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ABSTRACT A decentralized marking fault diagnosis method is proposed to solve the problem that
increasing the number of unobservable transitions may result in the inability to diagnose faulty markings,
in a class of decentralized systems modeled by labeled Petri nets. Assuming that each local site knows
the structure of the labeled Petri net, and the subnet induced by unobservable transitions is acyclic. The
decentralized architecture consists of a set of local sites communicating with a coordinator that determines
whether the faults have occurred in the system, which are modeled by markings. First, each local site
constructs the corresponding dual verifier and calculates the local marking fault diagnosis state according to
the local observations. Then, it exchanges the corresponding information with the coordinator according to
the two proposed diagnosis protocols. Finally, the coordinator calculates the global diagnosis state according
to the received information. In addition, the marking diagnosability under both protocols is analyzed.
A sufficient and necessary condition for marking fault diagnosis in the decentralized architecture under
the second protocol is proved.

INDEX TERMS Discrete event systems, marking fault diagnosis, labeled petri nets, verifier.

I. INTRODUCTION
Discrete event system [32], [33] is a dynamic system whose
state evolutions are driven by discrete events. If a sensor
detects the occurrence of a specific event in a discrete event
system, the state of it changes accordingly. Many intelligent
information systems can be regarded as discrete event sys-
tems, such as power systems [1], manufacturing systems [2],
communication systems [3], logistics sorting systems [4] and
image processing systems [34]. If a fault occurs in a discrete
event system, the performance and productivity of the system
will be reduced, and even a major production accident may
occur. Fault diagnosis in discrete event systems can determine
whether some faulty events have occurred in accordance
with the current observation, so that timely measures can be
taken to restore the system to normal operation. Since fault
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diagnosis in discrete event systems is highly relevant to the
safety of the system [35], a lot of works have been done in the
past decades [36], [5], [6], [7], [8], [9]. In the related litera-
ture, fault detection and diagnosis have been extensively stud-
ied in centralized systems [10], [11], [12], [13], [14], [15].
Due to the distributed nature of many large real systems,
several methods have been proposed to solve the problem
of fault diagnosis in the decentralized settings by building
relevant models through automata [16], [17], [18], [19], [20].
These class of methods build a diagnoser by an automaton
from the model indicating whether the paths generated so
far have faulty events. However, with the growth of system
size, the construction of diagnosers inevitably encounters
the problem of state space explosion. Petri nets [21], [22]
can describe the system behavior with more compact struc-
tures without expounding the entire state space. The dis-
tributed characteristics of Petri nets reduce the computational
complexity of fault diagnosis problems. Therefore, some

99168
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-7204-3654
https://orcid.org/0000-0003-2851-8111
https://orcid.org/0000-0002-6700-9347


Z. Yu et al.: Decentralized Marking Fault Diagnosis of Labeled Petri Nets

works [23], [24], [25], [26], [27], [28], [37] use Petri nets
as modeling tools to study fault diagnosis problems of dis-
tributed systems.

Cabasino et al. [23] propose a method to verify diagnos-
ability of Petri nets in a decentralized setting, and prove that
the system without failure ambiguous strings is diagnosable.
The work in [24] defines three protocols, and proves that
diagnosability of the decentralized system is strictly related to
the existence of failure ambiguous strings. Under the assump-
tions that the unobservable subnet is acyclic and the structure
of the net is known to each site, Cong et al. [25] propose an
online diagnosis method for Petri net systems using integer
linear programming. Specifically, the study in [25] proposes
two protocols and proves a necessary and sufficient condition
for the second protocol to be able to successfully diagnose
faults in the decentralized setting. Ran et al. [26] solve the
problem of codiagnosability of labeled Petri nets by con-
structing a verifier, which avoids the exhaustive enumeration
of the set of reachable markings by using the concept of basis
markings. In addition, this work [26] extends the notion of
K -step diagnosability to K -step codiagnosability and gives
an algorithm to compute the minimum K value. On the basis
of [26], the work in [27] extends the method to unbounded
Petri nets and gives the necessary and sufficient conditions
for K -step codiagnosability. Recently, Ran et al. [37] enforce
the codiagnosability of systems by adding appropriate sen-
sors. Bonhomme [28] proposes a state estimation method in
a decentralized system to evaluate the occurrence of each
specific fault, but the complexity of the proposed algorithm
is exponential in the centralized and decentralized settings.

All of the above approaches consider the fault as an event
in a Petri net or automaton. In many practical situations, the
operator of a system may expect to know whether the system
has or has ever reached an important state, rather than recog-
nizing an event. For example, in a logistics sorting system,
the buffer may often exceed the threshold. In order to get the
attention of the operator, an alarm needs to be raised in a finite
number of steps after the threshold is exceeded. Therefore,
Ma et al. [29] study marking-based fault diagnosis in central-
ized systems. The work solves the problem of marking-based
fault diagnosis by expressing the fault with a specific state.
Since systems are distributed in reality, we extend this
work to decentralized systems. Unlike centralized systems,
which perform marking fault diagnosis regarding the system
directly, decentralized systems are monitored by series of
sites that perform marking fault diagnosis locally. A coor-
dinator communicates with sites and outputs the diagnosis
states. Since each site can only observe part of the sys-
tem’s events, and the increase of the number of unobservable
events may lead to the failure to diagnose the existing faults.
We propose protocols to define the information that can be
exchanged between the coordinator and the local sites to real-
ize the marking fault diagnosis of the decentralized system.

The main contributions of this paper are summarized as
follows: (1) The marking fault diagnosis under the exist-
ing centralized discrete event systems is extended to the

decentralized systems, which are more in line with the char-
acteristics of the real systems. (2) Two diagnosis protocols
are proposed to verify the marking diagnosability of decen-
tralized systems, and a necessary and sufficient condition
for marking fault diagnosis in the decentralized architecture
under the second protocol is proved.

