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ABSTRACT Emerging Internet of Things (IoT) technologies and applications have enabled the Smart Grid
Utility control center to connect, monitor, control, and exchange data between the smart appliances, smart
meters (SMs), data concentrators (DCs) and control center server (CCS) over the Internet. In particular,
DC receives different Advanced Metering Infrastructure (AMI) applications data from multiple SMs for
processing, queuing, aggregation, and forwarding onward towards the CCS over the things networking.
However, DCs are expensive component of the AMI network. Recently, SMs are used as relay-devices to
accomplish a cost-effective AMI network infrastructure to avoid the DC placement and bottleneck problem.
However, SMs are recourse constrained (limited CPU, RAM, storage, and network capacity) intelligent
devices which faces numerous communication challenges during outage conditions and summer peak hours
where bulk amount of data with different traffic rates and latency are exchanged with the Utility control
center. Therefore, an efficient data aggregation is required at relay-devices to deal with high volume of data
exchange rates in order to optimize the constrained-resources of the AMI network. In this article, we propose
a hybrid data aggregation strategy implemented on an aggregator-head (AH) in the clustering topology
which performs data aggregation on the Interval Meter Reading (IMR) application data. AH induction
greatly reduces the workload of the cluster-heads (CHs), and efficiently utilizes the constrained-resource of
AMI devices in a cost effective-manner. The proposed strategy is evaluated for different existing approaches
using the CloudSim simulation tool. Experimental and simulation results are obtained and compared which
show the effectiveness of the proposed strategy such that limited resources are optimized, CH workload is
minimized, and QoS of AMI applications are maintained.

INDEX TERMS Advanced metering infrastructure, data concentrator, data aggregation, interval meter
reading, Internet of Things, quality of service, RESTful APIs, smart grid, smart meter.

I. INTRODUCTION
In recent years, advancement in Information Communica-
tion Technology (ICT) along with intelligent services has
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revolutionized and enabled the Internet to transmit approx-
imately 2.5 quintillion bytes of data per day among dif-
ferent networked environments such as smart homes, smart
city, and Smart Grid. IoT [1], [2], [3] has become an
essential computing technology of Internet which enables
everyday life things (smart devices) to remotely collect
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FIGURE 1. Simplified IoT-enabled AMI network in smart grid.

and transfer data automatically using various communi-
cation technologies without any human intervention. For
example, prominent IoT applications [4], [5] include smart
homes, smart healthcare, smart education, and Smart Grid
etc. Similarly, IoT provides useful applications in Smart
Grid infrastructure [6], [7] such as smart metering, electric
vehicles (EVs) charging, battery, and solar farm monitoring,
remote control, energy theft, billing, pricing rates, and much
more.

In modern Smart Grid, AMI [8], [9] is an essential net-
work part which enables two-way information flow between
consumers and shared pool of power Utility resources e.g.
computing servers, memory, storage, network applications,
and vice-versa. Currently, various useful and innovative AMI
applications are assisting Smart Grid to have a wide range
of services and better remote control in contrast to traditional
electric Grid system. Among these AMI applications, Interval
Meter Reading (IMR) enables each household SM to trans-
fer the electricity consumption readings of few kilobytes at
every fixed time interval usually 15 to 60 minutes in a day,
night, and peak hours in a season to grid operators. These
electricity readings are transferred via the backhaul network
to the Utility CCS for further processing and storage in the
Metering Data Management System (MDMS) [10] which
runs a database application to maintain a master database to
store data of all SMs according to their location, residential
area, and region in a city as depicted in Figure 1. Typically,
a SM supports multiple communication technologies such as
cellular (3G/4G/5G), WiFi, Zigbee, Wi-SUN, and Bluetooth
etc to connect consumers via phone, in-home display (IHD)
screen and laptop to the Utility provider systems. The support
for these communication technologies is mainly based on

the specific SM model and the requirements of a particular
residential region in the Smart Grid infrastructure.

These electricity consumptions provide a clear picture to
the Utility control center for tracking power supply, usage,
demand [11] while the consumers receives real-time accurate
information about their billing and power pricing via text
messages, emails, and IHD screen.

In densely populated residential areas (urban cities) [12],
[13], [14] where thousands to millions of SMs are installed
and deployed in consumer premise e.g., homes, offices, build-
ings, and industrial sites. These SMs generate enormous
amount of traffic in short time towards intermediate devices
(here, DCs) which forwards onward through the backhaul
communication toMDMS server located at the Utility control
center. In such scenarios, the existing AMI network with
constrained network resources especially SMs and DCs with
limited processing, memory and bandwidth (BW) capacity
make it difficult to handle and control the enormous data
collection and sharing with the MDMS server of Utility
control center within a short span of time (recommended
latency). One solution to this problem is to increase the
number of DC devices in the AMI network. However, these
AMI devices are too expensive [15] and increase the overall
AMI infrastructure cost. Moreover, to eliminate the need of
redundant DCs and reduce the network cost, SMs are utilized
to perform as relay-devices at the neighborhood area network
(NAN) level in the AMI network. Since, SMs are resource
constrained [16], [17] in nature, data and traffic handling is a
critical challenge to be solved in AMI networks.

This study extends our past works [18], [19] in order to
minimize the data traffic workload and optimize the limited
resources of cluster-heads (CHs) in the IoT-enabled AMI
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network. We propose an efficient hybrid data aggregation
strategy employed at the aggregator-head (AH) such that the
data aggregation operation of IMR application data is shifted
from CH to AH in each cluster in the NAN topology. The AH
receives periodic electricity consumption (IMR application)
data from the cluster-members, perform data aggregation
using both combining and manipulating method and then
transmit to the corresponding CH. The CH forwards the
aggregated data towards the MDMS server via the DC using
IoT communication technologies. The primary purpose of
the proposed work in this article is to reduce the workload
at the CH level via data aggregation such that congestion
and queue contention is eliminated, desired QoS [20] (e.g.,
latency, throughput, and data’s priority) is maintained in the
AMI network.

In the context of AMI network, following are the signif-
icant contributions of our proposed research work in this
article:

1. We propose a hybrid data aggregation strategy employed
at the AH in clustering topology by developing an effi-
cient algorithm to aggregate the consumption data of
SMs.

2. The functionality of each CH is limited to only traffic
classification, queueing, and relaying AMI applications
data between DC and CCS.

3. We formulate the optimization problem by mathemat-
ical modelling an objective function to optimize the
constrained resources of CHs.

