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ABSTRACT Diabetes affects roughly 537 million people in the world, and it is predicted to reach
783 million by 2045. Diabetic Foot Ulcer (DFU) is a major issue with diabetes that may lead to lower
limb amputation. The rapid evolution of DFU demands immediate intervention to prevent the terrible
consequences of amputation and related complications. This research introduces a novel approach utilizing
deep neural networks and machine learning for the accurate classification of diabetic foot ulcer (DFU)
images. The proposed method harnesses the cutting-edge capabilities of Convolutional Neural Networks
(CNN) and Vision Image Transformers (ViT) within a Siamese Neural Network (SNN) Architecture.
By employing similarity learning, the model efficiently categorizes DFU images into four distinct classes:
None, Infection, Ischemia, or Both. The training process involves the use of the DFU2021 dataset, with all
ethical clearances duly obtained. Notably, the model exhibits remarkable performance on both the validation
and test data, indicating a significant breakthrough in the field of DFU disease image classification. The
potential of this innovative model extends beyond classification; it holds promise as an integral component
of a comprehensive detection tool and longitudinal treatment protocol validation for DFU disease.

INDEX TERMS DFU, deep learning, CNN, vision transformers, Siamese network, similarity detection,

DFU classification.

I. INTRODUCTION
Diabetes is one of the major diseases that affect roughly
537 million people, with a prediction to reach 783 million
by 2045 [1]. Diabetic Foot Ulcer (DFU) is a prevalent compli-
cation among individuals with diabetes mellitus. In a recent
research, it was found that mortality from DFU was high, with
global mortality from diabetic foot ulcers standing at approx-
imate 50% within 5 years [2]. This condition increases the
risk of lower limb amputations in individuals with diabetes.
When treating DFUs, promptness and assertiveness can make
a significant difference in slowing the wound’s course and
preventing the need for an amputation [3].

Healing DFU can become a challenging and daunting
task. Hence, to reduce the risk of DFU, certain preventive
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measures can be taken, such as 1) identification of the feet
at risk 2) regular examinations. 3) raising awareness in the
general public 4) treating risk factors. While it is important
to design an early detection intervention, the integration of
technology can also be explored to increase the accuracy
of the results and the ease of examination procedures [4].
According to the Foot Care Clinic of APSA International,
located in Mauritius, approximately 500 individuals undergo
amputations each year as a result of type 2 diabetes, with an
estimated 88% of these cases being preventable [5]. Annually,
it is estimated that 67% of amputations in the United States
and 90% of amputations in the United Kingdom are attributed
to diabetes [6].

A. ARTIFICIAL INTELLIGENCE (Al) AND HEALTHCARE
Medical imaging data is one of the best sources of infor-
mation about patients and helps to see inside the person’s
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body non-invasively or as least invasively as possible. In the
current context of soaring demand for medical imaging and
the prevailing challenge of staffing shortages in hospitals,
the integration of AI tools holds promise as a potential
solution [7]. The integration of digital imaging and Al has
had a significant impact on the medical field. The use of
Al algorithms has enhanced the accuracy and efficiency of
these diagnoses. Research has shown that Al can accurately
diagnose conditions such as retinal disorders [8], diabetic
retinopathy [9], breast cancer [10], and skin cancer [11] by
relying on digital images.

B. Al, HEALTHCARE AND ETHICS

While the use of Al in the field of healthcare is extremely
promising and is progressing at a sustained pace, there are
major challenges in terms of ethics and privacy [12]. Collect-
ing healthcare data in a particular country that is stored on a
remote server in another country with a different jurisdiction
is one of the challenges of Al [13]. The governance of these
health data, ensuring thoughtful aggregation and appropri-
ate access to fuel innovation and improve patient outcomes
and healthcare system efficiency while protecting the pri-
vacy and security of data subjects [14]. However, the World
Health Organisation (WHO) acknowledged the potential of
Al to enhance diagnosis, treatment, health research, and drug
development, as well as support governments in carrying out
public health functions such as surveillance and outbreak
response, but also proposed strict guidelines that need to be
followed [15] among which ethical guidelines are as follows:

o Avoid harming others.

o Promote the well-being of others

« Ensure that all persons are treated fairly.

« Deal with people in ways that respect their interests.

The above ethical considerations were taken into considera-
tion while working on this research.

C. AIMS AND OBIJECTIVES

DFUs are currently assessed by diabetes physicians and podi-
atrists in foot clinics and hospitals. There have been several
research projects based on the application of Al and deep
learning for DFU classification and even detection. The work
is inspired by the successful implementation of Al in the
medical field and takes advantage of the DFU Grand Chal-
lenge [16] which provides a labeled dataset with 4 classes
that can be used by Al researchers to experiment and test the
best model for classifications of DFU.

The DFU2021 Challenge dataset was obtained from the
organisers of the DFU challenge. The objective was to experi-
ment with Convolutional Neural Network coupled with latest
vision-based transformers model which has achieved state-
of-the-art performance on a number of computer vision
benchmark including ImageNet classification and COCO
object detection and instance segmentation [17]. This paper
implements the use of Siamese Neural Network coupled
with the K-nearest neighbors algorithm to implement the

98316

classification of images of DFU disease. The Siamese Neural
Network architecture was first introduced in the early 1990s
for the purpose of solving signature verification as an image
matching problem [18].

Our research primarily aims to introduce an improved DFU
classification model that outperforms the latest advancements
in this field. This marks the initial phase in creating a tool
for monitoring Diabetic Foot Ulcer treatment protocols ini-
tiated by medical practitioners. For successful integration
into such protocols, the model’s DFU classification must be
accurate. The subsequent step involves using this model as
an additional resource for healthcare professionals to validate
their treatment approaches. However, we anticipate various
challenges before reaching this milestone. These include
addressing the limited data accessible to Al researchers and
handling the sensitivity of healthcare data, particularly when
involving images of body parts.

The structure of the rest of this paper is organized as
follows: We first review some important concepts relating in
machine learning in Section II. We then expose the related
works III on machine learning models used in the medical
field, and more specifically, machine learning applied to DFU
classification. Section IV gives a detailed presentation of
the proposed architecture of the DFU-SIAM. We then give
a comprehensive presentation of experimental results and
discussions in Section V. We finally conclude and explore
further research opportunities in Section V1.

Il. BACKGROUND AND PRELIMINARIES

Prior to taking a deep dive into the use of Al with regard
to Diabetic Foot Ulcer we present some important back-
ground information on the techniques we will be using in this
research.

A. ARTIFICIAL NEURAL NETWORKS (ANN)

ANN is a supervised learning algorithm that is inspired
by the structure and functioning of the human brain [19].
It consists of interconnected nodes, as shown in Figure 1,
which are also known as neurons, organized into layers.
Each neuron processes input data and passes its output to the
next layer, ultimately producing an output. ANNs are widely
used for tasks such as pattern recognition, classification, and
regression.