We remark that two diagnosis protocols proposed in [25]
are only applicable to event-based faults. In order to meet
the requirement that system operators only expect to know
whether the system has reached the faulty state, this paper
proposes twomarking-based fault diagnosis protocols to real-
ize the marking fault diagnosis of decentralized systems.

The rest of this paper is structured as follows. First,
some basic definitions and notations needed in this paper
are recalled in Section II. The marking fault diagnosis for
the local sites is formalized in Section III. In Section IV,
two protocols are proposed to solve the problem of marking
fault diagnosis in decentralized systems, and we analyze their
diagnosability. The diagnosability of the two protocols is ver-
ified by an example of logistics sorting system in Section V.
Section VI concludes the paper.

II. PRELIMINARIES
A. PETRI NETS AND LABELED PETRI NETS
A Petri net is a net structure N = (P,T ,Pre,Post), where
P is a set of m places, T is a set of n transitions, Pre :

P × T → N and Post : P × T → N are the pre- and post-
incidence matrices, respectively. The incidence matrix of N
is defined as C = Post − Pre. We use C(·, t) to represent
the corresponding column of the transition t in the incidence
matrix. For a transition t ∈ T , the set of input places is defined
as •t = {p ∈ P | Pre(p, t) > 0} and the set of output places is
defined as t• = {p ∈ P | Post(p, t) > 0}.
A marking is a function M : P → N. It can also be

represented as a column vector M . At a marking M , the
number of tokens in place p is denoted as M (p). A Petri net
system ⟨N ,M0⟩ is a net N with an initial marking M0.

For a transition t , if ∀p ∈
•t ,M (p) ≥ Pre(p, t), it is said to

be enabled at a markingM , denoted byM [t⟩. Enabled transi-
tion t may fire and yield a new marking M ′

= M0 + C(·, t).
This fact is denoted as M [t⟩M ′. We say that M ′ is reachable
from M , if a transition sequence σ = t1t2 . . . tk ∈ T ∗ fires at
a marking M and its occurrence finally generates M ′, where
T ∗ is the Kleene-closure [30] of T . The notation M [σ ⟩M ′

is used to denote this fact. The reachability set of ⟨N ,M0⟩

is composed of the markings set reachable from the initial
marking M0 denoted by R(N ,M0). The language of ⟨N ,M0⟩

is defined as L(N ,M0) = {σ ∈ T ∗
| M0[σ ⟩}. Given a

sequence σ ∈ T ∗, we denote its firing vector as y. The times
of occurrence of a transition t in σ is denoted by y(t). For
any sequence σ ∈ T ∗, the prefix-closure of σ is defined
as Pr(σ ) = {σ ′

∈ T ∗
| (∃σ ′′

∈ T ∗)σ = σ ′σ ′′
} [29]. If a

sequence σ̄ ∈ T ∗ such that σ̄ ∈ Pr(σ ) and σ̄ ̸= σ , it is called
a strict prefix of σ .
Given a Petri net N = (P,T ,Pre,Post), a subset P′

⊆ P
of its places and a subset T ′

⊆ T of its transitions, if Pre′ is
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the restriction of Pre to P′
× T ′ and Post ′ is the restriction

of Post to P′
× T ′, a subnet of N is denoted by a new net

N ′
= (P′,T ′,Pre′,Post ′). If N ′

= (P,T ′,Pre′,Post ′) then
N ′ is said to be the T ′-induced subnet.
A labeled Petri net is defined as G = (N ,M0,E, ℓ), where

⟨N ,M0⟩ represents a Petri net system, the set E represents
an alphabet, and the labeling function is denoted as ℓ : T →

E∪{ε} that assigns each transition t ∈ T either a symbol from
E or the empty word ε. The set of transitions T is partitioned
into To ∪ Tu, where To = {t ∈ T | ℓ(t) ∈ E} is the set of
observable transitions, and Tu = {t ∈ T | ℓ(t) = ε} is the set
of silent or unobservable transitions.

The labeling function can be extended to ℓ : T ∗
→ E∗,

where E∗ is the Kleene-closure of E , as follows:
(1) ℓ(ε) = ε;
(2) ℓ(σ t) = ℓ(σ )ℓ(t), where σ ∈ T ∗ and t ∈ T .
The observation of σ is represent by ω = ℓ(σ ) ∈ E∗ if a

string σ ∈ T ∗ fires. The inverse projection of an observation
ω ∈ E∗ of a labeled Petri net G is denoted by ℓ−1(ω) =

{σ ∈ L(N ,M0) | ℓ(σ ) = ω}. Moreover, L(G) = {ℓ(σ ) | σ ∈

L(N ,M0)} is called the language of G = (N ,M0,E, ℓ).

B. BASIS REACHABILITY GRAPH
We review some definitions on basis reachability graph
(BRG) proposed in [31]. In a Petri net N = (P,T ,Pre,Post),
if TI ⊆ T , TE = T\TI , and the TI -induced subnet is
acyclic, then the set of transitions can be partitioned into TE
and TI , denoted by π = (TE ,TI ). TE and TI represent the
set of explicit transitions and the set of implicit transitions,
respectively.

In brief, the basis partition is to divide T into TE and TI
such that the TI -induced subnet is acyclic. It is important to
note that the terms ‘‘explicit’’ and ‘‘implicit’’ are not related
to the physical meaning of the transitions.
Definition 1: Consider a Petri net N = (P,T ,Pre,Post)

with a basis partition π = (TE ,TI ), and a transition t ∈ T ,
the set of explanations of t at a marking M is defined as:∑

(M , t) = {σ ∈ TI ∗ | M [σ ⟩M ′,M ′
≥ Pre(·, t)}.

