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ABSTRACT In digital systems, the Residue Number System (RNS) represents an interesting alternative to
the traditional two’s complement representation. Its performance and low-power properties have attracted
significant research interest over the years. In this paper, RNS is used to estimate the angular position of a
multi-trace electrical encoder (EE), an electro-mechanical device to measure angles at high precision widely
used, for example, in antennas on-board satellites. The model of this system presents cyclic characteristics
and, consequently, allows efficient use of modular arithmetic for its description. The RNS is applied to EEs
equipped with more than two plates, and the absolute angle reconstruction is performed by using the Chinese
Remainder Theorem (CRT). Furthermore, the use of RNS allows detection andmitigation solutions for errors
due to encoders’ non-idealities and electrical noise. In this noisy context, we provide a detailed analysis of the
performance of the system and propose a more robust, flexible, and easy-to-implement solution compared
with the traditional methods. The results show that the RNS-based system can attenuate the noise, measure
accurately the angles, and improve the overall performance.

INDEX TERMS Angle measurement, Chinese reminder theorem (CRT), electrical encoder, error detection,
modular arithmetic, residue number system (RNS).

I. INTRODUCTION
In the last decades, the Residue Number System (RNS)
has been extensively used in digital systems as an alter-
native to the traditional Two’s Complement System (TCS)
representation [1], [2], [3].

For operations on integers of large dynamic range (a large
number of bits), the advantage of the RNS is that operations
such as addition and multiplication are computed in parallel
in each path, or channel, corresponding to the components
of the RNS base [1]. Since the dynamic range of the single
components of the RNS base is significantly smaller than the
dynamic range of the whole system, in the parallel channels,
the carry chains are shorter and the arrays smaller reducing
the delay and the power dissipation in the computation data
path.

The associate editor coordinating the review of this manuscript and
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These advantages made the RNS an interesting solution for
increasing the speed and optimizing the power consumption
of several applications including Digital Signal Processing
(DSP) systems, as in the case of digital filters, and other
architectures [4], [5], [6], [7]. High-speed and low-power
DSP systems are today the main field of application for RNS
and are well studied in the literature [8], [9], [10].

However, promising fields of application for RNS are
systems with behavior that follows a periodic (modular)
law. In these cases, the development of an RNS-based
model helps the designer to master the true nature of
the problem, obtaining more efficient and more adaptable
algorithms [11].
In this context, in [12] the authors took advantage of the

RNS representation for developing an algorithm for effi-
ciently estimating the initial absolute position of a two-trace
Electrical Encoder (EE), an electro-mechanical device used
for precise measurement of angles.
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Thanks to their reduced cost, electrical encoders are widely
used, and often preferred, to other encoder typologies, for
example, optical ones. The application fields are all those
requiring the measurement of an angle, such as the measuring
of the onboard antenna’s pointing system in satellites.

The electrical encoders are low-cost devices, but they are
less precise than their optical counterparts. For this reason,
several techniques have been developed to increase precision
by keeping costs down. Among these techniques, there is the
use of a multi-trace (more than two) approach, in which the
absolute angle is reconstructed by combining more measure-
ments on different tracks, and the high derivative approach,
where the sensitivity is increased by increasing the derivative
of the signal with respect to the angle. This latter approach is
implemented by increasing the number of revolutions of the
sinusoidal shape of the tracks.