4. Finally, we evaluate and validate the performance accu-
racy of our proposed strategy through experimental and
CloudSim simulations. The obtained results show the
effectiveness of the proposed strategy which success-
fully optimize the limited resources (CPU processing,
memory, and BW) while reducing the traffic load with
QoS guarantee as compared to existing strategies.

The remainder article is organized as follows. In Section II,
we review related research works by focusing on exist-
ing data aggregation strategies in AMI network. Section III
briefly presents the problem definition, formulation of objec-
tive function, and give insight details about the proposed
QoS-aware hybrid data aggregation strategy. Section IV
describes the design, performance evaluation metrics, and
analyze both the experimental and simulation results. Lastly,
we present our concluding remarks and offer some use-
ful future directions for the proposed research area in
Section V.

II. RELATED WORK
In recent past, IoT-enabled AMI network in Smart Grid
has got attention of the research community to revamp its
performance and make it convenient in practice. AMI net-
work faces numerous communication issues such as network
congestion and queuing delays due to limited network capac-
ity in backhaul links and higher arrival rate of traffics at
the intermediate devices. Therefore, managing high volume

of traffics and network congestion in AMI networks have
been extensively studied in literature. One of the solution to
these problems is data aggregation carried out via central-
ized, cluster-based, peer-to-peer, and tree-based techniques.
Hence, data aggregation has been chosen as a modest tactic
in several research articles in the field of AMI network as
follows.

In our recent research works [18], [19] we emphasized on
AMI applications traffic handling with QoS provisioning in
IoT-enabled Smart Grid network coupled with cloud comput-
ing. In [18], SMs (relay-nodes) are clustered using modified
K-Means algorithm to extend the AMI network coverage
such that to eliminate the DC hotspot problem and reduce
additional cost required in the communication network topol-
ogy. Similarly, a hybrid queue scheduling (HQS) scheme is
proposed in [19] for AMI applications traffic in Smart Grid
network. Further, AMI traffic are classified and scheduled
using the priority metrics of these traffics in order to lower
the cost of cloud service and ensure QoS in the Smart Grid
network. However, both works lack to incorporate the data
aggregation method in order to investigate its impact on the
overall AMI network traffic load and resources utilization in
the clustering topology.

The authors in [21] proposed a reliable AMI network
planning solution based on machine learning for residen-
tial grids (urban, rural, and sub-urban) areas. Their work
intend to optimize the data aggregator point (DAP) place-
ment problem employing K-Medoid clustering to assist the
transfer ofmetering data (e.g., voltage profile and power qual-
ity) between the power Utilities and the consumers. Results
show that proposed clustering topology is deployed to ensure
appropriate coverage, network device connectivity, and cost
of network topology is minimized for the NAN zones.

In [22], authors proposed an effective method of smart
metering data aggregation at the concentrator device (data
relay point) in the Smart Grid network topology. The basic
aim was to reduce message transfer size and processing time
at the server end in the network. Simulation results obtained
through ns-3 show that message volume and server utilization
is reduced due to data aggregation in the Smart Grid network.

The research work in [23], proposed an autonomous and
distributed electricity usage data collection mechanism based
on clustering scheme in order to transfer the aggregated
electricity usage data of consumers to the Utility control
center. However, as SMs (relay nodes) have limited resources
capabilities due to which time consuming operations are
shifted from online to offline state. The proposed work
ensures data privacy and integrity of consumers aggregated
consumption data such that the communication overhead is
reduced. However, workload of each CH due to routing and
data aggregation is so heavy i.e. requires traffic handling and
resource optimization.

In [24], authors proposed a secure routing and data aggre-
gation (SRDA) for wireless smart metering networks. The
wireless network is managed via domains each having a
domain controller (here, SM) while intra and inter domain
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proxies are selected by the controller to perform data aggrega-
tion. The proposed work achieve scalability, efficient energy
usages, and provide relative security. However, the trusted
third party (TTP) node and controller requirement in each
domain makes the network architecture complex.

To reduce the number of DAPs installation required in
rural and suburban areas (neighborhood network), authors
proposed [25] a grid-based scheme using corresponding algo-
rithms to minimize the needs of DAPs and eliminate its
impact on relay location such that communication quality
is improved in the wireless network. Similarly, the authors
in [26] investigated the DAP point placement problem in
terms of guaranteeing real-time communication and shorten-
ing latency in the smart metering networks. Their work uses
clustering DAP placement (CDP) approach using K-Means
method to solve the network partitioning problem such that
maximum propagation latency is reduced.

The authors in [27] proposed a novel multi-level data col-
lection trees approach via data aggregation policy at the DC
units (DCUs) i.e. forwarding nodes to handle high volume
of AMI traffic such that network congestion and delays are
eliminated in the AMI network. Further, it guarantee QoS of
Smart Grid applications.

In [28], authors proposed a compression algorithm that
compresses excessive volume of metering data more effi-
ciently which causes congestion and exchange this data with
MDMS server where it is decompressed in the IoT-based
AMI network. However, in this approach decompression
increases the processing time at the server end. The authors
in [29] proposed a secure multidimensional data aggregation
based on Horner rule for multidimensional data. Further,
certificate-based aggregate short signature is used to protect
data leakages and ensure privacy of consumers to overcome
differential attack problem. The proposed approach lowers
the communication overhead and computational cost.

In [30], a power consumption profile model is proposed for
consumers using two level clustering in heterogeneous grid
topology. The local power consumption profiles are drawn
at first level while the global power consumption profiles
are derived at second level which provides efficient pricing
prediction models and helps to identify power consumption
outliers. The proposed model reduces communication and
computational complexity with better accuracy. A genetic
algorithm based routing approach is proposed in [31] for
efficient routing of alarm messages for fault and/or outage
detection and localization in the monitoring electric grid.
The proposed data aggregation method uses both combined
and manipulating method for alarm messages at the sink
level. The proposed method enhances to receive redundant
messages from sensors and reduces network congestion at the
sink. The work proposed in [32] investigate the limited capa-
bilities of electric meters and network as AMI architectural
problem. The authors proposed a hierarchical multi-tiered
agent based AMI design using fog computing in order to
achieve scalability and real-time performance for periodic

and on-demand metering data in the distributed Smart Grid.
The proposed three-tier architecture accommodates Local
Meter Concentrator (LMC) fog node at tier-1, Transformer
Station Concentrator (TSC) fog node at tier-2 that has area
specific functionality, while the fog node at tier-3 named as
Metering Data Collection (MDC). The performance analysis
validates the data acquisition, availability, and communica-
tion in one year pilot project. Data aggregation is one of the
approaches to preserve the privacy of electricity consumer’s
data. A comprehensive review has been presented in [33]
based on different aggregation schemes using different cryp-
tographic techniques to preserver privacy of consumptions
data in AMI network. The survey highlighted open research
issues of privacy challenges in Smart Grid.

