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ABSTRACT This paper presents an efficient energy management strategy for Fuel Cell Hybrid Electric
Vehicles (FCHEV) using a Machine Learning (ML) approach. Petroleum-based fuels are utilised in
conventional cars to provide good performance and long-distance speed. There are certain disadvantages to
using petrol or diesel, such as poor fuel economy and pollution-causing exhaust gas emissions. Furthermore,
there are some limitations with existing available work, and the merger of these different optimisation
techniques will be advantageous for achieving optimal performance. To address them, the purpose of
this research is to create an efficient energy management approach by combining SVM, KNN, and the
Naive Bayes technique. Additionally, by combining these classifier techniques better performing EMS is
developed. Using the proposed features, the optimisation approach’s performance accuracy is increased.
Furthermore, these individual classifiers comprising of SVM, KNN & Naïve Bayes is giving accuracy
percentage of 96%, 92% & 94% respectively. Finally, after combining these three classifiers we have
achieved an accuracy percentage of 98%.

INDEX TERMS Energy management system (EMS), K-nearest neighbor (KNN), fuel cell hybrid electric
vehicle (FCHEV), support vector machine (SVM), model predictive control (MPC), nanostructures for
electrical energy storage (NEES).

I. INTRODUCTION
In addition to having fuel cells as their primary power
source, hybrid fuel cell vehicles often also contain batteries
or ultra-capacitors as supplementary energy sources. The
conditions for driving on the road are really difficult. They
routinely cope with various large variations and unforeseen
surges in the demand for power brought on by crises and
changes. However, if fuel cells are used as the only source of
energy, their longevity may be shortened by the production
of extreme power swings. Therefore, the additional energy
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source is required for its intended use. Batteries and ultra-
capacitors can both be useful parts of backup power sources.
When there is a high demand for power from the load, the
system simultaneously uses fuel cells and batteries to supply
the energy. Environmental issues are currently receiving
extensive attention throughout a number of nations, and
the increasing use of fossil fuels is making them much
worse. Fuel cells and hydrogen energy are two of the
many energy sources and technologies being used to replace
fossil fuels since they can produce zero emissions [1].
In many nations, the automobile industry is significant, and
many people depend on their cars for daily transportation.
Currently, a sizable portion of the market is still occupied
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by traditional fuel vehicles, which when driven, emit a lot of
air pollution and greenhouse gases. Pollutant and greenhouse
gas emissions can be significantly reduced by switching
from fossil fuels to clean energy sources like electricity and
hydrogen for vehicle propulsion [2].

There is also an article that suggests using machine
learning to forecast, control, and manage energy in vehicles
powered by hydrogen fuel cells [3]. Due to this hybridization,
the system can be improved for better performance and fuel
economy while still carrying some of the power demand
provided by the batteries. An energy management approach
that provides the load power necessary for efficient operation
among the energy sources enables inclusion. Fuzzy control
scheme optimization is employed in an energy management
strategy with least square support vector machines for better
optimal power consumption [4]. Fuel cells must be combined
with cutting-edge energy reserving technologies, including
Ni-Cad and Li-ion batteries, to boost the efficiency and
power output of fuel cell hybrid technology. The EMS should
be developed to achieve maximum fuel effectiveness while
making sure that individual power source operates to its
full potential. In addition to that, Ideally, the EMS should
have less of an influence on every aspect of the life of the
dual power system. The control findings are subpar due to
the test operating conditions’ lack of flexibility to various
operating situations [5]. Among the most studied forms
of energy management strategies are those that emphasise
optimization.

FCHEVs often assemble power converters, auxiliary
supplies, electric motors, and batteries. HEVs appear to be the
most financially sensible option so far and are anticipated to
stay that way for some time. The overall goal of creating this
is to reduce fuel consumption and pollutants while maintain-
ing the necessary power for drivers. To do this, researchers
must first examine the most effective energy saving methods.
Energy management aims to maximise power split while
minimising emissions and fuel consumption in light of
complex driving scenarios. It is generally acknowledged
that HEVs’ energy management strategies (EMSs) play a
significant role in the increases in their fuel economy and
the resulting reduction in emissions. Many fuel-cells in
combination with different energy sources related power
system energy management strategies covered in the survey.
The literature on State machine control technique [6], [7] is
a straightforward and effective rule-driven technique which
is used in optimization fuel energy consumption. The Fuzzy
based energy management technology is another popular
approach and it distributes power using different membership
functions and one Rule base is prepared which is created
depending on the status of level of charge and fuel percentage
of availability and a set of IF-THEN logic [8]. A cost function
optimization technique is utilised to guarantee the fuel cell
system is performing at its best for optimum fuel economy or
greatest global efficiency [9]. There are few more approaches
which proposes an effective energy management strategy are
available.