The set of explanation vectors of t at a markingM is defined
as:

Y (M , t) = {yσ ∈ N|TI | | σ ∈

∑
(M , t)}.

The set of explanation vectors is called the minimal explana-
tion vector of t if σ is the minimal unobservable transition
sequence. The set of minimal explanation vectors is denoted
by Ymin(M , t).
Definition 2: Consider a Petri net N = (P,T ,Pre,Post)

with an initial markingM0 and a basis partition π = (TE ,TI ),
the set of its basis markings consists of the initial marking
M0 and the set of markingsM ′

∈ M such that ∀t ∈ TE , ∀y ∈

Ymin(M , t) and ∀M ∈ M satisfingM ′
= M +C · y+C(·, t).

Based on the above definitions, the BRG can be defined as
a finite state automaton B = (M,Tr, 1,M0), where (1)M
is the set of basis markings; (2) Tr is the set of transitions t ∈

TE ; (3) the transition relation1 is1 = {(M1, (t, y),M2) | y ∈

Ymin(M1, t), t ∈ TE ,M2 = M1 + C · y + C(·, t)}; (4) M0 is
the initial state.

For the sake of expression, we use φ = (ti1 , yi1 )(ti2 , yi2 ) · · ·
(tin , yin ) to denote a word of transitions of arcs in a BRG.
A path Mb,1 → Mb,2 → · · · → Mb,n in a BRG
labeled by (ti1 , yi1 )(ti2 , yi2 ), . . . , (tin , yin ) is denoted by ℓ(φ) =

ℓ(ti1 ti2 · · · tin ).

III. BASICS OF DECENTRALIZED MARKING FAULT
DIAGNOSIS
The marking fault diagnosis in a decentralized setting stud-
ied in this paper is depicted in Fig. 1, where a set J =

{1, 2, . . . , J} of local sites performing local marking fault
diagnosis supervise the whole system. Each site knows the
structure and initial marking of the net, but it only observes a
subset of its transitions. The subset of transitions observed by
each site is different, and all sites observe the system together.
For each local site j ∈ J , we use To,j ⊆ To and Tu,j = T\To,j
to denote the set of the locally observable and unobservable
transitions, respectively.

The labeling function for each local site j ∈ J can be
defined as:

ℓj(t) =

{
ℓ(t), t ∈ To,j
ε, otherwise,

where ωj = ℓj(σ ) is the string associated with the transition
sequence σ observed by the jth site.
As shown in Fig. 1, each site locally performs marking

fault diagnosis after observing the string ωj = ℓj(σ ). Each
site computes a local marking fault diagnosis state Aj(ωj)
once it gets its own observation. According to the results, the
local sites exchange specific information with a coordinator
through a given communication protocol. The coordinator
analyzes the information sent by different sites and infers
whether the fault has occurred according to the related proto-
col. Finally, the coordinator generates a global marking fault
diagnosis state A(ω).
In this paper, decentralized marking fault diagnosis is stud-

ied under the following assumptions:
(1) The net is deadlock-free;
(2) For any site j ∈ J , the Tu,j-induced subnet is acyclic;
(3) The coordinator knows the set of transitions that each

local site can observe;
(4) At least one local site can observe all transitions

labeled e;
(5) Before the coordinator performs any polling, each site

must receive a projection of ω that a sequence of observable
events generated by the Petri net on its local alphabet.

Assumption 1 is a common assumption in partially observ-
able Petri net analysis. According to it, at any reachable
marking at least one transition can fire, which guarantees
the complete constructions of the positive and negative
BRGs in proposed protocols. Assumption 2 is a standard
assumption in fault diagnosis of Petri nets [25]. There are
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FIGURE 1. Decentralized marking fault diagnosis architecture.

no cycles of unobservable events in each site for local
marking fault diagnosis in proposed protocols. Assump-
tion 3 determines which information the coordinator knows.
It is necessary for the polling strategy of proposed pro-
tocols. Assumption 4 guarantees that all transitions corre-
sponding to each observable event can be observed by at
least one local site. Assumption 5 assures that the infor-
mation exchanges between the coordinator and the local
sites is relative to the same sequence ω. The last two
assumptions guarantee correct transmission of diagnosis
state between the site and the coordinator in proposed
protocols.

To represent the set of faulty markings of the system,
we need to use the definition of a generalized mutually exclu-
sive constraint (GMEC) [29]. A GMEC is a function that is
defined as a pair (w, k), where w ∈ Zm and k ∈ Z, which
determine a marking set L(w,k) = {M ∈ Nm

| wT · M ≤ k}.
At a markingM , the number of tokens of GMEC (w, k) is the
value of wT ·M . We use the quantity wT ·C(·, t) to denote the
influence of t .
In order to verify the marking diagnosability of centralized

systems, the work in [29] proposes the definition of fault
language and marking diagnosability. For the sake of veri-
fying the marking diagnosability of decentralized systems,
we extend these definitions to local sites.
Definition 3: For a given set of faultymarkingsF , the fault

language for a local site j ∈ J at a marking M is defined as:

LjM ,F = {σj ∈ L(N ,M ) | ∃σ̄j ∈ Pr(σj),M [σ̄j⟩M ′
∈ F},

where σj is the sequence observed by a site j, σ̄j is a strict
prefix of σj.
Briefly speaking, this definition only requires that a mark-

ing M ′ generated by at least one prefix of the fired transi-
tion sequence σj belongs to the set of faulty markings F .

Moreover, LjM0,F
is called the fault language of the initial

marking. The fault language of the system is similarly defined
as LM ,F , and it is LM0,F at the initial marking.

According to the above definition, a labeled Petri net G =

(N ,M0,E, ℓ) with a set of faulty markings F is diagnosable
(w.r.t. F) if for the markings generated by any σ from the
initial marking M0 reach F , there exists an integer Kσ ∈ N
satisfing the following condition: ∀σ ′

∈ ℓ−1(ℓ(σ )), ∀σ ′′
∈

T ∗
: σ ′σ ′′

∈ L(N ,M0) ∧ |σ ′′
| ≥ Kσ ⇒ σ ′σ ′′

∈ LM0,F .