Indeed, the performance of these encoders can be enhanced
by a) increasing the number of measurement positions for
the single track, whose average gives the angular value,
b) varying the number of tracks, and c) increasing the num-
ber of sinusoidal revolutions on the track. All the previous
methods improve the performance of the encoder but they
also increase the electronic andmechanical requirements and,
ultimately, the cost. Therefore, for each application class,
an appropriate combination of the number of tracks and
number of revolutions must be found. Unfortunately, the
methods currently used in commercial encoders are not easily
generalizable regarding the number of traces and number of
revolutions. This makes it challenging to adapt these methods
to devices with different parameters. For this reason, in this
paper, the authors propose an RNS-based method that offers
inherent flexibility and scalability in absolute angle recon-
struction. Unlike conventional methods that rely on complex
analyses of cases and sub-cases, RNS provides a theoretical
structure that generalizes to all possible scenarios. By apply-
ing the RNS to the problem analysis, the authors were able to
leverage its characteristics and develop an algorithm adapt-
able to different numbers of tracks and different numbers
of revolutions for each individual track. Consequently, this
algorithm can be scaled to be applied to any number of traces,
making it flexible for encoders with different performance
levels. Each track requires an RNS modulus, so if there are
three traces, three RNSmoduli are used. Adapting to different
numbers of revolutions is achieved simply by changing the
values of the RNS moduli used. In contrast, traditional meth-
ods lack flexibility and scalability, as their memory content is
tailored to a specific number of tracks and revolutions. More-
over, using the modeling proposed in the paper, it is possible
to apply all the methods developed for error detection and
correction methods present in the literature for RNS systems.

The paper is organized as follows: in Section II and
Section III, we introduce the EE and give background infor-
mation on the RNS. In Section IV, we present and describe
the proposed algorithm, and in Section V we perform a
detailed analysis of its performances in presence of noise,
together with a proposed hardware solution for error detection

FIGURE 1. Basic scheme of a rotary electrical encoder [14].

FIGURE 2. Basic scheme of the MN algorithm.

and mitigation. In Section VI, we discuss the optimal choice
of the RNS moduli for the EE, and, in Section VII, we draw
the conclusions.

II. ELECTRICAL ENCODER: DESCRIPTION AND
OPERATIONS
The rotary Electrical Encoder is implemented by 3 or 2 plates
connected to a rotating central shaft, as sketched in Figure 1.
Both plates include a space/time-modulated electric field
inside a shielded enclosure. The total electric field is inte-
grated and converted into a current proportional to the sine
and cosine of the actual angle, corresponding to the position
of the plates.

The EE is built at least with two different plates: a coarse
mode plate and a fine mode plate. The rotation of the plates
generates geometrical sinusoidal profiles and corresponding
electrical fields. At the system start, the coarse mode is
used to generate the first coarse angle value. Afterward, the
combination of the coarse value with the angle obtained
in fine mode gives the starting absolute position with high
accuracy and resolution.

For estimating the absolute position, commercial devices
adopt a technique based on the MN algorithm [15], [16]
which uses the information coming from the coarse and fine
channels to detect the correct angle by the M and N (with
M<N) sine and cosine revolution periods.

To provide unambiguous readings over 360 degrees, M and
N must be co-prime, i.e., no common factors. The parameter
M typically ranges from 1 to 7, and N from 16 to 128.

The block diagram of the MN algorithm, sketched in
Figure 2, requires a number of scaling and add/subtract
operations on coarse and fine measured angles plus a large
Look-Up Table (LUT) to find the Findex parameter to deter-
mine the absolute position. The large LUT is stored in
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memory, and its values need to be recomputed if M or N,
or both, are changed. In other words, a large part of the
algorithms depends on the values stored in the table, making
the system not easily reconfigurable.

The main steps of the MN algorithm for a two plates
encoder based on M = 32 (number of revolution periods of
fine angle) and N= 3 (number of revolution periods of coarse
angle) are depicted below:

1) After measuring the local angle on each plate
(coarse angle on 3-revolution plate and fine angle on
32-revolution plates), is calculated the parameter
Diff =

coarse_angle
M −

fine_angle
N

2) Depending on the value of parameter Diff and accord-
ing to the values stored in a LUT table, the parameter
fine index is generated.

3) In the last step the absolute angle is calculated by using
the following equation: AbsoluteAngle =

(
Findex +

FEA
360

)
·

360
FEC

where FEC = N = 32 and FEA is
the angle measured on the fine angle, i.e. on the
32-revolution plate. In this case, the algorithm needs
both a 34-locations table to store the fine index values
and an addressing logic to read them.

It can be seen from the procedure described above that the
use of an EE having more than two plates requires adapting
the entire algorithm, re-designing the control logic, and using
a bigger LUT. In the following, we will show how the use
of an RNS-based algorithm can lift the limitations of the
MN algorithm. Namely, the RNS can be applied to a system
with three or more plates, and the large LUT is eliminated.
Furthermore, the RNS is used to increase the robustness of
the measurements.