ANN consists of numerous neurons, also known as per-
ceptrons, which are organised into layers. The layers com-
municate through the network’s parameters, which are shown
as arrows. These parameters encompass weights and biases.
The weights control the importance of each input, while
biases determine how easily a neuron fires or activates. The
outcome generated during forward propagation, known as
the predicted value, is matched against the corresponding
actual value (ground truth) to evaluate the neural network’s
effectiveness. This evaluation is facilitated by using the loss
function. The loss function is also referred to as the cost
function. The aim is to minimize the loss. In the first iteration,
the predicted values are far from the ground truth values,

VOLUME 11, 2023



M. S. A. Toofanee et al.: DFU-SIAM a Novel Diabetic Foot Ulcer Classification With Deep Learning

IEEE Access

Forward Propagation

Iterative process until
loss function is
minimized

Backward Propagation

FIGURE 1. Graphical representation of an Artificial Neural Network
showing the whole learning process, which consists of mainly three steps,
which are: 1. Forward propagation; 2. Calculation of the loss function;
and 3. Backward propagation [20].

and the loss will be high as weights and biases were initially
assigned arbitrary values. The latter need to be updated in
order to minimize the loss function, and this process of
updating network parameters is called parameter learning or
optimization which is done using an optimization algorithm
(optimizer) that implements backpropagation. Backpropaga-
tion is a key step in training a neural network. It entails using
the error from forward propagation to adjust the weights by
propagating this loss backward through the network’s layers
This goes on for the number of epochs, which is fixed as
a hyperparameter. An epoch is an iteration over the entire
training dataset, which means the network has considered all
the inputs once. An activation function is a function that is
applied to the output of a neuron in an artificial neural net-
work to determine whether the neuron will be activated or not.
This is an important function as it introduces non-linearity in
the network. There are several types of activation functions;
among the most widely used are the softmax and sigmoid
functions.

1) CONVOLUTIONAL NEURAL NETWORKS (CNN)
A CNN is a deep learning algorithm that utilizes convolu-
tional operations to identify patterns within data, specifically
image and video data. The convolution operation involves the
application of a filter to the input data, through a process of
sliding the filter over the data and computing the dot product
between the filter and input. This produces a feature map,
which summarizes the presence of distinct features within the
input data. It was introduced by Lecun et al. [21] and has since
achieved state-of-the-art performance in image classification
task. CNN leverages the fact that nearby pixels are more
strongly related than distant ones. It uses a special technique
called convolution. Figure 2 shows a CNN that takes in
an input image, assigns importance, learnable weights, and
biases to various aspects of the image. The convolutional
layers, explained in Figure 3 extract features from input data
that are subjected to filters. This produces feature maps,
which are passed into further processing layers.

The Max Pooling layer applies a pooling operation, which
involves sliding a two-dimensional filter over each channel of
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FIGURE 2. Simplified graphical representation of an CNN showing the
processing of classification of images, including the convolutional layer,
Max Pooling, and the Fully Connected layer [22].
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FIGURE 3. lllustration of a digital image undergoing convolution with a
filter. The image on the left undergoes transformation into a feature map
on the right, achieved through the use of a convolutional filter at the
center. This specific filter is tailored to detect diagonal lines extending
from the top left to the bottom right of the image. As the convolutional
filter traverses the image in a predetermined manner, each element in the
image (highlighted in red) is multiplied by its corresponding element in
the convolutional filter (shown in blue). The sum of these products
(depicted in orange) is then generated as output in a new matrix that
indicates the presence of a diagonal line. In this feature map, a value of

2 indicates a complete diagonal line is detected, 1 suggests a portion of it
is identified, and 0 signifies none of it is detected [23].
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FIGURE 4. lllustration of Max Pooling in a CNN Network [24].

the feature map. The pooling layer summarizes the features
lying in the region covered by the filter, thereby reducing the
dimensions of the feature maps. This decreases the number of
parameters to learn and the amount of computation performed
in the network. There are different types of pooling layers,
including Max pooling, average pooling, and global pooling.
Figure 4 show ab example of applying Max pooling.

2) SIAMESE NEURAL NETWORK SNN

The Siamese network was presented in the context of signa-
ture verification [18] and comprises two identical networks
that take in separate inputs, but are connected in the last layer.
Siamese architecture aims to model semantic relationships
between classes to extract discriminating features [25].
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FIGURE 5. lllustration of a SSN with each sub-network consisting of a
CNN architecture. The final output of the Siamese Network is a similarity
score, which indicates how similar or different the two input images are.
This score can be used to make a prediction, such as whether two images
belong to the same class or not [27].

The twin networks have identical architecture, as shown
in Figure 5. They also share weights and work in parallel
to create vector representations for the inputs. For instance,
we can use ResNet as the twin network if our inputs are
images. This parallel CNN architecture allows the model to
learn similarity, which can be used for tasks such as similar-
ity measurement or classification. We can think of Siamese
neural networks as wrappers for twin networks. They help
produce better vector representations by measuring similari-
ties between vectors. The loss function used by the SNN is the
contrastive loss [26] which aims to maximise the proximity
between positive pairs while simultaneously increasing the
dissimilarity between negative pairs. Contrastive loss intro-
duces the concept of margin, which is a minimal distance
that dissimilar points need to keep. So it penalizes dissimilar
samples for being closer than the given margin.

3) VISION IMAGE TRANSFORMERS (ViT)

Transformers are neural network architectures that have had
a ground-breaking influence in the field of Natural Language
Processing (NLP). Transformer architectures were able to
tackle the shortcomings of sequential data tasks that were oth-
erwise processed with Recurrent Neural Networks (RNNs).
It came to the forefront in the famous paper “Attention Is All
You Need” and uses self-attention mechanisms to capture the
context of words in a sentence [28]. ViT was first introduced
by the paper “An Image is Worth 16 x 16 Words: Transform-
ers for Image Recognition at Scale” [29]. In ViTs, images are
converted into sequences, enabling the models to predict class
labels independently and learn image structures effectively.
Each input image is treated as a sequence of patches, with
each patch flattened into a single vector by concatenating
the channels of its pixels. The resulting vectors are then
linearly projected to achieve the desired input dimension.
This approach allows ViTs to process images as sequences
and capture their important features for classification tasks.
This is illustrated in Figure 6.

Embedding is a process used in natural language process-
ing for converting raw text into mathematical vectors since
computers understand only Os and 1s. As in any sentence, the
exact position where a word is situated in a sentence can alter
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FIGURE 6. ViT splits an image into fixed-size patches, linearly embeds
each of them, adds position embeddings, and feeds the resulting
sequence of vectors to a standard Transformer encoder. In order to
perform classification, it uses the standard approach of adding an extra
learnable classification token to the sequence [29].

its meaning, so it is important to take this information into
consideration. Positional embedding is a technique used in
transformer models to add information about the position of
a token in a sequence to its embedding.

B. MACHINE LEARNING PROCESS WORKFLOW

Before explaining the proposed system, we shall explain the
workflow when engaging in a machine learning research and
development project.