Definition 4: Given a labeled Petri net G = (N ,M0,E, ℓ)
monitored by a set J = {1, 2, . . . , J} of local sites with
a set of faulty markings F = L(w,k), the set of explicit
(resp., implicit) transitions for each site is TE,j (resp., TI ,j).
The set of transitions whose influence is greater than 0 is
Tp,j = {t | wT · C(·, t) > 0}, and the set of transitions whose
influence is less than 0 is Tn,j = {t | wT · C(·, t) < 0}.
For a local site j ∈ J , we define the BRG w.r.t. a basis
partition π+

j = (T+

E,j,T
+

I ,j) as its positive BRG, where T
+

E,j =

To,j ∪ Tp,j, which is denoted by B+

j = (M+,Tr+

j , 1+

j ,M0).
The BRG w.r.t. a basis partition π−

j = (T−

E,j,T
−

I ,j) is defined
as its negative BRG, where T−

E,j = To,j ∪ Tn,j, which is
denoted byB−

j = (M−,Tr−

j , 1−

j ,M0).We useM+

b,j andM
−

b,j
to represent basis markings in a positive and negative BRG of
a site j, respectively. The relevant definitions (Tp,Tn,T

+

E and
T−

E ) of the positive (resp., negative) BRG B+ (resp., B−) of
the system are defined similarly to those for the local sites.

In order to sign whether faulty markings are reachable in
the positive and negative BRGs for local sites, we extend
the propositions of signing faulty markings for centralized
systems in [29] to decentralized systems.
Proposition 1: Given a labeled Petri netG = (N ,M0,E, ℓ)

monitored by a set J = {1, 2, . . . , J} of local sites with a set
of faulty markings F = L(w,k) and a negative BRG of a site
j, there exists a sequence σj ∈ T ∗ that satisfiesM0[σj⟩M ∈ F

if and only if a path Φj in B−

j holds M0
Φj
→ M−

b,j ∈ F and
ℓ(σj) = ℓ(Φj).
Definition 5: A labeled Petri net G = (N ,M0,E, ℓ) mon-

itored by a set J = {1, 2, . . . , J} of local sites with a set of
faulty markings F = L(w,k) and a positive BRG of a site j,

if M+

b,j + CI ,j · y ≤ k then an arc M+

b,j
(t,y)
−→ is called a faulty

arc.
Proposition 2: Given a labeled Petri netG = (N ,M0,E, ℓ)

monitored by a set J = {1, 2, . . . , J} of local sites with a
set of faulty markings F = L(w,k) and a positive BRG of a
site j, there exists a sequence σj ∈ L(N ,M0) \ LjM0,F

if and

only if in B+

j a path holds: (1) Mb0,j
(ti1,y1)
−−−−→ M+

b1,j
(ti2,y2)
−−−−→

· · ·M+

bn−1,j
(tin,yn)
−−−−→ M+

bn,j satisfies ℓ(σj) = ℓ(Φj), Φj =

(ti1, y1) · · · (tin, yn); (2) each arc is not a faulty arc on this
path.
Definition 6: The dual-next function Ωd,j : (M+

×

Γj) × (M−
× Γj) × (Ej ∪ {ε}) → (M+

× Γj) × (M−
×

Γj), where Γj = {0, 1} for a local site j, is denoted by:
Ωd,j((M

+

b,j, γ
+

j ), (M−

b,j, γ
−

j ), e) = {(M̂+

b,j, γ̂j
+), (M̂−

b,j, γ̂j
−)}
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where

(M+

b,j, (t
+, y+), M̂+

b,j) ∈1+

j , (M−

b,j, (t
−, y−), M̂−

b,j)∈1−

j ,

ℓ+

j (t) = ℓ−

j (t) = e,

γ̂ +

j =

 0, if γ̂ +

j = 0 ∧M+

b,j
(t+,y+)
−−−−→ is not a faulty arc,

1, otherwise

γ̂ −

j =

{
0, if γ̂ −

j = 0 ∧M−

b,j /∈ F,

1, otherwise.

According to Definition 6, given a labeled Petri net G =

(N ,M0,E, ℓ) monitored by a set J = {1, 2, . . . , J} of local
sites with a set of faulty markings F = L(w,k), the dual
verifier for a site j is defined as a nondeterministic automaton
Dj = (Dj,Ej, δj, d0), where (1)Dj ⊆ (M+

×Γj)×(M−
×Γj)

is the state set, where Γj = {0, 1}; (2) Ej is an alphabet;
(3) the nondeterministic transition relation δj is defined as:
for each e ∈ Ej ∪ {ε}: δj(((M

+

b , γ +

j ), (M−

b , γ −

j )), e) =

Ωd,j((M
+

b , γ +

j ), (M−

b , γ −

j ), e); (4) d0 = ((M0, 0), (M0, 0)) is
the initial state. δ∗

j is the extension of δj when the observation
is ωj. In the dual verifier of a site Dj, the state such that
γ +

j = 1 or γ −

j = 1 is denoted by DF,j. The dual verifier
of the system is denoted byD = (D,E, δ, d0). The state such
that γ +

= 1 or γ −
= 1 is denoted byDF,j. δ∗ is the extension

of δ when the observation is ω.
Definition 7: Given a labeled Petri net G = (N ,M0,E, ℓ)

monitored by a set J = {1, 2, . . . , J} of local sites with T+

E
and T−

E , at initial marking M0, if the last transition t of the
fired transition sequence σ satisfies t ∈ TE∩Tu, then the set of
basis markings is denoted byMu(σ ) = {M ∈ Nm

|M0[σ ⟩M}.
The corresponding set of states of dual verifier is denoted by
Du(σ ) = {(M+,M−) |M+