FIGURE 1. Main steps of machin learning.

A strategy based on ANN approaches and a wavelet
denoising algorithm were applied to real data collected from
the Bulgarian power system grid to produce short-term load
predictions. The results suggest that the proposed strategy
is effective in lowering the standard deviation between
actual and anticipated data [10]. The HOMER software
was used to assess the technical and economic viability
of hybrid energy systems in Oman’s Masirah Island power
system. They used the DIgSILENT programme to examine
various scenarios. According to the authors, a hybrid energy
system comprised of diesel, photovoltaic, and wind turbines
is a smart choice because it lowers operating costs [11].
A thorough investigation was conducted in order to anticipate
the hourly energy output of a solar thermal collector system.
Random forest (RF), extra trees (ET), decision trees, and
support vector regression (SVR) were all used by the
authors. The ability (stability), accuracy, and computational
cost of these models were tested. The results showed that
RF and ET function equally well and are more accurate
than DT [12].
The Naive Bayes classifier was used to forecast the daily

total energy generation of an installed solar system. The
classifier was trained on a one-year historical dataset that
included metrics such as daily average temperature, daily
total sunshine duration, daily total global solar radiation,
and daily total photovoltaic energy generation. The findings
demonstrated that the Nave Bayes classifier is effective
in predicting total energy generation, with an accuracy of
82.1917% [13]. In order to improve the performance of fuel
cell hybrid electric vehicle, this paper proposes a fusion
of classifier technique using SVM, KNN & Naïve Bayes
by utilizing the feature vectors of the driving condition
information for MPC controller. Which established the
best optimized and stable EMS for this hybrid driving
condition. EMS based on MPC and Fuzzy controller under
different operating condition are optimized. We analysed
how this intelligence can effectively use for optimum
power utilization. The contribution of the paper is as
follows:
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FIGURE 2. Mathematical model of fuel cell hybrid electric vehicle.

Machine learning is an artificial intelligence (AI) appli-
cation. It is frequently employed in all aspects of life for
people due to its potential to solve real-world problems.
Figure 1 depicts the two main processes in developing
machine learning (ML) systems. The dataset is separated
into two unequal groups—training and testing datasets-to
designate the training and testing stages. The dataset is
utilised as input to the specified algorithm during the training
stage.

In the testing stage, the trained selected algorithm is fed
by testing the dataset to evaluate the selected algorithm
performance. Machine learning challenges are classified into
three types: supervised, unsupervised, and reinforcement
learning. There is no one method that can address machine
learning problems due to the simplicity and complexity
of their classification, which occasionally necessitates the
adoption of a unique algorithm [14].

The primary reason we chose the Support Vector Machine
(SVM), Naive Bayes (NB), and K-Nearest Neighbour (KNN)
algorithms is that they can handle the classification problem.
Another factor is the quantity of data points and features
that can be used by the algorithms to handle varied sized
datasets. Furthermore, these techniques do not necessitate
data normalisation. Furthermore, the algorithms are simple
and straightforward to implement.

The proposed energy management strategy leverages a
classifier fusion technique to enhance prediction accuracy
and optimize power distribution. This section explains the
concept of classifier fusion and how it can be applied to
FCHEV energy management. Various types of classifiers

suitable for this application are explored, such as artificial
neural networks, support vector machines, and decision
trees.

The contributions of this paper are as follows; Data
Collection: Relevant data related to the FCHEV system,
including the fuel cell, energy storage system, vehicle
dynamics, and external factors (e.g., driving conditions,
road gradients, traffic patterns), is collected. This data
can be obtained from real-world driving tests, simulations,
or experimental setups.

Data Preparation: The collected data is pre-processed
and prepared for training. This may involve cleaning
the data, removing outliers, normalizing or standardizing
variables, and splitting the dataset into training and validation
sets.