1) Historical Data: In supervised learning, labeled data is
necessary to acquire the ability to understand features.
The initial phase involves ensuring the presence of
dependable data. This process encompasses data col-
lection and pre-processing to structure the data appro-
priately for supervised learning. In summary, we need
data that has been accurately labeled and will be used
for training the future machine learning model.

2) Model building: Depending on the desired objective,
construct the model by meticulously selecting a suit-
able machine learning algorithm adapted for the prob-
lem you are looking to solve. Problems may include, for
example, regression problems, classification problems,
segmentation problems, and detection problems.

3) Model Evaluation: In order to enhance the potential for
the algorithm to perform well on new, unseen data, it’s
common practice to divide the training dataset into a
slightly smaller training set and a distinct validation set.
The choice of evaluation metrics for assessing a model
varies based on the nature of the model and whether it’s
being trained or tested. The validation set is designed
to resemble the test dataset, aiding data scientists in
refining an algorithm by pinpointing instances where
the model could potentially generalize effectively and
function within a novel population [23].

4) Model Optimisation: Machine learning algorithms con-
sist of parameters. This stage focuses on utilizing the
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FIGURE 7. Workflow of real-world machine learning systems. From
historical input data, you can build a model using a machine learning
algorithm. You then need to evaluate the performance of the model and
optimize its accuracy and scalability to meet your requirements. With the
final model, you can make predictions on new data [30].

most suitable parameters to attain the highest level of
performance.

Ill. RELATED WORKS

The potential Al has garnered attention from researchers
who are aware of the risks posed by DFUs. In this section,
we first study some recent work in the medical field and
the Al algorithms used before taking a deep dive into our
investigation of the use of Al in addressing the challenges
posed by DFU.

A. Al TECHNIQUES AND HEALTHCARE

Electronic Health Record (EHR) systems store data asso-
ciated with each patient encounter, including demographic
information, diagnoses, laboratory tests and results, prescrip-
tions, radiological images, and clinical notes [31]. These
data are the raw materials used by researchers in Al and
Healthcare. In this section, we look at the various Al algo-
rithms that are used when dealing with this kind of data.
Markovic et al. [32] applied a Novel NLP to medical records
to create a patient-specific drug profile for diabetic patients.
The degree of similarity between clustered profiles was
calculated using Euclidean Distance. Yu et al. [33] also
exploited transformers-based NLP Models to study social and
behavioural determinants of health in Lung cancer atients.
The models they used were BERT and RoBERTa, which are
pre-trained language models. Furthermore, Soni et la. [34]
also takes advantage of the use of Transformers, namely
Bidirectional Encoder Representations from Transformers
(BERT) for cohort retrieval in EHR.

Medical images have also been widely exploited by Al
specialists in research. In their latest work, Yesilkaya et al.
[35] tested nine classifiers, namely, nine distinct classifiers:
k-nearest neighbors, decision tree, support vector machines,
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stochastic gradient descent, random forest, multi-layer per-
ceptron, Naive Bayes, logistic regression, and AdaBoos for
the detection of ovarian cancer. They apply feature reduc-
tion techniques to simplify their classification algorithms.
In recent research, Rabiei et al. [36] tested random forest,
neural network, gradient boosting trees, and genetic algo-
rithms to mammographic features for prediction of breast
cancer. Sajjad et al. [37] a pre-trained CNN model, VGG-19,
is fine-tuned using augmented data for brain tumour grade
classification into four classes.

Appiahene et al. [38] use non-invasive palm images to
detect iron deficiency anaemia. They tested CNN, K-NN,
Naive Bayes, Support Vector Machine, and Decision Tree
after augmenting the dataset from 527 to 2635 images.
In this case Naive Bayes achieved a 99.96% accuracy,
while the Support Vector Machine achieved the lowest accu-
racy of 96.34%, and the CNN also performed better with
an accuracy of 99.92% in detecting anaemia. In another
non-invasive method, Al-Karawi et al. [39] experimented
with severity-level detection of diabetic retinopathy using
an ensemble model of CNN consisting of EfficientNetB7,
ResNet50, and VGG19. The The classification accuracy
achieved using the concatenation ensemble is 96%, which is
higher than that obtained via individual CNN models. The use
of ensemble techniques is promising and should be explored
further.

B. Al TECHNIQUES AND DFU

In this section, we provide an in-depth review related to the
main objective of this paper, which is the classification of
DFU images using Al techniques.

The study by Galdran et al. [40] compares the performance
of CNNs and ViTs [29] for the classification of DFUs. The
authors investigated the efficacy of the ResNeXt50 [41]
architecture from Big Image Transfer (BiT) [42] and Effi-
cientNet [43] for CNNs, as well as the ViT and Data-efficient
Image Transformers (DeiT) [44]. In addition, they com-
pared the optimization approaches of Stochastic Gradient
Descent [45] and Sharpness-Aware Optimization (SAM) [46]
for neural network training. The authors employed
various data augmentation techniques during training,
including random rotations, horizontal/vertical flipping, and
contrast/saturation/brightness adjustments. For testing, four
versions of each image were generated, and the predictions
were averaged for improved accuracy. Based on the results,
the authors found that all pre-trained models performed
better with the SAM optimizer. Specifically, the ResNeXt50
architecture demonstrated the highest performance on the test
data. Interestingly, the authors achieved the highest scores
by combining predictions from both CNN architectures.
Through a thorough analysis of the various models, it can be
concluded that CNNs outperform ViTs for the task of DFU
classification.

Bloch et al. [47] introduced a novel approach for DFU clas-
sification using an ensemble of EfficientNets combined with
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a semi-supervised training strategy incorporating pseudo-
labeling [48]. They address the challenge of class imbalance
in the dataset, by using Conditional Generative Adver-
sarial Networks (GANs) [49] to generate synthetic DFU
images. They utilized the pix2pixHD [50] framework for
conditional image generation. The proposed pipeline con-
sisted of three phases: baseline training, dataset extension,
and extension training. In the baseline training phase, the
best-performing models were combined into an ensemble
model. The baseline model was then employed to train
the GAN with pseudo-labeling for both unlabeled and test
images. The resulting dataset was subsequently used to
retrain the EfficientNet variants, and the best-performing
models were merged for ensemble prediction. Notably, the
proposed approach demonstrated improved performance of
55.80% compared to the work of Gladran et al. [40] 52.82%
for ischaemia class F1 score.

In the study conducted by Ahsan et al. [S1], the authors
focused on investigating various CNN-based deep learn-
ing architectures for binary classification. Specifically,
they evaluated the performance of AlexNet, VGG16/19,
GoogLeNet, ResNet50.101, MobileNet, SqueezeNet, and
DenseNet. Employing a fine-tuning approach, the authors
conducted experiments and assessed the accuracy of each
architecture. Notably, the results revealed that ResNet50
exhibited the highest accuracy among all the tested archi-
tectures. It is important to note that although this research
is recent, it lacked comprehensive information regarding the
hyperparameters used.