The authors in [34] addressed the constraints of routing
and AMI traffic flow demands at the network layer for smart
metering in wireless heterogeneous networks (WHNs). They
used the column generation approach to provide scalable
solution to the optimization problem called capacitated mul-
ticommodity flow for AMI (CMCF-AMI) such that more
SMs are covered, infrastructure cost of NAN is reduced,
and capacity constraint of short range wireless technology is
solved via multi-hop fashion in the wireless mesh network.
In themulti-hop routing tree, the SMs data is aggregated at the
DAPs which are connected via base station to communicate
with the Utility using cellular network.

In [35], the authors proposed a heuristic model based
on evolved network architecture that consider various
aspects of WHN. The proposed optimization model utilizes
geo-reference model consist of elements such as base station,
group of residential SMs, and universal DAPs connected via
LTE cellular network to the Utility provider systems. Results
show that the optimization model achieves the target SMs
coverage considering the transmission range and network
capacity of the communication technology andminimizes the
cost of resources by efficient resource utilization in theWHN.

The authors in [36] have proposed a novel algorithm for
smart metering data of electricity, gas, and water meters at
specific time interval exchanged with the Utility provider.
The proposed method optimizes the resource efficiency in
the cognitive mobile virtual network operator (C-MVNO)
through opportunistic channel allocation and/or secondary
channels and virtualization for smart metering in order to
ensure coverage with lower maintenance and deployment
cost.

The authors in [37] proposed a new approach based on
network partitioning technique to tackle the multi-controller
placement problem in software-defined network (SDN).
An optimized K-Means method is applied to partition the net-
work into sub-networks. As compared to regular K-Means,
the proposed optimized technique significantly reduces the
response latency between switches and centroids. Further,
objectives like load balancing, reliability, and energy saving
can be achieved which greatly minimize complexity in the
SDN.
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In [38], authors proposed a smart energy meter based
on LoRaWAN technology (SEM-LoRaWAN) to collect the
energy consumption of a photovoltaic (PV) system and trans-
mit the real-time data to IoT-enabled consumer/Utility for
billing and monitoring. The proposed technology monitors
related parameters such as current, voltage, energy, tem-
perature, light intensity, and humidity of PV system and
exchange these information via LoRaWAN gateway to the
cloud-enabled IoT server which can be accessed via web
and mobile applications. Results show the efficacy of the
proposed system in terms of accurate energy consumption
measurement and monitoring the environmental conditions
of PV system in real-time.

The authors in [39] proposed an IoT and SM data pro-
cessing framework based on Edge-Fog-Cloud computing
environment in order to extract meaningful patterns from
metering data to monitor and control the SMs, IoT appli-
ances, and develop applications for consumers, prosumers,
aggregators, retailors, and grid operators. The computational
and processing applications are distributed among the Edge,
Fog, and Cloud layers such that the communication latency,
response time, resource utilization, and load are minimized.
The data is exchanged via MQTT (message queuing teleme-
try transport) messages between the edge nodes (DC node)
and cloud nodes. Simulation results obtained show better
performance as compared to other methods.

In the aforementioned discussion, various network models
such as clustering ([18], [19], [21], [23], [26], [30], [31],
[37]), star ([22], [25], [36], [38]), tree-based ([27], [28], [34]),
and hierarchical ([24], [29], [32], [39]) were proposed for
AMI network design problem using different data aggrega-
tion and data collection techniques as needed for different
AMI applications data. In particular, cluster-based network
topology uses CH (here, SM and/or DCs) for data collec-
tion, processing, data aggregation, and relaying purposes
in the AMI network. As these relay-devices are resource
constrained and there is a need of an efficient data aggre-
gation strategy to minimize their workload, optimize limited
resources (CPU, RAM, and BW etc), avoid network conges-
tion that leads to hotspot, and ensure QoS-provisioning for
latency bounded AMI applications data in the IoT-enabled
AMI network. Table 1 presents insight review of recent
research works with intended objectives regarding the net-
work topology for AMI design, aggregation approaches for
different AMI applications data which are closely related
to our proposed data aggregation strategy for intended IMR
application data in this article.

III. PROBLEM FORMULATION AND METHODOLOGY
Existing schemes in literature have employed different clus-
tering architecture ([18], [19], [21], [23], [26], [30], [31]) to
group SMs and DCs into clusters with designated CH (SM)
which performs similar functionality of allocating resources
to cluster members as DC do in a NAN topology as shown
in Figure 2. However, SM as relay-device has less resources
(4)-12 KB RAM, 16 MHz CPU, 64 KB-1MB Flash mem-

ory, and leased network capacity) [40], [41]. For example
in certain AMI scenarios, AMI applications (SMs) gener-
ate heavy traffic rates towards corresponding CHs. If traffic
arrival rates exceeds (i.e. more data arrives than CH can
handle) at the output capacity link (i.e. BW), data will wait
longer in queues for their turn or being dropped if no free
buffers (RAM) available. Similarly, longer waiting times (i.e.
queueing delay) at output link increases queue contention and
congestion level at CHs leads to hotspot(s). Moreover, end-
to-end latency of AMI applications traffic must be fulfilled
to maintain QoS requirements in the AMI network. It implies
that reducing average nodal delay (CH delay) during data
transmission is a critical parameter in order to achieve fair-
ness, QoS, and throughput in delay-intensive AMI network.
Mathematically the nodal delay (DCH ) can be expressed as
below.

DCH
= DQueue + Dproc + Dagg ∗ NSM + Dtran + Dprop ∗ hDC

(1)

where, CH delay is denoted as DCH that mainly con-
sists of queueing delay (DQueue), processing delay (Dproc),
aggergation delay (Dagg), transmassion delay (Dtran), and
propagation delay (Dprop) which occurs for one hop (hDC )
transmission towards the DC. Specifically, Dagg denotes the
aggregation delay for each CH to perform data aggregation
on the IMR application data received from the total cluster-
members (NSM ) which heavily depends on the employed
aggregation technique. Among these, DQueue is a direct func-
tion of network congestion which occurs inM/M/1model due
to low capacity of the backhaul network and can be computed
in Eq. (2).