∈ Mu(σ )∧M−
∈ Mu(σ )}. If the

fired transition sequence is unobservable, the generated basis
markings set is denoted as Mui(σ ), and the corresponding
set of states of dual verifier is denoted as Dui(σ ). Similarly,
we can get the definitions ofMu,j(σ ), Du,j(σ ),Mui,j(σ ) and
Dui,j(σ ) of a local site.
Definition 8: A cycle dj,1 → dj,2 → · · · → dj,n → dj,1

in a dual verifier of a local site j is called a confused cycle if
dj,i = ((M+

bi,j, 0), (M
−

bi,j, 1)) for all i = 1, . . . , n.
A centralized system is diagnosable if and only if there is

no confused cycle in its dual verifier [29]. Similarly, we can
get a theorem that a local site is diagnosable about the fault
marking set F .
Theorem 1: Given a labeled Petri net G = (N ,M0,E, ℓ)

monitored by a set J = {1, 2, . . . , J} of local sites with a set
of faulty markings F = L(w,k), a local site j is diagnosable
w.r.t. to F if and only if there are no confused cycles in the
corresponding dual verifier Dj = (Dj,Ej, δj, d0).

IV. DECENTRALIZED MARKING FAULT DIAGNOSIS
PROTOCOLS AND DIAGNOSABILITY ANALYSIS
In this section, two protocols are presented to solve the mark-
ing fault diagnosis problem in a decentralized setting. Then,
the diagnosability of the two protocols are analyzed.

A. MARKING FAULT DIAGNOSIS PROTOCOLS
The diagnosis state is defined as a function A : L(D) →

{A,N ,F}, where L(D) = {ω ∈ E∗
| d ∈ D : (d0, ω, d) ∈

δ∗
}. Given an observation ω ∈ L(D), the corresponding

diagnosis states are as follows:

A(ω) =


A, if the corresponding path of ω has a confused
cycle
N , if all corresponding paths of ω do not pass F
F, if all corresponding paths of ω pass F .

Similarly, the diagnosis state for a local site j ∈ J is
defined as a function Aj : L(Dj) → {A,N ,F}, where
L(Dj) = {ωj ∈ E∗

j | d ∈ D : (d0, ωj, d) ∈ δ∗
j }. Given an

observation ω ∈ L(Dj), the corresponding diagnosis states
are as follows:

Aj(ωj) =


A, if the corresponding path of ωj has a confused
cycle
N , if all corresponding paths of ωj do not pass F
F, if all corresponding paths of ωj pass F .

Proposition 3: In a labeled Petri net G = (N ,M0,E, ℓ),
given a fired transition sequence σ at M0, for each local site
j ∈ J , there exists Du(σ ) ⊆ Du,j(σ ).

Proof: For each local site j ∈ J , there exists T+
u ⊆ T+

u,j
and T−

u ⊆ T−

u,j in T
+

E,j ⊆ T+

E and T−

E,j ⊆ T−

E . According to
Definition 7, we can know that Mu(σ ) ⊆ Mu,j(σ ). Then,
we can infer that Du(σ ) ⊆ Du,j(σ ).
The following proposition is the rule by which the coordi-

nator determines whether the system is normal based on the
information from the local sites.
Proposition 4: Given a labeled Petri netG = (N ,M0,E, ℓ),

considering the words ω ∈ L(G) observed at M0, if there
exists a local site j ∈ J whose diagnosis state isAj(ωj) = N ,
then the diagnosis state of the system is A(ω) = N .

Proof: If there is a local site j ∈ J whose diagnosis state
isAj(ωj) = N , then according to the definition ofA(ω), it has
no confused cycles in its dual verifier and none of its paths are
passed faulty markings. According to the Proposition 3, there
are also no confused cycles in the dual verifier of the system
and none of the paths are passed faulty markings. Therefore,
the diagnosis state of the system is A(ω) = N .

In Protocol 1, after a new transition t ∈ To,j fires, each
local site j ∈ J receives an observable event associated with
this transition. Then, each site computes the corresponding
positive BRG B+

j , negative BRG B−

j and dual verifier Dj.
If there exists a confused cycle in Dj, the site j ∈ J sends
Aj(ωj) = A to the coordinator. If no confused cycle exists
in Dj, the site j ∈ J sends F to the coordinator when
(γ +

j , γ −

j ) = (1, 1), otherwise the site j sends N. If there is
an confused cycle in the local site j ∈ J , then there is also a
confused cycle in the system. Therefore, we cannot determine
whether a fault has occurred, and the coordinator updates the
diagnosis state to A(ω) = A. If the local site j ∈ J detects a
fault, then the system is faulty and the coordinator updates the
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Algorithm 1 Protocol
Input: A labeled Petri net G = (N ,M0,E, ℓ) and a set of

faulty markings F .
Output: A(ω).
1: Wait until a new observable transition t ∈ To fires;
2: Steps performed by each site j ∈ J :
3: Let ω′

j := ωj and ωj := ω′
jℓj(t);

4: Site j computes the positive BRG B+

j and the negative
BRG B−

j ;
5: Site j computes the dual verifier Dj;
6: if there exist confused cycles in Dj then
7: Site j transmits Aj(ωj) = A to the coordinator;
8: end if
9: if there are no confused cycles in Dj then
10: if (γ +

j , γ −

j ) = (1, 1) then
11: Site j transmits Aj(ωj) = F to the coordinator;
12: else
13: Site j transmits Aj(ωj) = N to the coordinator;
14: end if
15: end if
16: Steps performed by the coordinator:
17: if Aj(ωj) = A then
18: Outputs A(ω) = A, terminates the algorithm;
19: end if
20: if Aj(ωj) = F then
21: Outputs A(ω) = F ;
22: end if
23: if Aj(ωj) = N then
24: Outputs A(ω) = N , go to Step 1.
25: end if