Feature Selection/Extraction: Depending on the specific
energy management task, relevant features or variables
are selected from the dataset. These features can include
battery state of charge (SOC), current and voltage mea-
surements, vehicle speed, power demand, and other relevant
parameters.

Model Development: A machine learning model, such as
a regression model, classification model, or reinforcement
learning model, is selected or designed to learn from the
labelled training data. The model’s architecture, parameters,
and hyperparameters are defined.

Training the Model: The prepared dataset is used to
train the machine learning model. During training, the
model learns the underlying patterns, relationships, and
dependencies in the data. The model iteratively adjusts its
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internal parameters to minimize the difference between its
predictions and the true labels provided in the training dataset.

Model Evaluation: The trained model is evaluated using
the validation dataset to assess its performance, accuracy, and
generalization ability. Various metrics, such as mean squared
error (MSE), accuracy, or root mean squared error (RMSE),
can be used to quantify the model’s performance.

Model Optimization: If the model’s performance is not
satisfactory, adjustments are made to the model’s architecture
or hyper parameters. This process, known as model optimiza-
tion or hyper parameter tuning, aims to improve the model’s
performance and generalizability.

Deployment and Testing: Once the model has been trained
and optimized, it can be deployed for real-time energy
management in FCHEVs. The model can take inputs such as
current driving conditions, battery SOC, and power demand,
and provide optimal control signals for energy distribution
between the fuel cell and energy storage system.

Data training in machine learning for energy management
of FCHEVs enables the development of accurate and efficient
models that can optimize energy usage, enhance vehicle
performance, and extend the range of the vehicle. It allows
for adaptive and intelligent control strategies that can adapt
to varying driving conditions and user requirements.

The remainder of this article is presented in the follow-
ing manner: Section-II represents the proposed methodol-
ogy, section-III describes the proposed system description,
section-IV reflects the results and discussion, and the
conclusion is provided in the section-V.

II. PROPOSED METHODOLOGY
The proposed methodology has been divided into two
different part such as Energy management strategy followed
by classifier fusion technique.

A. ENERGY MANAGEMENT STRATEGIES (EMS)
Fuel Cell Hybrid Electric Vehicles (FCHEVs) employ various
energy management strategies to optimize the utilization of
the fuel cell and energy storage system, ensuring efficient
operation and extended driving range. Here are some
common energy management strategies used in FCHEVs:

1) RULE-BASED STRATEGY
Description: This strategy utilizes predefined rules and
thresholds to determine power distribution between the fuel
cell and energy storage system.
EMS Approach: Power allocation decisions are based on

predefined conditions such as battery state of charge (SoC),
power demand, and other system parameters.
Key Contribution: Simple and intuitive control approach.

2) OPTIMIZATION-BASED STRATEGY
Description: This strategy formulates an optimization prob-
lem with constraints and objective functions to optimize
power allocation and minimize fuel consumption or maxi-
mize efficiency.

EMS Approach: Mathematical optimization techniques,
such as linear programming or dynamic programming, are
used to find the optimal power split between the fuel cell and
energy storage system.
Key Contribution: Provides optimal control solutions, but

computationally intensive.

3) MODEL-BASED STRATEGY
Description: This strategy relies on system modelling to
predict energy demand and optimize power allocation.
EMS Approach: Dynamic models, such as state-space

models or equivalent circuit models, are used to estimate
power demand and optimize energy flow.
Key Contribution: Balances optimality and real-time

performance but requires accurate system modelling.

4) MACHINE LEARNING-BASED STRATEGY
Description: This strategy utilizes machine learning algo-
rithms to learn patterns from historical driving data and make
energy management decisions.
EMS Approach: Artificial Neural Networks (ANNs),

Support Vector Machines (SVMs), or other machine learning
models are trained using historical data to predict power
demand and optimize energy distribution.
Key Contribution: Adaptable to various driving conditions

but requires sufficient training data.