DQueue =
PktSize
BW

∗ N (2)

where, PktSize is the packet size in bytes, BW is the allocated
BW in bps, and N represents the average packets queued-in
and can be expressed as follows:

N =
ρ

1− ρ
(3)

where, ρ is the probability that the server is working i.e.
server utilization of queuing system and can be expressed
in Eq. (4).

ρ =
λCH

µCH
(4)

where, λCH denotes the packet arrival rate (Poisson distri-
bution) and µCH represents the service rate (Exponential
distribution) at the CH. In the context of AMI networks,
cloud-based control centers plays a crucial role and provides
insights about the important optimization system parameters
like λCH and µCH which determines the overall behavior
(efficiency and stability) of a queueing system in terms
of queue length and average waiting time. For example,
if (ρ< 1), then the server capacity utilization is low (under-
utilized), when (ρ> 1), then the server utilization is high
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TABLE 1. Summary: comparison of state of the art studies against the proposed work for different AMI applications.

(overutilized) and if (ρ = 1) indicates that the server is
utilized at its full capacity (also called critical point in the
queuing theory).

Motivated by the aforementioned discussion, it is impera-
tive to tackle the issues associated with resource constrained
CHs in cluster-based NAN topology in AMI networks such
that number of transmission towards CHs are reduced, work-
load is fairly distributed, throughput is increased, constrained
resources are optimized, and QoS of diverse AMI applica-
tions are ensured. The notations used onward in the article
are described in Table 2.

To solve the optimization problem, the main objective is
to efficiently utilize and allocate the limited resources of
CHs i.e. to find an optimal solution for each cluster in the
NAN topology. Therefore, the optimization problem becomes
a minimization problem of the requested resources usage at
the CH which can be formulated as an objective function in

Eq. (5) as follows:

Minimize
K∑
k=1

NSM∑
i=1

(CHCPUCCHRAM + CHBW )ki (5)

Subject to the following constraints :
K⋃
i=1

Ci = NAN (5a)

K∑
k=1

NSM∑
i=1

SM k
i,j = 1 (5b)

K∑
k=1

NSM∑
i=1

SM k
i,j.λi ≤ µj (5c)

K∑
k=1

NSM∑
i=1

SM k
i,j.rCPU < CHCPU (5d)
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FIGURE 2. Schematic diagram of cluster-based network model [18].

TABLE 2. Notations used in the proposed research methodology.

K∑
k=1

NSM∑
i=1

SM k
i,j.rRAM < CHRAM (5e)

λagg < λCH (5f)

The objective function in Eq. (5) intends to optimize
the constrained resources of the CH represented as sum
of utilized CPU, RAM, and BW that are the attributes of
the objective function and are subject to the constraints in
Eq. (5a)-(5e). Eq. (5a) indicates that the entire NAN is
partitioned into clusters (CK ). Eq. (5b) ensures that cluster
members are exclusively connected to one CH and/or AH.
Next, Eq. (5c) assures that the average traffic arrival rate λi
from cluster members is less than the offered service rate µj
(i.e. network capacity constraint) of the CH. Eq. (5d)-(5e)
satisfy that the resource requirements of all AMI applications
traffic must be lower than the CH resource capacity i.e. CPU
and RAM. Finally, Eq. (5f) indicates that the data aggregation
traffic (λagg) is shifted fromCH towards AHwhich lowers the
traffic arrival rates λCH at the CH, Where, λagg represents the
IMR applications data arrived for data aggregation at the AH
that can be expressed in Eq. (6) as:

λagg =

K∑
k=1

NSM∑
i=1

(PS + HS)ki,j + (

∑K
k=1

∑NSM
i=1 PS

k
i,j

NSM
+ HS i)

(6)

Moreover,
∑K

k=1
∑NSM

i=1 (PS + HS)ki,j presents the total
IMR applications packets arrived from the cluster members
(NSM ) at a fixed time interval towards the AH and λagg =∑K

k=1
∑NSM

i=1 PSki,j
NSM

+HS i denotes the aggregated packet using the
aggregation technique forwarded from AH to CH. Similarly,
λCH denotes the total traffic arrival from AMI applications
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generated from cluster members and can be computed as:

λCH =

K∑
k=1

NSM∑
i=1

µCH (1− poCH )+ λagg (7)

whereas, µCH can be computed as follows:

µCH =
BWCH∑K

k=1
∑NSM

i=1 PktSizei,k
(8)

where, BWCH represents the network capacity of CH and∑K
k=1

∑NSM
i=1 PktSizei,k are the total arriving packets at the

CH.
From Eqs. (5)-(8), we notice that the overall resource

utilization of CH must be minimized i.e. considered as
an optimization problem while ensuring all the constraints
(Eq. (5a)-(5f)). Therefore, we propose a QoS-aware hybrid
data aggregation strategy for IMR applications data (energy
consumption) to find a best solution for the optimization
problem.

Next, we outline the basic network model, traffic classifi-
cation and the proposed hybrid data aggregation strategy in
this article.

A. NETWORK MODEL
We adopt the same AMI architecture from [18] which
is a three-tier framework consists of lower, middle, and
upper-tier in the AMI communication network in Smart Grid
as depicted in Figure 2. The lower-tier (i.e. NAN) consists
of georeferenced IoT-enabled SMs which are grouped into
K clusters using modified K-Means algorithm based on dis-
tance criteria. In each cluster, centroid is designated as CH
which performs traffic classification and forwarding between
cluster-members and DC. An AH is selected in each cluster
alongside CH which perform data aggregation on periodic
IMR applications data. We mainly focus in this article to
implement an optimal hybrid data aggregation strategy which
will extend the work of the existing clustering topology at
the NAN level. The middle-tier includes DC and backhaul
network. The upper-tier consists of the Utility CCS (appli-
cation server, web server, and MDMS server) connected
via a gateway (central router) using the backhaul network
to the residential DC. The communication medium used
at the lower-tier is generally Wi-SUN [42], while the DC
and gateway generally uses the LoRaWAN [43] as back-
haul communication technology for AMI applications traffic.
Moreover, cloud computing approach is adopted at the Utility
control center coupled with IoT services at the three-tier of
the AMI deployment network. We incorporate the following
few assumptions in the cluster-based network model:

i) All SMs have the same functionality and resources
capacity (transmission range, storage, RAM,CPU, and
BW so on).

ii) All communication devices are trustworthy i.e. uses
IPSec protocol.

iii) Each SM is pre-programmed to transmit their electric-
ity consumption to AH.

iv) Aggregation of IMR applications data results into one
aggregated packet.