FIGURE 2. A labeled Petri net.

diagnosis state to A(ω) = F . If the behavior of the local site
j ∈ J is normal, then so is the system, and the coordinator
updates the diagnosis state to A(ω) = N . In this case, the
algorithm goes to step 1 and continues to wait for a new event
to occur.
Example 1: Consider the labeled Petri net with a set of

faulty markings F = L(w,k) = {M ∈ N6
|M (p2)+2M (p3) ≥

3} in Fig. 2, where w = [0, −1, −2, 0, 0, 0]T , k = −3.
Assume that the sets of the positive explicit transitions and the
negative explicit transitions of the site 1 (resp., 2) are T+

E,1 =

{t1, t3, t4} and T
−

E,1 = {t1, t2} (resp., T
+

E,2 = {t3, t4, t6} and
T−

E,2 = {t1, t2, t6}). The positive basis markings of the site
1 are M+

0 = [2, 0, 0, 0, 0, 0]T , M+

1 = [1, 1, 0, 0, 0, 0]T ,

FIGURE 3. The positive BRG B+

1 of the local site 1. The faulty arcs are
marked by dashed arcs.

FIGURE 4. The negative BRG B−

1 of the local site 1. The dashed boxs
denote the fault markings.

FIGURE 5. Part of the dual verifier of the local site 1.

FIGURE 6. The positive BRG B+

2 of the local site 2.

M+

2 = [0, 2, 0, 0, 0, 0]T , M+

3 = [1, 0, 0, 1, 0, 0]T , M+

4 =

[0, 1, 0, 1, 0, 0]T , M+

5 = [0, 0, 0, 2, 0, 0]T . The negative
basis markings of the site 1 are M−

0 = [2, 0, 0, 0, 0,
0]T , M−

1 = [1, 1, 0, 0, 0, 0]T , M−

2 = [0, 2, 0, 0, 0, 0]T ,
M−

3 = [1, 0, 1, 0, 0, 0]T , M−

4 = [0, 1, 1, 0, 0, 0]T , M−

5 =

[0, 0, 2, 0, 0, 0]T , M−

6 = [0, 1, 0, 1, 0, 0]T , M−

7 =

[0, 0, 1, 1, 0, 0]T . The positive basis markings of the site
2 are M+

0 = [2, 0, 0, 0, 0, 0]T , M+

1 = [1, 0, 0, 1, 0, 0]T ,
M+

2 = [0, 0, 0, 2, 0, 0]T , M+

3 = [1, 0, 0, 0, 0, 1]T , M+

4 =

[0, 0, 0, 1, 0, 1]T , M+

5 = [0, 0, 0, 0, 0, 2]T . The negative
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FIGURE 7. The negative BRG B−

2 of the local site 2.

FIGURE 8. Part of the dual verifier of the local site 2.

basis markings of the site 2 are M−

0 = [2, 0, 0, 0, 0, 0]T ,
M−

1 = [1, 1, 0, 0, 0, 0]T , M−

2 = [0, 2, 0, 0, 0, 0]T ,
M−

3 = [1, 0, 1, 0, 0, 0]T , M−

4 = [0, 1, 1, 0, 0, 0]T ,
M−

5 = [1, 0, 0, 0, 0, 1]T , M−

6 = [0, 0, 2, 0, 0, 0]T ,
M−

7 = [0, 1, 0, 0, 0, 1]T , M−

8 = [0, 0, 1, 0, 0, 1]T ,
M−

9 = [0, 0, 0, 1, 0, 1]T , M−

10 = [0, 0, 0, 0, 0, 2]T ,
M−

11 = [0, 1, 0, 1, 0, 0]T ,M−

12 = [0, 0, 1, 1, 0, 0]T . There are
25 states in the dual verifier of the site 1. Fig. 5 only shows
part of it. There are 66 states in the dual verifier of the site 2,
and Fig. 8 only shows part of it.
The dual verifier of the site 1 has a path ((M+

2 , 0), (M−

4 , 1))
ε
−→ ((M+

4 , 0), (M−

4 , 1))
ε
−→ ((M+

4 , 0), (M−

5 , 1))
a
−→ ((M+

2 , 0),
(M−

4 , 1)) that is a confused cycle, then the system cannot
detect the faults. The dual verifier of the site 2 has no confused
cycles, and the system can determine some faulty markings.
Finally, the faults can only be determined by the site 2.
It is worth noting that when the diagnosis state of the

coordinator by using Protocol 1 is A(ω) = A, the centralized
diagnosis state is F , indicating that the capability of marking
fault diagnosis in a decentralized setting under Protocol 1 is
weaker than that in a centralized setting. Therefore, we pro-
pose Protocol 2 to further improve the diagnosis capability of
marking fault diagnosis in a decentralized setting.
In Protocol 2, after a new transition t ∈ To,j fires, each

local site j ∈ J receives an observable event associated with
this transition. Then, each site computes the corresponding

Algorithm 2 Protocol
Input: A labeled Petri net G = (N ,M0,E, ℓ) and a set of

faulty markings F .
Output: A(ω).
1: Wait until a new observable transition t ∈ To fires;
2: Steps performed by each site j ∈ J :
3: Let ω′

j := ωj and ωj := ω′
jℓj(t);