III. RNS BACKGROUND
RNS is a non-positional and non-weighted number sys-
tem defined by a p-tuple of relatively prime integers
{m1,m2, . . . ,mp} called moduli and constituting the RNS
base [1], [17]. The product of all moduli in the RNS base
defines the dynamic rangeM of the system:

M =

P∏
i=1

mi (1)

An arbitrary integer X ∈ {0, 1, . . . ,M − 1} has an unique
representation given by the set of P residues ri

X
RNS

−−−−−→
Encoding

(r1, r2, . . . , rP)

=
(
⟨X⟩m1 , ⟨X⟩m2 , . . . , ⟨X⟩mP

)
(2)

where ⟨X⟩mi is the operation X modulus mi.
Unlike classical number systems (decimal, binary, etc.),

RNS does not have a fixed radix and its main advantage is
the decomposition of operations with a large dynamic range
in modular operations in a reduced dynamic range that can be
executed in parallel on the channels (paths) of the RNS base

TABLE 1. Example of RNS multiplication on the base {2, 3, 11}.

characterized by a reduced word-length

Z = X op Y
RNS
→


Zm1 = ⟨Xm1 op Ym1⟩m1

Zm2 = ⟨Xm2 op Ym2⟩m2

. . . . . . . . .

ZmP = ⟨XmP op YmP⟩mP

(3)

The main advantage of this decomposition is the computation
of operations, such as addition and multiplication, in parallel
in the modular channels described by (3), resulting in reduced
delay and power consumption [3].

The reconstruction of Z starting from the residues zi, can
be performed using different techniques. Among these, one of
the most common is the Chinese Reminder Theorem (CRT)

Z =

〈
P∑
i=1

zi · Ai ·
M
mi

〉
M

(4)

where Ai are themultiplicative inverses defined as the smaller
integer values such that ⟨Ai · Mmi ⟩mi = 1 [1].
We put together (2), (3), and (4) in an example of RNS

multiplication illustrated in Table 1.

IV. ABSOLUTE POSITION MEASUREMENT IN RNS
In [12], the authors took advantage of the RNS representation
of the two angles for the development of a CRT-based recon-
struction algorithm to measure the initial absolute position of
an Electrical Encoder.

The EE model used in [12] may consist of two or more
plates (see Figure 1) on which are engraved two traces (each
one represented by a pair of sine and cosine waveforms)
having respectively 3 (coarse measurement) and 32 (fine
measurement) ‘‘revolutions per trace’’, or rpt, with respect to
the absolute angle. The numbers of rpt of all traces are usually
relative prime values, and this aspect allows us to easily apply
an RNS representation.

In these EE, the initial position is computed by using all
available traces, while the successive positions are computed
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only by considering the trace with the higher number of rpt
(i.e., 32 rpt for the EE cited in [12]).
The original algorithm for angle reconstruction proposed

by the EE manufacturer uses a tabular approach that turns out
to be less flexible with varying of EE models.

In the following, we describe the generalization of the
algorithm to reconstruct the angle from its measurements for
EE with an arbitrary number of tracks P, and how to mitigate
the noise introduced by the measurements.

The proposed algorithm is more flexible and more reliable
since it avoids the use of large portions of memory necessary
for the tabular approach. In contrast, the RNS approach needs
only a few parameters to be stored in the memory. Memory
usage is very important, especially in space applications,
where storage is a critical aspect.

A. GENERALIZATION OF ABSOLUTE POSITION
MEASUREMENT
We assume an encoder with P traces, where each trace has a
given number Ki of repeated patterns (rpt). The value of each
Ki is not a random choice and it must be properly selected to
allow the reconstruction of the actual value of the angle. This
selection can be performed using a set of co-prime moduli
mi with i = 1, . . . ,P following the Residue Number System
(RNS) approach. With a modulus set like this, the number Ki
of rpt for the i-th trace can be expressed as:

Ki =
M
mi

i ∈ 1, . . . ,P (5)

where M and mi are defined in (1), and P is the number of
traces.