B. TRAFFIC CLASSIFICATION
AMI network has a diverse set of AMI applications traffic
types in Smart Grid network. These traffic types are classified
based on their QoS characteristics (latency, BW, and reliabil-
ity) as tabulated in Table 3 above.

The AMI applications traffic types (deterministic and
event-driven) can be classified into three traffic classes based
on their latency requirements as follows:

i) Periodic: Traffic generated from IMR application is
scheduled at regular time interval (15-to-60 minutes)
corresponds to this class. These traffics can tolerate a
delay up to a few minutes during transmission.

ii) On-demand: These type of traffics are generated on
demand both from electricity consumers and Util-
ity control center. On-demand class consists of traf-
fics such as on-demand meter reading (ODMR),
on-demand meter reading response (ODMRR), and
billing information application.

iii) Time-critical: This traffic class includes traffics gen-
erated from remote control commands (RCC), power
control commands (PCC), electric vehicles (EVs)
charging, and alert notifications (AN). These traffics
have higher reliability, BW, and tight latency (real-
time communication) requirements.

Three AMI applications including IMR, ODMR, and
ODMRR are considered in this article. The IoT-enabled SM
generally measures (samples) the electricity consumption
(IMR applications data) triggered automatically at scheduled
time interval (periodic) which depicts the consumer’s load
profile that may be used in demand-response (DR), load
forecasting, and billing info applications. Whereas, ODMR,
and ODMRR is a request-response mechanism for exchange
of electricity load pattern (e.g., minimum, maximum, aver-
age) collected on-demand from residential consumers SM
whenever needed. The amount of electricity consumption of
the consumer can be calculated as a collective electrical load
of the smart appliances and other loads inside the house,
building etc and can be mathematically modelled in Eq. (9)
as follows:

ElectricityCons =
NSM∑
iD1

n∑
a=1

24∑
h=1

kWhah (9)

where, a = 1, . . . ., n denotes the household smart appliances
and kWhah expresses the electricity consumptions in Kilowatt
(kW) per hour (h). The time interval (here, h) is set by the
Utility provider. Terms like energy and electricity while data
and traffic has the same meaning throughout this article.

C. PROPOSED HYBRID DATA AGGREGATION STRATEGY
This section details the proposed QoS-aware hybrid data
aggregation strategy configured at each AH of the NAN
clustering topology for IMR applications traffic. The main
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TABLE 3. Classification of AMI applications traffic [18], [28].

objective in this article is to limit the functionality of the
resource constrained CHs only to processing and relay-
ing AMI applications traffic i.e. CHs will not do any data
aggregation while satisfying the QoS requirements of all
AMI applications in the AMI network. Each Cluster-member
(
∑K

k=1
∑NSM

i=1 SM i.k ) generates traffic accordingly as tabu-
lated in Table 3. While, Cluster-members are programmed to
transfer traffic types belongs to Time-critical class directly
to their corresponding CH k . Whereas, traffic from Peri-
odic class are transmitted towards their assigned AH k for
data aggregation. These traffics arrives over a scheduled
time interval hi ∈ {h1, h2, . . . ., h24 at the correspond-
ing AH k . Similarly, the Utility CCS generate traffic types
from On-demand class exchanged via DC and CH k towards
AH k which forwards the On-demand traffic to the requested
cluster-member and the response is routed back in the corre-
sponding flow (route) to the Utility CCS for further storage in
MDMS server and other decision making processes. Finally,
our proposed hybrid data aggregation strategy is based on
coupling the existing combining and manipulating method
performed for aggregating incoming traffics received from
cluster-members, as each AH is programmed to do so. In the
combining method, AH concatenates the IMR applications
traffic into one aggregated packet with a common header send
out to corresponding CH which relay it to the Utility control
center. This method effectively reduce the traffic size and the
aggregated packet includes energy consumptions information
of all cluster-members that will be processed at the Util-
ity CCS. For example, in an IP-based AMI communication
network, when packet header is removed from an IP packet
(i.e. IMR packet) the actual data remains unchanged in the
payload (JSON string payload with key attributes as depicted
in Figure 4). To ensure that the data integrity is maintained
and information is not lost during the header removing and
concatenating process e.g., higher level protocol such as TCP
(transmission control protocol) employ checksum mecha-
nism to verify the data integrity of the payload data. If a
loss or corruption is detected during communication, TCP
make request for the retransmission of corrupted or lost seg-
ment (packet). Whereas, manipulating method is applied on

the On-demand traffic class. Manipulating method includes
status information of local area and can effectively visu-
alize the total electricity consumption by calculating (e.g.
average, maximum, minimum, and summation) of all cluster-
members. Additionally, proposed hybrid data aggregation
strategy is based on using a subset of SQL query interface
to execute an aggregation function command (request) to a
single, multiple, and/or all cluster-members. The requests are
efficiently processed at the AH and responses (retrieval) are
routed via CHs for data management (retrieval and storage)
that will be performed at the Utility MDMS server accessible
via backhaul network. Thus, the proposed strategy effectively
addresses the optimization problem by reducing the incoming
traffic at the CH such that RAM, CPU, and BW are optimized
in the AMI network.

One of the potential benefit of the proposed research
methodology is that it will provide support to heteroge-
neous environment (WHN) if the network topology employs
different wireless communication technologies (e.g., WiFi,
ZigBee, LTE etc) and protocols. In addition, numerous appli-
cations traffic will be supported if traffics are classified,
queued, prioritized, and scheduled at the CH level in the
IoT-enabled AMI network.

The process of the proposed hybrid data aggregation strat-
egy is presented in Algorithm 1 with a time complexity
O(|K| ∗ |NSM|) to address and solve the optimization problem
where K represents the number of clusters (CH) and NSM
represents the total deployed SMs in the residential area.