4: Site j computes the positive BRG B+

j and the negative
BRG B−

j ;
5: Site j computes the dual verifier Dj;
6: if there exist confused cycles in Dj then
7: Site j transmits Aj(ωj) = A, Y+

min,j(M , t) and
Y−

min,j(M , t) to the coordinator;
8: end if
9: if there are no confused cycles in Dj then
10: if (γ +

j , γ −

j ) = (1, 1) then
11: Site j transmits Aj(ωj) = F to the coordinator;
12: else
13: Site j transmits Aj(ωj) = N to the coordinator;
14: end if
15: end if
16: Steps performed by the coordinator:
17: if Aj(ωj) = A then
18: if the transition t is observable for system but unob-

servable for the local site j ∈ J or the transitions in
Y+

min,j(M , t) or Y−

min,j(M , t) are observable for system but
unobservable for the local site j ∈ J then

19: Delete the corresponding arcs, go to Step 1;
20: else
21: Outputs A(ω) = A, terminates the algorithm;
22: end if
23: end if
24: if Aj(ωj) = F then
25: Outputs A(ω) = F ;
26: end if
27: if Aj(ωj) = N then
28: Outputs A(ω) = N , go to Step 1.
29: end if

positive BRG B+

j , negative BRG B
−

j and dual verifier Dj. If
there exists a confused cycle in Dj, the site j ∈ J sends
Aj(ωj) = A, Y+

min,j(M , t) and Y−

min,j(M , t) to the coordinator.
If no confused cycle exists in Dj, the site j ∈ J sends F to
the coordinator when (γ +

j , γ −

j ) = (1, 1), otherwise the site j
sends N. If there is a confused cycle in the local site j ∈ J ,
the coordinator determines whether the fired transition t and
transitions in Y+

min,j(M , t) and Y−

min,j(M , t) are observable for
the system but unobservable for the site j ∈ J . If there is such
a transition, then the coordinator deletes the corresponding
arcs inDj and the algorithm goes to step 1. If there is no such
a transition, then there is also a confused cycle in the system.
Therefore, the system is undiagnosable, and the coordinator
updates the diagnosis state to A(ω) = A. If the behavior of
the local site j ∈ J is normal, then so is the system, and the
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coordinator updates the diagnosis state to A(ω) = N . In this
case, the algorithm goes to step 1 and continues to wait for a
new event to occur.
Example 2: Consider the labeled Petri net with a set of

faulty markings F = L(w,k) = {M ∈ N6
| M (p2) +

2M (p3) ≥ 3} in Fig. 2 again. The assumptions are the
same as Example. 1. The dual verifier of the site 1 that is
not processed by Protocol 2 is shown in Fig. 5. The dual
verifier of the site 2 that is not processed by Protocol 2
is shown in Fig. 8. The dual verifier of the site 1 has
a path ((M+

2 , 0), (M−

4 , 1))
ε
−→ ((M+

4 , 0), (M−

4 , 1))
ε
−→

((M+

4 , 0), (M−

5 , 1))
a
−→ ((M+

2 , 0), (M−

4 , 1)) that is a con-
fused cycle. Since the minimal explanation vectors of
the fired transition t1 in the path ((M+

4 , 0), (M−

5 , 1))
a
−→

((M+

2 , 0), (M−

4 , 1)) contain the transition t6 which is observ-
able for the system but unobservable for the site 1, according
to Protocol 2, the corresponding arc is deleted. Simi-
larly, such arcs in confused cycles ((M+

2 , 0), (M−

4 , 1))
ε
−→

((M+

2 , 0), (M−

5 , 1))
ε
−→ ((M+

4 , 0), (M−

5 , 1))
a
−→ ((M+

2 , 0), (
M−

4 , 1)) and ((M+

4 , 0), (M−

4 , 1))
a
−→ ((M+

5 , 0), (M−

5 , 1))
a
−→

((M+

4 , 0), (M−

4 , 1)) are deleted. Then, the faultymarkings can
be detected. The dual verifier of the site 2 has no confused
cycles, and the system can determine some faulty markings.

In Protocols 1 and 2, when each local site j ∈ J computes
positive and negative BRGs, in the worst case, if all transi-
tions in the Petri net belong to the explicit transitions set,
the computational complexity is the same as the complexity
of constructing reachable graphs. For a positive BRG and
negative BRG with |M1| and |M2| basis markings of each
local site j ∈ J , the dual verifier of the site j has at most
2 · |M1| · |M2| states. The complexity of constructing the
dual verifier of each site j is O(|M1| · |M2|). Since the two
protocols simply exchange information between the sites and
the coordinator, the complexity of each diagnosis protocol is
the same as the complexity of constructing the dual verifier.

B. DIAGNOSABILITY ANALYSIS
By using Protocol 1, we prove a sufficient condition for the
system to realize marking fault diagnosis in a decentralized
setting, which is proved below.
Proposition 5: Given a labeled Petri netG = (N ,M0,E, ℓ)

with faulty markings F = L(w,k) supervised by a set J =

{1, 2, . . . , J} of local sites. According to Protocol 1, if the
site j ∈ J is diagnosable, then the decentralized system is
diagnosable.

Proof: According to Theorem 1, the site j is diagnosable
w.r.t. F if its dual verifier does not contain any confused
cycles. Therefore, it is only necessary to prove that there are
no confused cycles in the dual verifier Dj of any local sites,
then there are no confused cycles in the dual verifierD of the
system. If the site j ∈ J is diagnosable, there are no confused
cycles in its dual verifier Dj. According to Proposition 3,
Mui(σ ) ⊆ Mui,j(σ ) and DF ⊆ DF,j. Therefore, if there
are no confused cycles in the dual verifier Dj of sites, there
are no confused cycles in the system. That is, the system is
diagnosable.

We prove a sufficient and necessary condition for marking
fault diagnosis in a decentralized architecture by applying
Protocol 2. The following proposition proves diagnosability
regarding Protocol 2.
Proposition 6: Given a labeled Petri netG = (N ,M0,E, ℓ)

with faulty markings F = L(w,k) supervised by a set J =

{1, 2, . . . , J} of local sites. The system is diagnosable, if and
only if any one site is diagnosable by Protocol 2.