5) REINFORCEMENT LEARNING-BASED STRATEGY
Description: This strategy employs reinforcement learning
algorithms to learn optimal energy management policies
through trial and error.
EMS Approach: Reinforcement learning techniques, such

as Q-learning or Deep Q-Networks (DQNs), are used to learn
and adapt energy management policies based on the system’s
state and rewards obtained from the environment.
Key Contribution: Achieves adaptability and learns opti-

mal policies in real-time but requires extensive training.
These energy management strategies can be combined or

further enhanced to develop advanced control algorithms that
consider real-time driving conditions, vehicle performance,
and user preferences. The selection of an appropriate energy
management strategy depends on factors such as system com-
plexity, computational resources, available data, and desired
optimization objectives. The detailed comparative analysis
of the various discussed energy management strategies is
described in Table 1.

III. SYSTEM DESCRIPTION
The proposed Fuel Cell Hybrid Electric Vehicle (FCHEV)
incorporates a Simulink model developed in MATLAB,
as depicted in Fig. 2. This comprehensive model takes into
account two primary power sources, namely a 2.4 kW, 48
Vdc Fuel Cell and a 5.4Ah Battery with an initial State of
Charge (SoC) set at 100%. The Simulink model consists
of various key components, including a DC/DC Boost
Converter, a DC Motor serving as the load, a Fuzzy Logic

97138 VOLUME 11, 2023



D. Chatterjee et al.: Efficient Energy Management Strategy for FCHEV Using Classifier Fusion Technique

TABLE 1. Shows online and offline methods and their comparison.

Controller, Model Predictive Controller (MPC), Support
Vector Machine (SVM) Predictor, and a Neural Network
Prediction System. To ensure the efficient operation of the
DC/DC Boost Converter, specific specifications must be
identified, such as the Input Voltage (Vin), Output Voltage
(Vout), Inductance (L), Capacitance (C), and Switching
Frequency (fs). Additionally, determining the duty cycle (D)
of the converter is crucial. Through the integration of these
components, the Simulink model allows for a comprehensive
analysis of the FCHEV’s performance, enabling valuable
insights for the development of environmentally friendly and
efficient hybrid electric vehicles.

In Simulink, use the building blocks to construct the boost
converter circuit. One will need components such as a voltage
source (representing the fuel cell), an inductor, a switch
(controlled by the duty cycle), and a diode. Connect these
components according to the boost converter topology.

Considering an ideal boost converter without losses, the
dynamic Equation can be expressed in (1).

d (Vout)
dt

= (Vin− Vout) ∗
D

(L ∗ C)
− (Vout/ (Rload ∗ C))

(1)

where, Vin is the input voltage from the fuel cell. Vout is the
output voltage to the load. D is the duty cycle of the switch
(0 ≤ D ≤ 1). L and C are the inductance and capacitance of
the boost converter. Rload is the load resistance connected to
the output.

The first term on the right side of the above Equation (1)
represents the rate of change of the output voltage due to the
inductor current and the duty cycle. It is derived from the
energy balance equation of the boost converter.

To design a control algorithm to adjust the duty cycle
based on the desired output voltage and the current system
conditions. Configuring the simulation settings, such as the
simulation time and solver options. Then, run the simulation
to observe the behavior of the boost converter under different
operating conditions. One can analyze the output voltage,
current, and other relevant variables.
Battery: In a fuel cell hybrid electric vehicle (FCHEV)

MATLAB model, the battery is typically used to provide
additional power and energy storage to complement the
fuel cell system. The battery helps in meeting the peak
power demands and improving the overall efficiency of the
vehicle. The characteristics and parameters of the battery we
have taken [20]. These may include the nominal voltage,
capacity, internal resistance, charge/discharge efficiency, and
voltage limits. Develop control algorithms to manage the
battery’s state-of-charge (SoC) and handle charging and
discharging operations. These strategies may include power
flow control, SoC estimation, and protection mechanisms to
prevent overcharging or deep discharging.

The SoC of a battery can be estimated using a dynamic
equation that considers the charging and discharging currents
over time. While there are various models and algorithms for
estimating SoC, one commonly used equation is the Coulomb
countingmethod. This method assumes that the battery’s SoC
can be determined by integrating the current flowing in and
out of the battery over time.

The dynamic equation for battery SoC using the Coulomb
counting method can be represented as follows:

SoC(t) = SoC(t − 1) + (I (t) ∗ 1t)/C (2)

where, SoC(t) is the State of Charge at time t . SoC(t − 1)
is the State of Charge at the previous time step (t − 1). I (t)
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is the current flowing into or out of the battery at time t .
1t is the time step or sampling interval. C is the battery
capacity.