In Algorithm 1, input consists of variable topo (network
topology), number of clusters (K ) in the clustering topol-
ogy, total number of cluster-members (NSM ) in each cluster,
generated AMI application traffic with packet size (PktSize)
according to the traffic characteristics in Table 3, and allo-
cated network capacity (BW). Algorithm 1 starts and proceeds
in steps as follows: First, necessary variable are initialized
in Line 2. Using the two for loops in Lines 3 to 7 ensure
that the network topology (topo) is generated as considered
from [18] such that each cluster-member (SM i,k ) participate
in the clustering topology and have exclusive connectivity to a
single DC via dual-head (CH and AH) in order to satisfy con-
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Algorithm 1 Process of Hybrid Data Aggregation Strategy
Input: Topo,K ,NSM ,PktSize, h, BW
1 Start
2 Initialize i = k = 1;Topo = PktSize = ϕ; ρ = Total = CHBW = CHCPU = CHRAM = 0
3 for k ∈ Kdo
4 for i ∈ NSM do
5 Topo← SM i,k
6 end for
7 end for
8 for k ∈ K do
9 for i ∈ NSM do
10 Read PktSizei,k← SM i,k
11 Compute ρusing Eq.(6)
12 if ρ < 1then
13 if PktSizei,k .AMI application = =′ RCC′ or ′PCC or ′AN′or ′EVsCharging

′

then
14 if SM i,k .ConST → CH k =

′ Disconnect′or !Receive
(
SM i,k .ConRP

)
← CH k then

15 Send
(
SM i,k .ConRQ

)
→ CH k

16 Receive
(
SM i,k .ConRP

)
← CH k

17 Transmit SM i,k .PktSizei,k → CH k using Eq.(7)
18 Allocate BW to CH k using Eq.(8)
19 Transmit PktSizei,k.CHk→ CCS
20 else if PktSizei,k .AMI application = =′ IMR′then
21 if SM i,k .ConST → AH k =

′ Disconnec t′or ! Receive
(
SM i,k .ConRP

)
← AH k then

22 Send
(
SM i,k .ConRQ

)
→ AH k

23 Receive
(
SM i,k .ConRP

)
← AH k

24 Compute PktSizei,k .hi← ElectricityConsi,k using Eq.(9)
25 Transmit SMi,k.PktSizei,k→ AHk
26 Process λagg+ =

⋃
SM i,k .PktSizei,k using Eq.(6)

27 Receive CH k ← λagg
28 Allocate BW to CH k using Eq.(8)
29 Transmit CH k .PktSizei,k → CCS
30 else if PktSizei,k .AMI application = =′ ODM R′ or ′ODM RR′or ′Bill Info′ then
31 if CH k .ConST → AH k =

′ Disconnec t′or !Receive (CH k .ConRP)← AH k then
32 Send

(
CH k .ConRQ

)
→ AH k

33 Receive (CH k .ConRP)← AH k
34 ManipulateMIN or MAX or AVGorSUM (AH k .PktSizei,k .ElectricityCons)→CH k
35 Allocate BW to CH k using Eq.(8)
36 Transmit CH k .PktSizei,k → CCS
37 else
38 Discard SMi,k.PktSizei,k
39 end if
40 else if ρ = 1 or ρ > 1 then
41 Display ‘‘Resource utilization is at full capacity or overutilized ′′

42 end if
43 CHBW+ =CHk.BW;CHRAM+ =CHk.PktSizei,k
44 CHCPU+ = CPU instrcutions perCH k .PktSizei,k
45 Total+ = (CHCPU + CHRAM + CHBW )ki using Eq. (5)
46 end for; end for
47 Return Topo, PktSizei,k ,Total, CHBW ,CHRAM ,CHCPU
48 End

straint (5a) and (5b) of the objective function (Eq. (5)). Next,
the AMI application traffic is read from each cluster-member
into packet of size (PktSizei,k ) in Lines 8-10. Lines 11-12

are used to check the CH resource utilization to ensure con-
straint (5c) and (5f). To ensure the QoS of AMI traffic, the
generated traffic type is checked (i.e. classified), if it belongs
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to Time-critical class, then an exclusive TCP/IP connection
is established between cluster-members and a corresponding
CH (CH k ) in Lines 14-16. Next, Lines 17-19 are used to
transfer the Time-critical traffic from cluster-members to
CH which further forwards it to the IoT-enabled CCS by
allocating BW to satisfy constraint (5c). Lines 20-36 are
used to execute the hybrid data aggregation strategy for both
Periodic and On-demand traffic classes to satisfy constraint
(5d)-(5e). For IMR application traffic in Line 20, an exclusive
TCP/IP connection is established between cluster-members
and AH (AH k ) using Lines 21-23. In Line 24, total electricity
consumption (ElectricityConsi,k ) at periodic time interval hi
is calculated and stored in the packet payload and trans-
mitted towards the AH via Line 25. In Line 26, combine
method is applied to concatenate the incoming IMR traf-
fic into one aggregated packet with a common header. The
incoming aggregated packet (λagg) is received at the CH
in Line 27 which is further exchanged with the CCS using
Line 29. In Line 30, if traffic types belong to On-demand
class then a connection is established between CH and
AH using Lines 31-33. On the received request (ODMR),
AH apply the manipulating method on the electricity con-
sumption (ElectricityCons) extracted from the packet and
response (ODMRR) is shared with CH using Line 34 which
is further transmitted towards CCS using Lines 35-36. While
the generated raw traffic is discarded in Lines 37-39. If the
resource utilization probability is equal or higher than 1, then
a message is displayed to show that the resource(s) are at
full capacity or overutilized in Lines 40-42. Lines 43-44 are
used to compute the constrained resources (BW, RAM, and
CPU) usage at the CH. Line 45 is used to compute the main
objective function expressed in Eq. (5). Finally, Algorithm 1
returns the network topology, total resources utilized, and
AMI applications traffic as output and ends in Lines 46 and
48 respectively.

The process of the main objective function (see Algorithm
1) is depicted in Figure 3 which illustrate the optimum solu-
tion of the optimization problem and is briefly explained as
follows. We considered the network topology with dual-head
cooperative strategy in [18] using Wi-SUN (short range) and
LoRaWAN (long range) communication technologies in the
deployment of the AMI network. In addition, Algorithm 1
is used to implement the proposed hybrid data aggrega-
tion strategy in order to verify the main objective func-
tion and find an optimum solution of the optimization
problem.

IV. ANALYSIS OF RESULTS
In this section, we present details about the design (exper-
imental and simulation) of the proposed hybrid data aggre-
gation strategy in order to solve the optimization problem in
the IoT-enabled AMI network. The performance is evaluated,
analyzed, and discussed based on the obtained experimental
and simulation results.