Proof: According to Theorem 4.1 in [29], the labeled
Petri net is diagnosable if its dual verifier does not contain
any confused cycles. Therefore, it is only necessary to prove
that there are no confused cycles in the dual verifier of the
system, if and only if there are no confused cycles in the dual
verifier of any sites.
If : The proof is the same as that of Proposition 5.
Only if : If the system is diagnosable, there are no confused

cycles in its dual verifierD. If the fault markingsMf ∈ F are
present in the positive and negative BRGs, the corresponding
tag (γ + or γ −) in the dual verifier changes from 0 to 1. Since
Tp,j = Tp and Tn,j = Tn, if a fault occurs, both the system
and the sites can reach state (1,1). Since there are no confused
cycles in the dual verifier D of the system, the dual verifier
Dj of the local site j also has no confused cycles for the part
of the system corresponding to the state (1,1). In Protocol 2,
if there are confused cycles in the dual verifier Dj of the site
j, but there are transitions in fired transition sequence or the
minimal explanation vectors set of the sequence in confused
cycles are observable for the system but unobservable for
some sites, then the corresponding arcs are deleted. Thus, the
dual verifier of each site j does not contain confused cycles.
The decentralized system is diagnosable by Protocol 2.
In Protocol 1, the local sites only send diagnosis states to

the coordinator and receive no information from the coordi-
nator when calculating diagnosis states. Thus, the existence
of no confused cycles is a necessary condition for the diag-
nosability of decentralized systems. In Protocol 2, the local
sites do not only send diagnosis states to the coordinator,
but also send the minimal explanation vectors of the fired
transition sequence when there are confused cycles. Then
they generate new diagnosis states according to the feedback
information of the coordinator. Therefore, we can determine
whether the decentralized system is diagnosable even if there
is an confused cycle in the local site.

V. EXAMPLE
A labeled Petri net describing the process in logistics sorting
system is depicted in Fig. 9.

Tokens in place p1 mean that the logistics center is ready
to sort packages. Transitions t1 − t3 are the operations before
sorting. Transitions t4 − t6 describe the process of manually
scanning the code into the system of small packages and
other packages that are not convenient to use conveyor belts.
Transitions t7−t10 denote the process of scanning information
of other packages transported to the package supply station
through the conveyor belt. Transition t11 indicates the gate to
which the system confirms the package should be shipped.
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FIGURE 9. A labeled Petri net describing the process in logistics sorting
system.

TABLE 1. The place meaning of labeled Petri net model of process in
logistics sorting system.

Transitions t12 − t15 represent the process of two sorting
lines moving packages to the correct grid and sealing the
bags. Transitions t16 − t19 represent the process of scanning
packages, loading vehicles, and notifying the arrival of new
goods. The place meaning of labeled Petri net model of
process in logistics sorting system is shown in Table 1. The
transition meaning of labeled Petri net model of process in
logistics sorting system is shown in Table 2. Each grid has a
maximum capacity of two tokens. In the sorting process, if the
number of tokens of the grid (p12, p14) is greater than or equal
to 2, the faults have occurred. The set of faulty markings of
this system is F = {M | M (p12) ≥ 2 or M (p14) ≥ 2}. The
set of observable transitions is To = {t6, t10, t11, t16}. There
are four sensors in the system that can observe the signal
change and output the symbols a, b, c, d . The set of labels
of observable events is E = {a, b, c, d}. Site 1 communicates
with the corresponding sensors to observe the output of labels
a, c, d . Site 2 communicates with the corresponding sensors
to observe the output of labels b, d .
The set of observable transitions of site 1 is To,1 =

{t6, t10, t16}, where the set of positive explicit transitions is
T+

E,1 = {t6, t10, t13, t15, t16}, and the set of negative explicit
transitions is T−

E,1 = {t6, t10, t12, t14, t16}. The dual verifier
has 119 states, and does not contain confused cycles. Finally,

TABLE 2. The transition meaning of labeled Petri net model of process in
logistics sorting system.

it can arrive the state ((M+

3 , 1), (M−

8 , 1)) that is tagged by
double 1, and faults can be detected.

The set of observable transitions of site 2 is To,2 =

{t11, t16}, where the set of positive explicit transitions is
T+

E,2 = {t11, t13, t15, t16}, and the set of negative explicit
transitions is T−

E,2 = {t6, t10, t12, t14, t16}. The dual verifier
has 119 states, and does not contain confused cycles. Finally,
it can arrive the state ((M+

4 , 1), (M−

8 , 1)) that is tagged by
double 1, and faults can be detected.

According to Protocol 1, there are no confused cycles in
the dual verifiers of the two local sites, (γ +

1 , γ −

1 ) = (1, 1) and
(γ +

2 , γ −

2 ) = (1, 1). The two sites all send the diagnosis state
Aj(ωj) = F to the coordinator. The faulty markings can be
detected. By Protocol 2, site 1 reaches the state (γ +

1 , γ −

1 ) =

(1, 1), and site 2 reaches the state (γ +

2 , γ −

2 ) = (1, 1). The dual
verifiers of the two local sites have no confused cycles, then
they send the diagnosis state Aj(ωj) = F to the coordinator.
The faulty markings can also be detected.

VI. CONCLUSION
In this paper, a new diagnosis strategy in the decentralized
setting is proposed. We extend the centralized marking fault
diagnosis method proposed in [29] to the decentralized set-
ting. In order to achieve this, two protocols executed by a set
of local sites and a coordinator are proposed. Under the first
protocol, the coordinator simply accepts the diagnosis states
sent by the local sites. Applying Protocol 2, the coordinator
makes global decisions by the diagnosis states and informa-
tion sent by the local sites. Therefore, Protocol 2 has better
diagnosis capability than Protocol 1. Future work will focus
on on-line marking fault diagnosis.
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