If P = 2, the number of periods of the first trace coincides
with the modulus of the second trace and vice versa (K1 =

m2 and K2 = m1). As a consequence, if P = 2, the number of
rpt of traces must be relatively prime (for example, 3 and 32)
since the Chinese Remainder Theorem (CRT) can be applied
with relatively prime moduli.

For three or more traces, the numbers of rpt are not
relatively prime since they are obtained by the product of
relatively prime numbers (i.e., moduli). For example, for
P = 3, if the moduli are m1 = 2, m2 = 3, m3 = 11, the
resulting rpt of the three traces are K1 = m2 · m3 = 33,
K2 = m1 · m3 = 22, K3 = m1 · m2 = 6. The traces of this
example are shown in Figure 3.
The use of this set of moduli corresponds to quantiz-

ing the complete angle (360◦, or 2π ) in M discrete values
0,Q, 2Q, . . . , (M − 1)Q, as shown in Figure 4. As a conse-
quence, the 360◦ angle is divided into M intervals. The corre-
sponding quantization step Q ∈ R is given by the following
expressions:

Q =
360◦

M
or Q =

2π
M

. (6)

The angle 8 can be represented as a function of the quan-
tization step Q. It is composed of the sum of an integer
part (a multiple of Q) 8Q = k8 · Q, and a fractional part

FIGURE 3. Example of EE with three sin/cos traces: K1 = 33 rpt (purple
lines) is the modulus 2, K2 = 22 rpt (red lines) is the modulus 3 and
K3 = 6 rpt (blue lines) is the modulus 11.

FIGURE 4. Shaft angle division in M intervals.

8δ = δ8 · Q < Q

8 = (8Q + 8δ) = (k8 + δ8) · Q (7)

with k8 an integer in the range 0 ≤ k8 < M and δ8 a
fractional number in the range 0 ≤ δ8 < 1.
For each track, the EE provides the amplitudes cos(ϕi)

and sin(ϕi) which are used for the extraction of the angle ϕi
(0 ≤ ϕi < 360◦)

ϕi =
M
mi

[8 modR(mi · Q)] (8)

where x modR(y) represents the modulo operation between
two real numbers, defined as

x modR(y) := x − y ·

⌊
x
y

⌋
.

The reconstruction of 8Q in (7) from the read ϕi consists of
the following three steps.

1) The actual angle γi is obtained by normalizing its value
in the 360◦ range:

γi = 8 modR(mi · Q) =
ϕi · mi
M

(9)

with 0 ≤ ϕi < 360◦. We refer to (9) as ‘‘normaliza-
tion’’ in the following.
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FIGURE 5. Residues’ values for the 360◦ rotation of the EE shaft angle for
the moduli set mi ∈ {2, 3, 11}.

2) The RNS residues ri are computed as the integer part
of the normalized angles γi:

ri =

⌊
γi

Q

⌋
=

⌊
ϕi · mi
QM

⌋
= k8 mod mi (10)

The Figure 5 depicts the values of the residues ri when
the rotor moves along the 360◦ absolute angle, for the
moduli mi ∈ {2, 3, 11}.

3) The residues ri are used to reconstruct the value 8Q by
the CRT of (4) as:

8Q = CRT(r1, r2, . . . , rP) · Q

=

〈 p∑
i=1

ri · Ai ·
M
mi

〉
M

· Q (11)

where Ai are the multiplicative inverses for the
modulus mi.

For the fractional part, not implemented in RNS, we introduce
{γi} defined as

{γi} = γi −

⌊
γi

Q

⌋
· Q = γi − ri · Q ∀i ∈ {1, . . . ,P} (12)

with range 0 ≤ {γi} < Q.
Since the normalization in (9) and the quantum Q is the

same for each track, the fractional parts are equal in each
track/channel (ideal case):

{γ1} = {γ2} = . . . = {γP}.