A. DESIGN AND PERFORMANCE EVALUATION CRITERIA
We evaluate the proposed hybrid data aggregation algorithm
based on the cluster-based network topology in the
IoT-enabled AMI network.

First, we carry out different experiments in the clustering
topology with QoS traffic engineering implemented at the
tier-1 that strongly influence the proposed strategy in terms
of workload (here, traffic) reduction and better resources uti-
lization at the constrained CH of the AMI network. We have
used a software-define approach to minimize the reliance
on expensive physical hardware infrastructure. Software-
defined implementation enables to program AMI compo-
nents such as SMs, DCs, communication networks, and CCS
which significantly enhances testing, control, monitoring,
management, and troubleshooting in a cost-effective manner
using standard APIs framework and graphical user interfaces
making the experimental design efficient and flexible in the
AMI domain as detailed below.

Since IoT communication framework is deployed to trans-
mit and make it available the IMR application data across the
IoT-enabled AMI network. Therefore, dedicated set of IoT
RESTful APIs (JSON APIs) [44] are deployed over the net-
workmodel which enables the periodic IMR applications data
acquisition and supports device-to-device communication as
web-services over the Internet. RESTful APIs are widely rec-
ognized and can be designed easily as these are lightweight,
succinct to integrate the IoT and web services as well as
works well with the firewalls. In the context of AMI appli-
cations, each residential SM (REST client) is periodically
triggered to send average electricity consumption (i.e. both
active and reactive electricity) after every 15 minute interval.
The Utility CCS (REST server) obtains these real-time QoS
AMI traffics from time-stamped JSON string payloads via
RESTful APIs, which utilizes a request-response message
format using multiple queries in the form of HTTP methods
such as GET, PUT, and DELETE etc with minimum efforts
in the IP-based network and store these metering data into a
database application at the MDMS server.

Since most of the AMI devices (e.g., SMs) are resource
constrained, REST-based service models involves different
operational behaviors with QoS provisioning which requires
extensive memory and processing capabilities for HTTP
methods in the underline IoT-enabled AMI network. Hence,
this leads to the optimization problem as formulated in Eq.
(5). The metering data (electricity consumptions) exchanged
between the cluster-members and AH in the experimental
design is tabulated in Table 4.
Second, we use the simulation approach as an alternative

to compare and evaluate the performance of Algorithm 1
with existing methods. CloudSim [45], [46], [47] simulator
is used at the cloud computing system (here, CCS) to model
the proposed QoS-aware hybrid data aggregation strategy
in order to extend our past work [18], [19] by adding QoS
module (see Algorithm 1) to support our experiments. The
simulation parameters are set on a laptop whose config-
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FIGURE 3. Flowchart for the proposed research methodology.

uration detail includes: Intel(R) Core™i5 8250M CPU @
1.60 GHz 1.80 GHz, RAM (8 GB), Hard drive (500 GB),
64-bit Windows 10 Pro, and a theoretical network capacity
of 2 MB. The simulated data is extracted from the JSON
string payload with key attributes as depicted in Figure 4,
which is generated randomly or periodically by SMs and/or
on-demand queried by CCS whose traffic characteristics can
be found in Table 3. These real-time collected metering data
are permanently stored in a database application created in
Microsoft SQL Server 2019 Express [48]. More precisely,
to better simulate the proposed strategy, existing CloudSim
modules are modified and configured as: Data Center (1),
Host (1) has multiple CPU cores with processing speed (1000
MIPS), Broker (1), Virtual Machines (2 VMs) each sharing
2GB RAM and 2MB BW while number of cloudlets ran-
domly varies to the number of SMs requests in the AMI
network.

The main reason behind using CloudSim in the resource
constrained CH (i.e. embedded system) is that it allows devel-
opers and researchers to accuratelymodel a real AMI network

FIGURE 4. ODMRR application traffic exchange via JSON string payload.

in order to conduct multiple cost-effective experiments to test
the behavior of SMs, communication networks, CCS, and
cloud environment. CloudSim eliminates the need of physical
hardware resources and make virtualize the available cloud
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resources (RAM, CPU, and BW etc) via resource optimiza-
tion techniques. Such techniques improve the overall network
efficiency in the AMI network. In addition, it enables the
researchers to validate the performance of different algo-
rithms like optimize resource allocation, task scheduling,
and load balancing to observe underutilized resources under
different workloads in different scenarios. All experiments
have been simulated on the same laptop running CloudSim
where each experiment has been executed for 1 hour and
randomly repeated for 10 time.

Third, we use the following two performance metrics to
evaluate capability of Algorithm 1 both in the experimental
and simulation design. In the first experiment (scenario),
we measure the impact on total traffic reduction at the CHs
due to the use of the proposed hybrid data aggregation strat-
egy in the IoT-enabled AMI network. The reason behind
using this evaluation metric is to show uniform workload dis-
tribution which results to minimize traffic loads at the CH in
order to control network congestion and delay in the AMI net-
work. Second, we examine the effectiveness of the proposed
strategy by computing the limited resources (RAM, CPU, and
BW) of the CH utilized by each AMI applications traffic i.e.
most importantly for IMR application traffic. To mimic the
resource utilization in CH, the following three equations are
used to quantify the resource per usage during the simulation
in each VM respectively.

(VMCPU ) =

 2∑
i=1

n∑
j=1

CPU used by Cloudlet j in VM i


(10)

(VMRAM ) =

 2∑
i=1

n∑
j=1

RAM used by Cloudlet j in VM i


(11)

(VMBW ) =

 2∑
i=1

n∑
j=1

BW used by Cloudlet j in VM i


(12)

Total =
2∑
i=1

VMCPU + VMRAM + VMBW

(13)

Usage(%) =

∑2
i=1 CPU (MIPS)+ RAM + BW

Total
(14)

where, Eqs. (10)-(12) show the usages of individual resources
(CPU, RAM, and BW) in each VM respectively. Similarly,
Eq. (13) represents the sum of resources utilized in VMs,
whereas percentage of total resource usage is calculated in
Eq. (14). The simulation results computed based on these
equations will ensure that the objective function implemented
behave as expected.