In Equation (2), the current (I ) can be positive when the
battery is charging and negative when it is discharging. The
battery capacity is typically specified in ampere-hours (Ah).
By integrating the current multiplied by the time step and
dividing by the battery capacity, the equation calculates the
change in SoC over time.
Fuzzy Controller: A fuzzy controller is a type of control

system that uses fuzzy logic to make decisions based on
imprecise or uncertain inputs. In the context of an FCHEV,
the fuzzy controller can be used to optimize the power
flow between the fuel cell system and the energy storage
system (such as batteries) to achieve optimal performance and
efficiency. Fuzzy membership functions are used to quantify
the degree of membership of a value to a particular linguistic
term [21]. Determine the shape and range of membership
functions for each input and output variable. Themembership
functions should capture the relevant linguistic terms, such
as ‘‘low,’’ ‘‘medium,’’ and ‘‘high,’’ based on the system
requirements.
MPC Controller: MPC (Model Predictive Control) is

a popular control strategy used in various applications,
including FCHEVs (Fuel Cell Hybrid Electric Vehicles).
MPC involves formulating an optimization problem based on
a dynamic model of the system and solving it over a finite
time horizon to determine the optimal control actions. In the
case of an FCHEV, the objective of the MPC controller is
typically to optimize power flow and energy management
to achieve desired performance, efficiency, and battery SoC
targets [6].

Let’s consider a simplified example where the FCHEV
system has two main state variables: the battery State of
Charge (SoC) and the fuel cell current. The dynamic Equation
can be represented as (3).

x (k + 1) = Ax (k) + Bu (k) (3)

where, x (k + 1) is the state vector at time step (k + 1). x (k)
is the state vector at time step (k). A is the state transition
matrix that captures the system dynamics. B is the input
matrix that relates the control inputs to the state variables.
u (k) is the control input vector at time step (k).

In the Equation (3), the state vector x(k) would be defined
as [SoC(k), Fuel Cell Current(k)]. The control input vector
u(k) represents the control actions that the MPC controller
determines at each time step.
PI Controller: A PI (Proportional-Integral) controller

is a common type of feedback control used in various
applications, including FCHEVs (Fuel Cell Hybrid Electric
Vehicles). The PI controller is designed to adjust control
inputs based on the error between a desired setpoint and
the measured system output. In the case of an FCHEV,
a PI controller can be employed to regulate the power
flow between the fuel cell system and the energy storage
system (such as batteries) to achieve desired performance and

efficiency [22], [23]. Here’s how a PI controller is typically
used in an FCHEV.

The control signal, which represents the adjustment to the
power flow between the fuel cell and the battery, is calculated
as the sum of the proportional and integral control actions,
given in Equation (4).

u(t) = Kp ∗ e(t) + Ki ∗ ∫ e(t)dt (4)

where, u(t) is the control signal at time t . e(t) is the error at
time t . Kp and Ki are proportional and integral gains. ∫ e(t)dt
dt represents the integral of the error over time.
BLDC Motor: To model and simulate a BLDC (Brushless

DC) motor used in an FCHEV (Fuel Cell Hybrid Electric
Vehicle) inMATLAB. Start by defining the motor parameters
such as motor constants (Kt, Ke), motor inductance (L),
motor resistance (R), rotor moment of inertia (J), and
the number of motor poles. Define the control strategy
for the BLDC motor in the FCHEV. This can include
speed control, torque control, or position control based
on the desired motor performance. Implement the control
algorithm in MATLAB, considering the motor model and
the control objectives. Integrate the BLDC motor model
into a comprehensive FCHEV model that includes other
components such as fuel cells, energy storage systems,
and power electronics. Use MATLAB’s simulation capa-
bilities to simulate the overall FCHEV system, consider-
ing the interactions and dynamics between the different
components [24], [25].

A. CLASSIFIER FUSION TECHNIQUE
Machine learning has been incorporated with EMS to provide
and predict better accuracy on Fuzzy and Model Predictive
Control. The use of machine learning is that it can provide
the accuracy of the system based on which it can be
decided on which platform the system will work better. So,
an automated approach has been designed with an exhaustive
analysis.