Consequently, the angle 8δ , fraction of Q, is computed as:

8δ = δ8·Q ≡ {γi} ∀i ∈ {1, . . . ,P} (13)

As the last step, the reconstruction of the angle 8 is obtained
by (7)

8 = 8Q + 8δ .

TABLE 2. Example of angle reconstruction for the moduli set {2, 3, 11}.

FIGURE 6. The presence of noise in the angle measurement near the
edge of an interval Q could create a jump of {γi } to an adjacent interval.

In table 2, we present an example of angle reconstruction
for the moduli set 2, 3, 11, where the input angles are ϕ1 =

210, ϕ2 = 20, and ϕ3 = 300.

V. NOISE’S EFFECTS CHARACTERIZATION AND
MITIGATION
The angle reconstruction in Section IV-A refers to the ideal
condition where the plates are not affected by any deforma-
tions and the measurements of all ϕi are not affected by any
kind of noise.

However, in a real environment, this is not true and the
effects of the errors become more critical when measuring an
angle close to the edges of the quantization interval. In this
case, as shown in Fig. 6, mechanical deformations and noise,
could introduce a ‘‘jump’’ of the measured value from a
quantization interval to the adjacent one, resulting in a wrong
value both for the integer part ri·Q and for the fractional part
{γi} of the normalized angles of track i.

Considering a generic angle γi of track i, an unwanted
jump from an interval Qj to an adjacent interval Qj±1, intro-
duces a difference ≃ 1 of its fractional part with respect to
the angles measured on the other tracks. As a consequence,
expression (9) will return a wrong value, introducing an error
in the computation of the residue ri.

To mitigate these errors, the residues are computed in
some cases using the floor function, as expressed in (10),
while in other cases they are calculated by using the round
function. In order to establish the proper rounding function,
we use amajority voting approach on the fractional part of the
measured {γi}. In the following, for each normalized angle γi,
we assume a measurement error ei limited to

ei ≤ Nmax =
Q
4

.

98590 VOLUME 11, 2023
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FIGURE 7. Sub-intervals L, C and R in interval [Qj , Qj+1] (size
Q = 4Nmax ).

FIGURE 8. Case 1: all fractional parts of the three moduli are at the same
time in the same sub-interval: (a) {γi } > 1 − Nmax ; (b) {γi } < Nmax ;
(c) Nmax < {γi } < 1 − Nmax ;.

For our system, Nmax represents the maximum noise which
guarantees an angular reconstruction with limited error (com-
parable or less than the initial errors ei). By using Nmax , each
interval Q is divided into three sub-intervals:

1) sub-interval s.L {γi} < Nmax
2) sub-interval s.C Nmax ≤ {γi} ≤ 1 − Nmax
3) sub-interval s.R {γi} > 1 − Nmax

where L, C, and R stand for Left, Center, Right, respectively.
A graphical representation of these three sub-intervals is

shown in Fig. 7.
In these settings, whether there is a measurement error

ei < ±Nmax on a given track and there are no jumps to adja-
cent intervals the absolute angle reconstructed, after applying
the CRT, can be affected by an error≤ ei due to the averaging
process of the reconstruction of {γi}. In contrast, if the error is
such that the measured angle jumps to the adjacent quantiza-
tion interval, the output result could be totally wrong. If jumps
occur, even for small errors, the corresponding residual ri is
incorrect and the angle reconstructed by the CRT is totally
wrong, if no recovery technique is applied. To overcome these
problems, we can introduce suitable recovery techniques,
considering three different cases.

A. CASE 1
In the first case, depicted in Fig. 8, all {γi}, represented by
symbol ×, are at the same time in the correct sub-interval
of Q.

In Figure 8 there are no jumps to adjacent Q intervals,
so the noise affects the measurement in a limited way. The
residues ri are computed as the integer part (floor function)
of γi as shown in (10), while 8δ = {8} is computed as the
average of all {γi} as expressed in (14). Note that averaging
has a low pass effect on the noise.

{8} ≡ θa =

∑P
i=1{γi}

P
(14)

FIGURE 9. Case 2: one or more {γi } jumps from the sub-interval s.L to the
sub-interval s.R of the previous quantization interval.