B. RESULTS AND DISUSSION
In this section, we evaluate the performance of our proposed
data aggregation strategy using the performance evaluation
metrics. Both experimental and simulation results are quanti-
fied, compared, visualized, and discussed as follows:

We first investigate the effectiveness of our proposed data
aggregation strategy in terms of the total traffic load reduction
at the CHs for the related AMI applications traffic classes
with QoS provisioning. In our experiment, assumed cluster-
ing topology consists of 200 SMs (cluster-members), 1 root
DC connected to a central router over Internet (capacity of
2MB) to the Utility CCS. In particular, Algorithm1 extracts
and collect IMR application data (electricity consumption)
via RESTful APIs services from residential SMs at fixed time
interval (h = 15 minutes) and AH receives and stores for
short time the traffic (generated packets) for data aggregation.
Then AH runs (Algorithm 1) to aggregate the electricity
consumptions (meter readings) at every 1 hour (60 minutes)
and send via CH towards CCS for further processing. Sim-
ilarly, the Utility CCS query the AH via DC and CH to
get On-demand meter readings of SMs. While the traffic
generated from Time-critical class applications are directly
exchanged with the corresponding CHs. We assume that the
TCP/IP packet has a header size of 20 bytes and data payload
size is set accordingly as mentioned in Table 3 for each AMI
application. The experimental results are quantified in Table 5
and compared with AMI traffic scenario in [18] (without
data aggregation strategy) and [27], [39] (with data aggre-
gation strategy) to examine the significance of the proposed
algorithm.

Table 5 shows the experimental results obtained in our
proposed strategy as compared with the other three scenarios
based on the first evaluation metric. To evaluate the total
traffic (packets) received by the CHs is 13448 on average in
the network topology based on the parameters.

Hence, we noticed that the volume of AMI traffic received
at the CH in [18] is 16.90% (2274), 12.01% (1616) in [27] and
64.97% (8738) in [39] respectively. However, when we apply
our proposed algorithm the total traffic received is 6.09%
(820) in the IoT-enabled AMI network as shown in Figure 5.
This is because, the functionality of data aggregation par-

ticularly for IMR application data at the CH is switched
towards the AH. As a result, due to our proposed strategy
CH receive less AMI traffic as compared with the other
three scenarios. Hence, our proposed strategy exhibits better
performance (reduces total traffic load) for QoS-aware AMI
applications in IoT-enabled AMI network.

Next, we use CloudSim simulation as an alternative
approach to validate the performance of the proposed strategy
based on second evaluation metric in terms of reducing the
resource (e.g., CPU, RAM, and BW) usages for AMI appli-
cations traffic in the IoT-enabled AMI network. We create
a pool of cloudlets (jobs/tasks) in response to the AMI traf-
fics (REST requests) generated by 200 SMs (REST clients)
from related traffic classes (Periodic, On-demand, and
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TABLE 4. An example of metering data exchanged with AH via RESTful APIs.

FIGURE 5. Comparison of traffic loads with existing approaches.

TABLE 5. Comparative quantification of total traffic load at the CH.

Time-critical) where each cloudlet is managed by a Broker
in the CloudSim simulation environment. These cloudlets
are submitted as VM requests to corresponding VMs on
the physical Host in the Datacenter (detailed in Section IV
subsection B). Moreover, the resources utilized by each
cloudlet during execution is computed and compared in

Table 6 to show that the objective function as expressed in
Eq. (5) that is, minimization of constrained resources usage
at the CHs is achieved using the proposed strategy for IMR
application in AMI network.

During this simulation, we start by executing varying num-
ber of cloudlets submitted to VMs. The obtained simulation
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TABLE 6. Comparative analysis of VM resources.

FIGURE 6. Comparison of VM resources with existing approaches.

FIGURE 7. Comparison of VM resources usage (%) with existing approaches.

results in each approach are tabulated and compared in order
to evaluate the objective function. For example, in [27] using
data aggregation strategy at the CH level consumes total VM

resources equal to 558580 (20.07%) whereas approach [18]
without data aggregation strategy uses more VM resources
i.e. 767834 (27.59%) than [27]. The reason behind this is
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that scenario [18] employs no data aggregation approach on
the received IMR application traffic which leads to use more
VM resources during the simulation period. Similarly, the
data aggregation approach in [39] uses VM resources i.e.
1213376 (43.60%) due to the large number of SMs (5567)
connected to four edge nodes (DC node) in the hierarchical
network. As compared with [18], [27], and [39] approaches,
our proposed strategy exhibits better performance in terms of
reducing the usages of VM resources i.e., 242790 (8.72%) as
depicted in Figure 6 in the considered network scenario.
The main reason behind this efficient resource optimiza-

tion and utilization is that IMR application data is transmitted
to the AH which employs hybrid data aggregation algorithm
and hence reduces the traffic load at the CH in the cluster-
ing topology. Further, stringent QoS requirements (latency,
BW etc) of all Time-critical traffics are ensured in the AMI
network. Figure 7 illustrates the usage percentage (%) of the
total VM resources in all research approaches.

V. CONCLUSION
IoT technology facilitate data communication amongst the
IoT-enabled AMI devices (SMs, DCs, and MDMS servers)
in the AMI architecture. In particular, during peak hours in
a season high volume of traffic is exchanged which creates
immense burden on these resource constrained devices e.g.,
SMs and DCs when used as relay-devices in the network
topology of the AMI network. Literature investigates this
high traffic volume challenge particularly caused by IMR
application data in the AMI architecture. In contrast, this
article proposes a novel hybrid data aggregation strategy
for IMR application data in cluster-based topology in order
to minimize the bulk amount of traffic with QoS guaran-
tee and constrained resources optimization problem in the
IoT-enabled AMI network. For this, we formulated the opti-
mization problem by defining an objective function that
facilitate the minimization of the constrained resources at the
CHs in clustering topology. To solve the optimization prob-
lem, we developed an algorithm in the CloudSim simulator
to find an optimal solution with a tradeoff between reduction
of AMI traffic volume with QoS guarantee and resources
optimization in the AMI network. Experimental and simula-
tion results provide significant insights that how our proposed
strategy outperforms using the two performance evaluation
metrics that is, reducing high traffic volume with diverse QoS
requirements and resources utilization when compared with
the other three research approaches. Hence, we conclude that
these contributions show the effectiveness of our proposed
strategy in the constrained last-mile IoT-enabled AMI net-
work and well help the electric Utility network managers
to design a cost-effective network infrastructure by utilizing
the limited available resources e.g., leased network capacity
etc. Since we have assumed clustering topology at the NAN
level, in future we will investigate to test the feasibility of our
proposed strategy by exploring other network topologies and
IoT communication technologies to tradeoff various network
performance metrics (end-to-end delay, latency, throughput,

and reliability). We will consider these possible limitations in
future to continue this study.
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