The development of the proposed technique is based on
the dataset available. The overall block diagram is shown in
Fig. 3.
The system in this part has been divided into four different

parts such as feature description, feature selection, training
and testing.

1) FEATURES DESCRIPTION
EVs come with a variety of features designed to enhance
their performance, efficiency, and user experience. Here is
a description of some common features considered in this
manuscript.
Battery Capacity and SoC: The amount of energy that is

accessible in relation to the rating is indicated by a cell’s
state of charge (SoC). The SoC’s value ranges from 0% to
100%. The battery is said to be completely charged if the
SoC is 100%, however a SoC of 0% means the cell is totally
exhausted. Since the SoC cannot rise above 50% in real-world
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FIGURE 3. Block diagram of the proposed system.

applications, the cell is charged once the SoC hits that level.
Similar to this, the maximal SoC starts to drop as a cell age.
Accordingly, a 100% SoC for an old cell would be similar to
a 75%–80% SoC for a young cell [26].
Battery Stress: Ions are transferred across the anode and

cathode inside a battery that is rechargeable during operation,
which can put the interior components under a lot of stress.
The anode and cathode alternately expand and contract as a
result of the movement and attraction of charge within the
battery, which contributes to the malfunction of the battery.
In order to recognize the warning signals of failure before
the battery actually fails, researchers at the Nanostructures
for Electrical Energy Storage (NEES) Energy Frontier Study
Centre wanted to investigate how this compressive stress
impacts the battery. To do this, they created a brand-
new method known as pascalametry that enabled them to
precisely construct and keep an eye on a micro battery under
pressure [27].
Range EV Mode: Various important elements, including

the dimensions and weight of the automobile, the power
source size, and the electrical motor specifications, consid-
erably affect the range of electric cars (EVs). A specific
journey’s physical location, driving style, and local climate
are all factors to consider. With the appropriate knowledge
of the factors that determine EV range, one will be able to
conserve energy and increase the amount of distance one
can go.
Fuel Tank Capacity:Hydrogen fuels fuel cell electric vehi-

cles (FCEVs). Compared to conventional internal combustion
engine vehicles, they are more efficient and only emit warm
air and harmless water vapor through their tailpipes. The
installation of FCEVs and the hydrogen infrastructure needed
to fuel them is still in its early phases [28].

TABLE 2. Feature used in the proposed work.

TABLE 3. Ranking of feature based on decreasing F value.

TABLE 4. Feature vector set.

Mass: Because battery cells are so considerably heavier
than engines, electric vehicles can be hundreds to thousands
of pounds heavier than comparable petrol vehicles.
Actual Fuel Economy: Over 77% of the electrical energy

from the grid is converted by EVs into power for the wheels.
Only roughly 12% to 30% of the energy stored in fuel is
converted by conventional gasoline-powered vehicles into
power for the wheels.
Aerodynamic Drag: The efficiency of a streamline aero-

dynamic body form in lowering the air resistance to a
vehicle’s forward motion is measured by the aerodynamic
drag coefficient [29].
Slow Charge Max: A slow charger powers EV using AC

(alternating current from the national grid), and it normally
runs between 2.3 kW and 2.5 kW. The slow chargers often
take the shape of 3-pin plug EV chargers and charge from
standard wall outlets. The above-mentioned feature in Table 2
has been considered in this work.

2) SELECTION OF OPTIMAL FEATURE
Selection of optimal feature is one of the important tasks
related to this work. There are so many techniques for
determination of optimal feature such as incremental feature
selection, anova1, Kruskal wallis test etc. In this work, anova1
test has been incorporated for determination of optimal
feature. The statistically significant feature is decided based
on the higher F value. The following Table 3 shows the
ranking of feature with decreasing F value.
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FIGURE 4. Graphical performance analysis of electric vehicle.

After that, a different feature set has been prepared on
the basis of ranking of feature. It can be observed that
combination of Feature has been done to produce different
feature vector set such as M, N, U, . . . , Z. These are formed
based on rank received from Anova1 analysis is depicted in
Table 4.

3) TRAINING AND TESTING
In the training phase, the researchers utilized three distinct
machine learning approaches. For the support vector machine
(SVM) training, the feature vector set was handled according
to the approach described in Equation (5).