In their work, Goyal et al. introduced an ensemble CNN
model that leverages the power of Inception-V3, ResNet50,
and InceptionResNetV2 architectures [52], [53], [54]. The
model combines bottleneck features extracted from these
CNNs. During the training phase, the authors employed
a strategy where the weights of the initial layers in the
pre-trained networks were frozen to capture common fea-
tures such as edges and curves. Subsequently, the later layers
were unfrozen to focus on learning dataset-specific features.
The ensemble-CNN model used the combined bottleneck
features as input for binary classification, employing the
Support Vector Machine algorithm. Comparative analyses
were conducted against traditional machine learning meth-
ods, including BayesNet, Random Forest, and CNN-only
approaches. Notably, the proposed CNN ensemble model
outperformed all traditional machine learning techniques and
CNN-only models, showcasing its superior performance in
binary classification tasks.

Santos et al. [55] presented DFU-VGG, an innova-
tive approach for the classification of diabetic foot ulcers
(DFUs). The authors employed the VGG-19 architecture
as the backbone of their CNN. Notably, they introduced
batch normalization after each convolutional block. The per-
formance of DFU-VGG was evaluated against fine-tuned
versions of VGG-16, VGG-19, InceptionV3, ResNet50,
DenseNet201, MobileNetV?2, and EfficientNetBO networks
in their original configurations. In a separate study conducted
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by Santos et al. [56], an experiment was conducted to inves-
tigate the performance of an ensemble model comprising
various combinations of VGG-16, VGG-19, InceptionV3,
ResNet50, and DenseNet201 architectures. The outcome of
the experiment showed that the ensemble model consisting
of VGG-16, VGG-19, and DenseNet201 demonstrated the
highest performance among the tested combinations. This
research sheds light on the effectiveness of ensemble models
in improving the classification performance of DFU classi-
fication. Thotad et al. [57], also proposed to use a fine-tuned
CNN backbone based on EfficientNet [43].

Khandakar et al. [58] approach for DFU classification by
combining a CNN-based backbone with traditional machine
learning algorithms. The features of DFU are extracted using
a pre-trained CNN model. Then unsupervised method of
k-mean clustering is used for clustering the images into three
categories, namely mild, moderate, and severe.

Qayyum et al. [59] experimented with CNN and ViT. They
used transformer-based architectures that were originally
trained on the ImageNet dataset. The different vision trans-
formers are fine-tuned by adding a fully connected layer with
feature size (3072 x 768), ReLU activation (ReLU), dropout
layer for regularization, and another fully connected layer
with feature size (768 x 4) at the end layer of the different
pre-trained transformers. The features extracted from the last
layer of multiple transformers are concatenated pair-wise and
applied to a fully connected layer at the end to concatenate
the features of individual transformers and then pass to the
classifier layer. Table 1 provides a concise overview of the
outcomes from the research related to machine learning and
DFU classifications.

Based on the findings from above, it is evident that
ensemble methods have demonstrated favorable outcomes,
as has the use of CNN architectures for image-related tasks.
Additionally, promising results have been observed with
the application of transformer-based architectures for image
classification. In light of this, our research will use these
insights and introduce an innovative model for DFU classi-
fication, which will be elaborated further in the forthcoming
section IV.

IV. PROPOSED ARCHITECTURE

This research proposes an innovative architecture for the
classification of images of DFU diseases, as illustrated in
Figure 8. We use an ensemble of CNN (Section II-A1) and
ViT (Section II-A3) as the backbone for the two ‘““identical
twins” networks of the SNN (Section II-A2) for feature
extraction. A detailed explanation of the model training pro-
cess can be found in Section IV-C. The training procedure
involves utilizing DFU images and employing k-fold val-
idation with K set to 5. A comprehensive description of
the dataset used and pre-processing applied in this study
is provided in Section V-A. Once the model is trained,
it becomes proficient in classifying input images into one of
the four classes: none, infection, ischaemia, or both. To gen-
erate predictions on the test images, a k-Nearest Neighbors
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TABLE 1. Summary of related works.

Research Work

Architecture

Type of Classifcation

Thotad et al. [57]

EfficientNet

Binary Class
Abnormal / Normal

F Santos et al. [55]

VGG-16, VGG-19, InceptionV3,
ResNet50, DenseNet201,
MobileNetV?2 EfficientNetBO

Multi-Class
None / Infection/ Isca-
hemia / Both

E Santos et al. [56]

CNN Ensemble [ VGG-16,
VGG-19, InceptionV3,
ResNet50, DenseNet201,
MobileNetV2 ]

Multi-Class
None / Infection/ Isca-
hemia / Both

Galdran et al. [40]

CNN [BIT- ResNeXt50,
EfficientNet]
ViT[ViT-base ,DeiT-small]

Multi-Class
None / Infection/ Isca-
hemia / Both

Qayyum et al. [59]

ViT[vit_base_patch16_224]

Multi-Class
None / Infection/ Isca-
hemia / Both

Ahmed et al. [60]
Resnet-50

EfficientNet BO-B6

Multi-Class
None / Infection/ Isca-

hemia / Both
Bloch et al. [47] EfficientNets BO,B1,B2 Multi-Class
Pseudo-Labeling None / Infection/ Isca-
GAN hemia / Both
Ahsan et al. [51] AlexNet, VGG16/19, Binary Class

GoogLeNet,

Infection / schaemia

ResNet50.101, MobileNet,
SqueezeNet, and DenseNet

Khandakar et al. [58] K-Mean Clustering Multi-Class

CNN Mild / Moderate / High
Goyal et al. [61] Ensemble CNN Binary Class

Support Vector Machine Infection / Ischaemia

(kNN) model is integrated into the approach, conducting
neighbourhood analysis to enhance the prediction of the
model. A detailed explanation of this process is presented in
Section IV-C.

The dataset used in this work was obtained from the
DFUC2021 challenge [62], as detailed in Section V-A. Due
to the imbalanced nature of the dataset, various image aug-
mentation techniques were employed to enhance the training
process of the Siamese model. For both training and classifi-
cation tasks, the KNN classifier was utilized.

A. DFU-SIAM

DFU-SIAM is a DFU disease classification model that imple-
ments a SNN. Figure 9 shows the ensemble model architec-
ture. For the CNN backbone, we use EfficientNetV2S based
on EfficientNet [43] architectures, which have been shown
to significantly outperform other networks in classification
tasks while having fewer parameters. EfficientNetV2S has
fewer parameters, making it more suitable for low-resource
settings, and it uses a combination of efficient network design
and compound scaling to achieve high accuracy with fewer
parameters [63].
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The second backbone of the ensemble model is based
on ViTs (Section II-A3), more specifically, Bidirectional
Encoder representation from Image Transformers (BEiT).
BEiT uses a pre-training task called masked image modeling
(MIM) and stands for Bidirectional Encoder representation
from Image Transformers, which draws inspiration from
BERT [64]. MIM uses two views for each image, namely,
image patches and visual tokens. The image is split into a
grid of patches that are the input representation of the back-
bone Transformer. The image is “tokenized” into discrete
visual tokens. During pre-training, some proportion of image
patches are randomly masked, and the corrupted input is fed
to Transformer. The model learns to recover the visual tokens
of the original image instead of the raw pixels of masked
patches.

