when
the correct average server free resource was approached after
a certain period of time.

Furthermore, the power consumption was much lower
when the deep learning-based traffic prediction model was
used to manage the servers, and CDSM consumed less
server power than that of Static Server Management. CDSM
requires a deep learning model and additional program com-
putation; however, the amount of reduction in server power
consumption remains unaffected.

This shows that servers are managed more efficiently when
CDSM is used. Moreover, using CDSM improves server
management performance than when using Static Server
Management. This can be seen through the evaluation metrics
of server free resources. The evaluation metric of R2 score
shows that the model has a high level of traffic prediction
performance, making it an appropriate model to use for
server management. Furthermore, CDSM facilitates reliable
management of servers and, at the same time, efficient man-
agement of energy. As the amount of computation used in
CDSM is very small, it does not affect the server power
consumption. In other words, the proposed method is suitable
for server management.

The proposed method showed significant performance on
various evaluation metrics, demonstrating that servers can be
managed reliably and efficiently. Through this study, it is
expected that servers can be managed more efficiently than
before in the current operating environment, while ultimately
contributing to carbon neutrality by reducing energy con-
sumption.

In future, we will use more features (e.g., external server
traffic) as well as the traffic data analyzed in this study, and
propose a new server management deep learning model that
prevents inaccurate predictions programmatically. Moreover,
we will try to analyze QoS based on latency metrics. Finally,
we will use previous studies on carbon fingerprints in cloud
data centers to advance our work.
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