D={(Feature Vector Set1, y1), . . . , (Feature Vector Set l, yl},

x ∈ Rn, y ∈ {−1, 0} (5)

In a similar way, training has been done using k – Nearest
Neighbor (k – NN) [14] algorithm. This is one of the non-
parametric ways for solving classification problems. As this
problem is going to solve for an even number of classes, odd
numbered k values such as 1, 3, 5, 7 have been used in the
training phase. Apart from these two classifiers, Naïve Bayes
Classifier has also been incorporated in this proposed work.
This Naïve Bayes Classifier incorporates the probabilistic
concept for the formulation of classification.

Let’s consider, the classified output from SVM, k-NN
and Naïve Bayes are So,Ko and N0 respectively. The
corresponding output using classifier fusion will be as
Equation (6).

Yo = [(So OR Ko) OR N0] (6)

In Equation (6), Yo is the ultimate output that is achieved
using Classifier Fusion. The utility of using classifier fusion
is that even if there is any mismatch using other classifiers,
that can be incorporated by Classifier Fusion.

IV. RESULT AND DISCUSSION
Performance analysis of an FCHEV (Fuel Cell Hybrid
Electric Vehicle) shows below in Fig:4, which involves

FIGURE 5. Fuel tank capacity Vs actual fuel economy.

TABLE 5. MATLAB simulation results of mathematical model.

evaluating various aspects of its performance, including
acceleration, top speed, range, fuel efficiency, and emissions.

The performance analysis of this Fuel Cell Hybrid Electric
Vehicle is shown below. Here three major features of FCHEV
is considered. The Battery State of Charge (SoC), Battery
Stress and the range of Electric Vehicle is taken into
consideration. The mentioned Fig: 4 shows that how with
the distance covered (Range) by the vehicle varies with the
batteries state of charge and accordingly the stress of the
battery increases.

Fuel consumption is the inverse of fuel economy. It is
the amount of fuel consumed in driving a given distance.
It is measured in the United States in gallons per 100 miles,
and in liters per 100 kilometers in Europe and elsewhere
throughout the world. Fuel consumption is a fundamental
engineering measure that is directly related to fuel consumed
per 100 miles and is useful because it can be employed as a
direct measure of volumetric fuel savings. It is actually fuel
consumption. In the below Fig. 5 it is shown the capacity of
the Fuel tank and actual fuel economy.

To simulate the performance of an FCHEV battery and
fuel cell system in MATLAB, one would typically use a
combination ofmathematical models and numerical methods.
Here’s a general outline of the steps involved. The above
results are shown in Table 5 is the MATLAB simulation
results obtained from the mathematical model.
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FIGURE 6. Graphical representation of fuel consumption, battery SoC &
energy consumed.

After developing the mathematical model for the battery,
fuel cell, and other relevant components of the FCHEV
system. These models should capture the dynamic behaviour
of the FCHEV energy management parameters. In an
FCHEV, the fuel consumption, battery State of Charge (SoC),
and energy consumed are interrelated. The fuel consumption
represents the amount of fuel consumed by the fuel cell
system, which powers the vehicle and charges the battery.
The battery SoC indicates the energy level or capacity of the
battery, while the energy consumed in Kilo Joules represents
the total energy utilized by the FCHEV system. In the above
representation in Fig 6 it is shown.

The relationship between these variables can be summa-
rized as follows:
Fuel consumption and Energy consumed: Fuel consump-

tion directly affects the energy consumed in an FCHEV.
As the fuel cell system generates power, it provides energy
to both propel the vehicle and charge the battery. The fuel
consumption rate determines the rate at which energy is being
supplied to the system.
Energy consumed and Battery SoC: The energy consumed

by the FCHEV system influences the Battery SoC. As energy
is drawn from the battery to power the vehicle’s electrical
systems, the Battery SoC decreases over time. Similarly,
when energy is regenerated through processes such as
regenerative braking, the Battery SoC increases.
Fuel consumption and Battery SoC: The fuel consumption

indirectly affects the Battery SoC. As fuel is consumed by the
fuel cell system, it replenishes the battery by charging it. The
fuel consumption rate determines the rate at which the battery
is being charged or discharged, thus impacting the Battery
SoC. Here’s a considered formula as expressed n Equation (7)
to calculate fuel cost per mile.