The vector representation of image 1 is passed into both the
EfficientNet model and the ViT model. In the EfficientNet,
we remove the last dense layer from the pre-trained model
to obtain the features from the last flattened layer (average
pool). In the ViT model, we obtain the last hidden states,
which contain all the patches from the last attention layer,
except the classification token; then we flatten them and
use another dense to reduce the shape to make the output

98321



IEEE Access

M. S. A. Toofanee et al.: DFU-SIAM a Novel Diabetic Foot Ulcer Classification With Deep Learning

B: DFU-SIAM
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DFU Image Datatset

FIGURE 8. DFU-SIAM Architecture Overview for DFU Classification. A:
Input images were sourced from the DFU2021 Dataset used for initial
training and validation. B: The proposed Network, consisting of an
ensemble of CNN and ViT within a Siamese Architecture. C: Visualization
of the four distinct classes into which the DFU images are accurately
classified.
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FIGURE 9. Block Diagram of the Ensemble Network, illustrating the
internal architecture of the individual networks composing the SNN. The
CNN utilized is EfficientNet, while the ViT employed is BEiT.

(features) have the same size as the feature extracted from
EfficientNet. Finally, we merge the two feature sets.
Traditional Artificial Neural Networks learn by trying to
minimise the loss function. Siamese Neural Network uses a
different loss function, which is explained in the next section.

B. LOSS FUNCTION OF DFU-SIAM

While Siamese networks normally use contrastive loss, for
DFU-SIAM we chose to implement Large Margin Cotangent
Loss (LMCoT). Duong et al. [65] proposed LMCot as a novel
approach for enhancing performance in verification and iden-
tification tasks. The LMCot loss utilizes the cotangent func-
tion instead of the cosine function. The cotangent function has
a broader range of values, allowing for better optimization.
Experimental results demonstrated that LM Cot outperformed
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FIGURE 10. Illustration of the training process of DFU-SIAM,
demonstrating the integrated approach of utilizing the SNN for feature
extraction and machine learning for prediction during the training phase.

existing methods in various benchmark datasets and achieved
state-of-the-art performance.

Once the chosen loss function has been established,
it becomes crucial to outline the model evaluation and opti-
misation phase as detailed in Section II-B. In the subsequent
section, we will provide a comprehensive explanation of how
we intend to execute these steps to ensure optimal perfor-
mance of the model.

C. DFU-SIAM MODEL EVALUATION AND OPTIMISATION
This section explains the training, validation, and predic-
tion processes of DFU-SIAM. This process is mentioned in
Section II-B where we explain the machine learning process
workflow. The augmented dataset, consisting of training and
validation images along with their respective labels, is loaded
into the model. The model leverages the feature extraction
capabilities of twin models to obtain the feature vectors of
each image and employs the Large Margin Cotangent Loss
as loss function. The objective of the learning process is to
iteratively update the model parameters in order to minimize
the distance between encoded features when the input images
belong to similar classes while maximizing the distance when
the input images belong to dissimilar classes. This ensures
that the model learns to effectively discriminate between
different classes by capturing meaningful patterns and rep-
resentations in the encoded feature space.

During the validation and prediction processes of the
model, it is important to mention that the KNN classifier [66],
is used as depicted in Figure 11. We iterate through values
of K from 1 to 30 to determine the optimal value of K. The
metric we use to get the best K is Macro F1 score. KNN
is a classifier model based on nearest neighborhood density
estimation. For each epoch, an attempt is made to identify
the optimal K value based on the Macro F1-score. Once the
best K value is determined for an epoch, the corresponding
weights are saved, and predictions are made on the test
dataset. This iterative process ensures that the best predictions
are obtained for each epoch of the test data.

The whole process of how DFU-SIAM classifies a test
image is shown in Figure 12. The test image is fed into DFU-
SIAM, which performs encoding and generates a compact
feature vector within a lower-dimensional space. Within this
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FIGURE 11. Schematic representation of the training- process of
DFU-SIAM including making predictions using machine learning
algorithm KNN to determine the optimal value for K based on the highest
macro-F1 score The identified parameters are saved and subsequently
employed for predictions on the test data.
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FIGURE 12. An overview of the application of DFU-SIAM for Test image
classification. Input images are fed into DFU-SIAM, where they are
encoded to generate feature vectors. The network then measures the
distances between these feature vectors and all the training images.
Utilizing the KNN algorithm, the predicted class for the input image is
determined based on its proximity to the training samples.

v

B

reduced feature space, the encoded representation of the test
image is compared to that of all the training samples using
suitable distance measures. The classification is then carried
out by employing the KNN algorithm.

V. EXPERIMENTATION AND RESULTS

This section starts by providing a detailed description of
the dataset utilized for the experimentation, including details
on the preprocessing techniques employed. Additionally, the
materials used in the experiments are outlined, and the results
obtained are presented alongside a thorough comparison with
relevant works in the field.

The quality of the dataset significantly influences the per-
formance of deep learning models in terms of result accuracy.
However, ethical reliability of the data source is equally
important. In the next section, we will define the characteris-
tics of the dataset employed in DFU-SIAM.

A. DATASET
In this section, we give an overview of the dataset we will use
for this research.

Data quality is a crucial factor that directly affects the
performance of supervised learning algorithms. The utiliza-
tion of a representative and high-quality dataset is criti-
cal for achieving optimal accuracy and performance [67].
In this study, we obtained the dataset from the DFUC2021
challenge organized by the Medical Image Computing and
Computer-Assisted Intervention (MICCAI) society [62].
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The proper licensing was also secured for this research, ensur-
ing that all ethical and legal requirements were met.

Upon initial preprocessing, we observed that the dataset
class distribution was imbalanced, with 621, 2555, 227, and
2552 instances belonging to the both, infection, ischaemia,
and none categories, respectively, as shown in figure 13. Such
an imbalance poses a challenge to the performance of super-
vised learning algorithms, as they tend to be biased towards
the majority class. To address this issue, we applied data aug-
mentation techniques, as discussed in Section V-A1. It should
be noted that Siamese networks, when combined with data
augmentation techniques, can enhance the performance of
various tasks. Data augmentation introduces variations to the
training data.

2555 2552

both nfection 5 haemia none

FIGURE 13. Class distribution of the DFU2021 Challenge dataset,
illustrating the evident imbalance in the dataset.

1) DATA AUGMENTATION
Imbalanced data refers to a situation where one class of
data examples has much more representation than the other
classes [68]. The geometric transformations that were applied
to our DFU dataset set images are illustrated in figure 14 and
include:

o Colorjitter (brightness = 0.1,contrast = 0.1, Satura-

tion = 0.1, hue = 0.1) Figure 14a

« RandomEqualize(p = 0.2) Figure 14b

« RandomHorizontalFlip(p = 0.2) Figure 14c

« RandomVerticalFlip(p = 0.2 Figure 14d

Prior to executing the model, it is most important to estab-
lish a suitable hardware and software setup, as they have an
impact on the hyperparameters that will be employed. This
setup is elaborated on below.

B. EXPERIMENTAL SETUP

The experimental setup was conducted on a Windows 10 Pro
operating system running on a powerful hardware configu-
ration comprising 64 GB of RAM and an Intel(R) Xeon(R)
W-2155 CPU operating at 3.30 GHz. The system was fur-
ther enhanced with an NVIDIA GeForce RTX 3060 GPU,
boasting 12 GB of dedicated memory. To facilitate the
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FIGURE 14. Demonstration of the application of geometric image
transformations (a) Color Jitter, (b)Random Equalize, (c) Random
Horizontal Flip, (d) Random Vertical Flip.

experiments, the system was configured with CUDA
version 11.7, Tensorflow 2.10.0, and Python 3.10.9.

The selection of hyperparameters in this study was influ-
enced by the computational resources available. The batch
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size was set to 8, and the input images were resized to dimen-
sions of 200 by 200 pixels with RGB channels. All models
were run for 40 epochs. A fixed learning rate of 10e-6 was
employed. To optimize the parameters for prediction on the
test data, the KNN algorithm was utilized. Additionally, test
time augmentation (TTA) [69] techniques were applied to fur-
ther enhance the prediction accuracy. TTA introduces random
modifications to the test images, enabling the trained model to
encounter augmented versions of the images multiple times.
The predictions for each corresponding image were averaged,
providing a more robust and reliable final prediction.

As explained in the previous section, our intention is
to employ an ensemble of CNN and ViT as identical
sub-networks of the SNN. The next section will explain the
backbone that will be used.

C. EXPERIMENTAL STRATEGY

For experimental strategy, we tested an ensemble of dif-
ferent combinations of CNN based and ViT based models.
For the CNN, we maintained the EFFicientNet. However,
for the ViT we experimented with BEiT [64], [70] and
SwinTiny(SwinT) [71]. Both will be tested and evaluated
against related works.

D. METRICS

In this study, we used various evaluation metrics to evaluate
the performance of our classification algorithms. Commonly
used metrics include precision, recall, and F-score, which are
essential in quantifying the accuracy and effectiveness of a
proposed method and also bench-marking it against other
proposed models. This section briefly explains the metrics we
used.

The selection among several configurations should be
made without subjectivity. Therefore, the following sections
will elaborate on the various machine learning metrics that
will guide us in determining which model demonstrates the
best performance.

1) CONFUSION MATRIX

A confusion matrix is an N X N matrix, where N is the
number of classes being predicted. For the DFU problem at
hand, we have N = 4, and hence we get a 4 x 4 matrix.
Figure 15 shows an example of a confusion matrix for DFU
classification.

2) PRECISION

The precision metric is determined by dividing the number
of correctly classified positive samples by the total number
of samples classified as positive, including those that were
classified incorrectly. This metric serves as an indicator of
the model’s ability to accurately classify samples as positive.
The formula is shown in 1 where TP refers to the True positive
and FP represents the False positive.

TP

Precision = ——. (1)
TP + FP
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FIGURE 15. Example of a Confusion Matrix displaying the True labels and
Predicted labels.

3) RECALL
Recall is derived by dividing the number of positive samples
that were correctly classified as positive by the total number
of positive samples in the dataset, as illustrated in the for-
mula 2. This metric is used to evaluate the model’s capacity to
accurately identify positive samples. Higher values of recall
indicate that the model is better at detecting positive samples.
TP
Recall = ——. 2)
TP + FN

4) F1-SCORE
F1-score is the harmonic mean of precision and recall values
for a classification problem. F1 score symbolise high preci-
sion as well as high recall. It presents a good balance between
precision and recall and gives good results on imbalanced
classification problems. The following formula: 3

2 % Precision * Recall
F1 — Score =

Precision + Recall
2% TP

“ 2%TP+FPLFN’

3

5) MACRO AVERAGE F1-SCORE

In multi-class classification with imbalanced data, the main
consideration will be Macro F1-Score. The formula is illus-
trated with the following formula: 4 where n represents the
number of classes involved. In the DFU classification. n is
equal to 4.

> Flscore
- .

Macro F1 Score =

“

E. RESULTS

1) CONFUSION METRICS

The confusion matrix was obtained for the two variations
of EfficientNet and ViT transformer, as shown in Figure 16.
Figure 16a shows the confusion matrix when the backbone
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FIGURE 16. Confusion matrix results obtained from applying two
different ensembles as identical networks (a) Confusion Matrix with an
ensemble of EfficientNet and SwinT. (b) Confusion Matrix with an
ensemble of EfficientNet and BeiT.

of our model is run with EfficientNet as the CNN backbone
and SwinT( EfficientNEt/SwinT) as the vision Transformer.
Figure 16b shows the confusion matrix with EfficientNet and
BelT (EfficientNet/BEiT) as combined backbones. From the
overall confusion matrix, the performance metrics are calcu-
lated. Table 2 and Table 3 show these metrics. By analysing
the confusion matrices, we see that both models are wrongly
predicting some instances of none class as infection and some
as infection as none.

From Table 2 and Table 3 we can see that EfficientNet
and BEIT has a better accuracy of 95% compared to 93% of
EfficientNet and SwinT. The Macro F1-score is same at 0.95.
EfficientNet and BEiT model has a higher macro F1-score for
the classes none and infection.
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TABLE 2. Metrics from confusion matrix EfficientNet/SwinT.

Precision  Recall F1-Score
none 0.92 94 0.93
infection 0.93 0.91 0.92
ischaemia 0.96 1 0.98
both 0.98 0.98 0.98
accuracy 0.93
macro avg. 0.95 0.96 0.95
weighted avg. 0.93 0.93 0.93

TABLE 3. Metrics from confusion matrix EfficientNet and BEIT.

Precision Recall F1-Score
none 0.93 0.95 0.94
infection 0.94 0.92 0.93
ischaemia 0.94 0.98 0.96
both 0.98 0.98 0.98
accuracy 0.95
macro Avg. 0.95 0.96 0.95
weighted avg. 0.94 0.94 0.94

2) LOSS

The loss function provides insights into the effectiveness of
the models in minimizing errors and improving their pre-
dictive performance. By analyzing the loss curves, we can
observe the behavior of the models over time and assess their
training progress. As far as training loss is concerned, we can
see in Figure 17 for both models that training loss decreases
at a constant rate. This indicates effective learning and model
improvement throughout the training process. Furthermore
by analysing validation loss curves, we can assess how well
the models are learning and how effectively they are adapting
to the validation dataset. The validation loss very quickly
stagnates for both models. However, we can witness a con-
stant decrease for the EfficientNet and BEiT model as shown
in Figure 17b.