Fuel Cost/Mile = Fuel Cost/Distance Travelled (7)

The above plotting Fig:7 refers to the amount of fuel
consumed by the vehicle per unit distance travelled. It is

FIGURE 7. Representation of fuel economy with fuel cost per mile.

FIGURE 8. Accuracy with incremental feature set.

TABLE 6. Performance analysis using different kernel functions using
SVM.

typically measured in miles per gallon (MPG) or litres
per kilometre (L/km). This information can be obtained
from the vehicle specifications or through experimental
measurements. By representing fuel economy in terms
of fuel cost per mile, one can easily compare the cost
efficiency of different vehicles or track the cost savings
achieved by improving the fuel economy of a specific
vehicle.

A. MACHINE LEARNING BASED PERFORMANCE
ANALYSIS
Fig. 8 represents the incremental feature selection in terms of
feature set M, N, U, V, W, Y, and Z. The experiment has been
performed for all the classifiers considered in this work such
as SVM,KNN,Naïve Bayes andClassifier Fusion Technique.
It is observed that in most cases, accuracy has been increased
along with increment of feature vector set.

A detailed performance analysis has been shown in
Table 6, 7, and 8. In the first Table 6, performance has been
presented using different kernel functions for both Training
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TABLE 7. Performance analysis using different k values using k-NN.

TABLE 8. Performance analysis using different distribution functions
using naïve bayes classifier.

FIGURE 9. Performance comparison amongst classifiers.

and Testing. In these experiments, sensitivity, specificity
along with accuracy have been presented to understand the
feasibility of this system in context to the energymanagement
system. It can be observed that a steady performance has been
observed for polynomial kernel.

A similar performance has been done for the K-NN clas-
sifier using K values 1, 3, and 5. A significant performance
has been seen using a K-value of 5. The improvement has
been seen not only for sensitivity, but also for specificity
and accuracy. Apart from that, performance using different
distribution functions has been represented in Table 8 for
Naïve Bayes. Normal distribution function provides better
performance for sensitivity, specificity as well as accuracy
too.

In Fig. 9, performance comparison amongst classifiers has
been done. It is observed that Hybrid classifier provides better
performance. So, it has been considered as the proposed
classifier in this work.

V. CONCLUSION
EMS, which stands for Energy Management System, is a
crucial component in hybrid vehicles, including Fuel Cell
Hybrid Electric Vehicles (FCHEVs). Its primary function is
to optimize the energy flow and utilization between the fuel
cell system, battery pack, and other energy storage devices
to achieve the most efficient operation of the vehicle. The
energy management system optimizes the utilization of both

the fuel cell system and the battery pack to achieve the
desired driving range. During normal driving conditions,
the EMS primarily relies on the fuel cell system for power
generation. However, during high-power demand situations,
such as rapid acceleration, the EMS can use power from both
the fuel cell and the battery pack to provide additional power
and meet the driver’s demand. The application of SVM,
KNN, and Naive Bayes algorithms for energy management
strategies in Fuel Cell Hybrid Electric Vehicles (FCHEVs)
was examined in this study. The purpose was to improve the
performance, efficiency, and overall operation of FCHEVs by
optimising the power flow between the fuel cell system and
the energy storage system, such as batteries. As classification
techniques, the SVM, KNN, and Naive Bayes algorithms
were used to estimate the optimal power flow based on input
data such as vehicle speed, battery state of charge (SoC),
and other important parameters. The study’s findings revealed
that all three approaches, SVM, KNN, and Naive Bayes,
exhibited promising capabilities in energy management for
FCHEVs. In terms of accuracy, computing efficiency, and
robustness, each technique demonstrated its strengths and
limits. KNN, on the other hand, provided ease of use
and computational efficiency. Power flow patterns were
identified based on their proximity to similar instances
in the training dataset. KNN demonstrated good accuracy,
although it may struggle with high-dimensional datasets
or imbalanced classes. The choice of technique should
be based on specific requirements, dataset characteristics,
and computational resources available. Further research
can focus on exploring hybrid approaches or incorporating
additional machine learning algorithms to improve the
accuracy and efficiency of energy management systems
in FCHEVs.
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