3) ACCURACY

In the best case, for a deep learning model, we would like
both curves to increase harmoniously during the training
process, indicating that the model is learning and improving
its performance on both the training and validation datasets.
In Figure 18a training and learning curves intersect at around
epoch 30 while in Figure 18b the intersection is earlier at
around epoch 13. If the change continues to increase with
validation and training accuracy diverging, this will signal
that the model is overfitting. In the current case, while there
seems to be a discrepancy, we do not believe that the model is
overfitting. However, this shows that there is room to further
investigate and improve performance.

4) MACRO F1-SCORE

In figure 19 we show how the Macro-F1 score varies dur-
ing the 40 epochs. Figure 19a shows that a high Macro F1
score is obtained very early, at epoch 15. However, a look at
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(a) Loss curve of the model with an ensemble of EfficientNet and
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(b) Loss curve of the model with an ensemble of EfficientNet and
BEIiT, trained for 40 epochs.

FIGURE 17. Loss curves of the two models being experimented.

Figure 19b shows a peak at epoch 17 but it has another peak
at epoch 38. This indicated that it is a good idea to investigate
both models on unseen test data to have a better indication of
which is most suited for the DFU disease classification.

5) SUMMARY OF METRIC AND COMPARISON

In this section, a summary of the two models is shown in
table 4. For this table it can be seen that based on the main
metric on which we are evaluating our model the EfficientNet
and SwinT model has a higher macro Fl-score compared
to the EfficientNet and BEiT model. The class F1-score for
none,infection is better for EfficientNet and BEiT while for
ischaemia EfficientNet and SwinT is better. For both class
they have same class F1-score.

The two models were evaluated on test data provided by
the DFU2021 Challenge. This consists of 5734 unlabeled
images that are used to make predictions and uploaded on
the platform to get the required metrics.
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(a) Macro F1 Score variation over the 40 epochs of training
for the model with an ensemble of EfficientNet and SwinT,
exhibiting a peak at epoch 15.
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FIGURE 18. Accuracy curves of the two models being experimented.

TABLE 4. Comparison of CNN and ViT siamese models.

(b) Macro F1 Score variation over the 40 epochs of training
for the model with an ensemble of EfficientNet and BEiT,
exhibiting a peak at epoch 38

FIGURE 19. Macro F1-Score variation of the two models being
experimented over 40 epochs.

TABLE 5. Performance on test data.

Model EfficientNet and SwinT  EfficientNet and BelT
Macro F1-Score 0.9516 0.9510
loss 5.3856 0.6980
categorical_ accuracy 0.6922 0.9556
val_loss 2.9078 1.9856
val_categorical _accuracy 0.8270 0.9110
Accuracy 0.9320 0.9395
None F1-Score 0.9265 0.9370
Infection F1-Score 0.9217 0.9308
Ischaemia F1-Score 0.9783 0.9565
Both F1-Score 0.9798 0.9798
Macro Precision 0.9477 0.9472
Macro Recall 0.9558 0.9551
Macro AUC 0.9748 0.9781
Weighted Avg. Precision 0.9322 0.9397
Weighted Avg. Recall 0.9320 0.9395
Micro F1-Score 0.9320 0.9395
15 38

Epoch #

Metrics EfficientNet/SWINT  EfficientNet/BEiT
Macro F1-Score 0.5850 0.6160
None F1-Score 0.7442 0.7478
Infection F1-Score 0.6072 0.6149
Ischaemia F1-Score 0.5367 0.5613
Both F1-Score 0.4520 0.5401
Macro Precision 0.5892 0.6115
Macro Recall 0.6368 0.6570
Macro AUC 0.8043 0.8298
Weighted Avg. Precision 0.6818 0.6728
Weighted Avg. Recall 0.6610 0.6918
epochs 16 7

Table 5 presents the performance of the two models on test
data which were uploaded on the DFU2021 live challenge
board. From the table, it can clearly be observed that the Effi-
cientNet and BEiT model exhibits better overall performance
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in almost all the metrics except for the weighted average pre-
cision. Hence, the EfficientNet and BEiT model was further
optimised. The predictions that showed the highest macro-
F1 score were averaged and loaded on the classification
liveboard.
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TABLE 6. DFU-SIAM comparison with related works.

Metrics DFU-SIAM Galdran et al. [40]  Bloch et al. [47] Ahmed et al. [60] Qayyum et al. [59]
Rank BEST 1st 2nd 3rd 4th
Macro F1-Score 0.6228 0.6216 0.6077 0.5959 0.5691
None F1-Score 0.7553 0.7574 0.7453 0.7157 0.7466
Infection F1-Score 0.6276 0.6388 0.5917 0.6714 0.6281
Ischaemia F1-Score 0.5495 0.5282 0.558 0.4574 0.467
Both F1-Score 0.5588 0.5619 0.5359 0.539 0.4347
Macro Precision 0.5486 0.614 0.6207 0.5984 0.5814
Macro Recall 0.6554 0.6522 0.6246 0.5979 0.6104
Macro AUC 0.8599 0.8855 0.8616 0.8644 0.8488
W.Avg. Precision 0.6983 0.7009 0.6853 0.6730 0.68
W.Avg Recall 0.6815 0.6856 0.6657 0.6711 0.6636
Micro F1-Score 0.6749 0.6801 0.6532 0.6714 0.6577
epochs Avg(best epoch) NA NA NA 5(ended)

When compared to the performance of related works,
DFU-SIAM which is a model based on a siamese neural
network for DFU disease classification, exhibits the best
Macro F1-Score as shown in Table 6. Galdran et al. [40]
(Galdran 22) were actually the winners of the DFU challenge.

F. DISCUSSION

DFU classification is implemented using a Siamese Neural
Network which is in itself a novel architecture, combined with
Large Margin Cotangent Loss (LMCot) as a novel approach
for enhancing performance in verification and identification.
We further introduce the KNN classifier while iteratively
searching for the best K while doing prediction on test data.
These are the reasons that explain why our model, DFI-
SIAM, performs better than the other model in the related
work. While Galdran et al. [40] focused on comparing Con-
volutional Neural Networks (CNNSs) and Vision Transformers
(ViTs) and achieved the best macro Fl-score, our approach
takes a different direction by combining these two archi-
tectures. By incorporating the strengths of both CNNs and
ViTs, we capitalize on their complementary features and
achieve improved results. As far as Bloch et al. [47] they used
an ensemble of EfficientNet families with pseudo-labeling.
In DFU-SIAM we choose EfficientNet, or more precisely,
EfficientNetV2S, which is one of the best performing pre-
trained CNN. Qayyum et al. [59] concentrated essentially on
vision transformers. They propose the combination of two
different pre-trained ViT models for feature extraction. For
our proposed model, we chose BEiT, which is one of the best
performing pre-trained transformers. However, we decided
to make the last 10 layers of the BEiT transformer train-
able as our experiments showed a significant increase in
performance.

DFU classification in our study used a novel approach of
using innovative SNN architecture for classification of DFU.
To further enhance its performance, we chose to use a novel
approach called the Large Margin Cotangent Loss (LMCot)
proposed by Duoung et al. [65]. Our proposed model,
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DFI-SIAM, surpasses the performance of other models dis-
cussed in related works.

Bloch et al. [47] employed an ensemble of Efficient-
Net models with pseudo-labeling, which differs from our
methodology. Instead, we specifically chose the Efficient-
NetV2S model, known for its outstanding performance as
a pre-trained CNN. We acknowledge, however, that the
pseudo-labeling can be used in our model to further improve
its performance.

Furthermore Qayyum et al. [5S9] concentrated on Vision
Transformers, proposing the combination of two distinct
pre-trained ViT models for feature extraction. In our study,
we adopt the BEiT model, which exhibits very good per-
formance as a pre-trained transformer. However, we make
a deliberate choice to train only the last 10 layers of the
BEIT transformer to strike a balance between fine-tuning and
computational efficiency.

By integrating these advancements and tailoring them
to the specific requirements of DFU classification, the
DFU-SIAM model achieves remarkable accuracy and sets
a new benchmark in the field. It should be noted that
the model’s computational efficiency was not evaluated at
this stage. This parameter is important if the model is
to be deployed on ubiquitous devices. One limiting fac-
tor of the system is the imbalanced data, and this is also
acknowledged by other researchers, with Bloch et al. [47]
using pseudo-labeling and Generative Adversarial Network
to tackle this.

While exploring need for more data, We may have clinics
or medical centers that adhere to the idea of using deep
learning models but are not willing to share the data with third
parties. Ensuring patient privacy while integrating diverse
datasets into a model has emerged as a significant limitation
in deep learning research [72]. This problem can be addressed
by deploying the model using Federated Learning [73]. The
notable aspect of Federated Learning lies in its ability to
handle data in a decentralized manner, thereby fostering a
privacy-preserving environment in Al applications [74] in the
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event we require several distant sites to contribute to having
even more data, which is an important aspect for the training
and implementation of a deep learning model.

G. LIMITATIONS

One limitation of our study arises from the substantial class
imbalance present within the dataset, particularly evident in
the under representation of “both™ and the Ischaemia class
class. Upon careful inspection of the images, we observed
that certain geometric data augmentation techniques were
already applied to these classes during the dataset creation
process. This imbalance has influenced the overall perfor-
mance of the models. Nevertheless, it is worth noting that
the DFU2021 dataset is currently the most comprehensive
resource available for conducting research in this domain.
Furthermore, we remain optimistic that with adequate com-
putational resources, there is potential to explore additional
variations and employ ensemble modeling techniques to
enhance the outcome of our study.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have trained and tested a new model based
on an ensemble of EfficientNet and BelT Transformer in a
SNNmodel that has outperformed some of the best results
obtained for classification of DFU as detailed in related
works III. The dataset limitations can be addressed in future
work by investigating the use of GAN which is a type of
deep neural network that consists of two components: a gen-
erator network and a discriminator network [49]. Another
option would be using pseudo labeling which is a technique
used in machine learning to improve model performance by
using unlabeled data in conjunction with labeled data [48].
The 5734 unlabeled data in the test image can thus be
exploited.

This research marks an important step towards tackling the
use of machine learning in the field of DFU image classifi-
cation. Despite our limited processing power, we effectively
utilized available resources to achieve significant results.
With access to greater computational capabilities, we antic-
ipate that further fine-tuning of our model will lead to even
better performance.

As previously specified, there is a need to have a
better-quality and more balanced dataset to curb data bias and
ensure the model generalises well to unseen data. One pos-
sible solution that should be explored is accessing data col-
lected at different geographically located medical facilities.
This clearly poses the problem of data privacy, as the owner
of the data would not want highly sensitive health-related data
to be transferred to a third party. To overcome this barrier,
the use of centralized Federated Learning or Peer-to-peer
Federated Learning should be explored. Federated Learn-
ing, an innovative distributed interactive Al concept, holds
exceptional promise in the realm of intelligent healthcare.
This approach enables multiple clients, including entities like
hospitals, to engage in Al training while upholding strin-
gent data privacy protocols [75], [76], [77]. It entails the
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training of machine learning models across datasets dispersed
throughout various data centers, such as hospitals and clinical
research labs, all while safeguarding data integrity [78].

Incorporating data from a variety of sources will undoubt-
edly contribute to enhancing the dataset’s imbalance, thereby
alleviating the data bias observed in the “both” and
“ischaemia” classes. These classes currently exhibit only
621 and 227 occurrences, in contrast to the “‘infection’ and
“none” classes which encompass 2555 and 2552 instances,
respectively. It’s important to highlight that “both” and
“ischaemia’, which are the most serious forms of DFU,
are relatively less prevalent in the samples. However, this
poses a challenge for machine learning algorithms. One
potential approach to addressing this imbalance is to employ
GAN [79] for generating synthetic images. This technique
has been successfully employed by Kim et al. [80] to aug-
ment liver ultrasonic image data using a semi-supervised
approach.

This work serves as a stepping stone for future research
and development aimed at effectively detecting, treating,
and managing diabetic foot ulcers. Our ultimate goal is to
contribute to advancements in the medical field, leading
to improved patient outcomes and healthcare management.
As the machine learning model learns by trying to reduce
the loss to a minimum, it is prone to making erroneous
predictions. If data bias is present, then there will most
certainly be errors in predictions. Hence, from a medical
point-of-view, it is mandatory to explainability on top of clin-
icial validation [81]. The critical obstacle to the widespread
acceptance of machine learning in healthcare and research
relates to the black box nature of machine learning algo-
rithms for the end user [82]. There is presently extensive
research concentrating on Explainable AI (XAI), which aims
to provide a suite of machine learning techniques that enable
human users to understand, appropriately trust, and produce
more explainable models [83]. This has to be given priority
in any future work. One simple step could be to show a
class activation mapping (CAM) approach that highlights
the infected section or section with ischaemia and improves
the visual interpretability [84]. Techniques like LIME (Local
Interpretable Model-Agnostic Explanations) [85] and SHAP
(Shapley Additive exPlanations) should be explored [86].

A crucial future direction for our research involves utilizing
the Siamese Neural Network to develop a tool that can aid
medical practitioners in evaluating the treatment protocols
they administer to patients over time. This longitudinal dis-
ease evaluation tool would enable practitioners to monitor
and adjust treatments as needed. Subsequently, after thorough
testing and evaluation of the tool, it can be adapted into a
preventive tool for early detection of DFU disease in patients,
accessible via a mobile phone platform. In order to advance to
the next phase, our plan involves collaborating with experts
from public health research labs who possess the necessary
expertise in designing protocols for assessing the effective-
ness and acceptability of technology adoption in healthcare
settings.
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