The same computations hold, for error shifts from the sub-
intervals s.L and s.R to s.C, or vice versa.

B. CASE 2
In the second case, depicted in Fig. 9, one or more jumps,
represented by the symbol

⊗
, to an adjacent Q interval

occur. We consider in this case only jumps from the correct
sub-interval s.L to the s.R of the previous Q interval. How-
ever, we assume that the majority of {γi} are in the correct
sub-interval s.L.

The capability of the system to detect and correct these
jumps depends on the number of moduli P. The number of
errors (jumps) that can be detected are Dmax = ⌊

P
2 ⌋, while

the number of possible corrections isCmax = ⌈
P
2−1⌉. For this

reason, with two traces the system is able only to detect one
error without correction ability, while with three traces the
system is able to detect and correct one error.

Taking into account the maximum number and the max-
imum amplitude allowed for the errors, we can detect the
jumps in Figure 9 by considering the values of {γi} for the
different tracks/moduli.

Jumps from s.L to s.C do not represent an issue since
they end up in the same interval. However, if the majority
of {γi} lie in the sub-interval s.L, and some {γi} lie in the sub-
interval s.C, the latter are computed in the average only if
{γi} < 0.5 Q. In this case, the residues ri are computed using
the round function:

ri = round
(

γi

Q

)
i = 1, 2, . . . ,P (15)

For the angle fractional part, the {8} value is the average of
thePNJ {γi} not affected by jumps of the quantization interval,
corresponding to all {γi} < 0.5 Q. Since the system is able to
correct Cmax errors due to jumps to a different quantization
interval, the number of moduli not affected by interval jumps
can be in the worst case PNJ = P − Cmax = ⌊

P
2 + 1⌋.

As a consequence, with P moduli, the {8} value is set as the
average θl of the PNJ fractional angles {γi} not affected by
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FIGURE 10. Block diagram to compute θl (θh) when the majority of {γi } is
below (above) the threshold.

FIGURE 11. Case 3: one or more {γi } jumps from the sub-interval s.R to
the sub-interval s.L of the next quantization interval.

jump errors

{8} ≡ θl =

∑PNJ
i=1 {γi}

PNJ
(16)

A block diagram to compute by averaging (16) {8} = θl is
shown in Fig. 10. Block THSH (THreSHold) checks if the
input is below, or above, a given threshold. It is implemented
by a 2’s complement comparator with 1-bit output: the sign
of the comparison. The right-hand side of Figure 10 condi-
tionally adds all γi below the set threshold (THSH=0.5), the
numerator of (16), while the left-hand side, counts the number
of γi satisfying the threshold condition, the denominator of
(16). The result θl is therefore the average of all γi < 0.5 for
case 2. The block counter is an adder of bits with the same
weight, while the ave block computes the average based
on PNJ .

C. CASE 3
In the third case, depicted in Fig. 11, one or more {γi} jumps
from the sub-interval s.R to the sub-interval s.L of the next
quantization interval occur.

In Figure 11 the majority of {γi} are in the sub-interval s.R
(or in s.C with {γi} > 0.5 Q).

TABLE 3. Computation of residues ri and {8} values.

In this case, since the {γi} > 0.5Q, the residues are
computed by rounding (to Qj+1) followed by a decrement

ri = round
(

γi

Q

)
− 1 i = 1, 2, . . . ,P (17)

The fractional value θh = {8} is obtained by averaging
the fractional angles {γi} > 0.5Q, as in (16). The block
diagram in Figure 10 is used to compute θh by swapping the
comparators’ inputs in blocks THSH.

D. HARDWARE IMPLEMENTATION
The block diagram of the complete system for error detecting
and correction is shown in Fig. 12.
The measured angles ϕi are firstly normalized by the block

Angle Normalization, implementing (9), and the obtained val-
ues are split into two separated paths: one for the computation
of the integer part, and one for the computation of fractional
part (fraction { } block).

In the integer part (left-hand side of Figure 12), both the
floor and round functions are computed, and the rounded
value is eventually updated (control signal SubR), and
the residues ri are produced by selecting (control signal
Round) the values according to the three cases listed in
Section V-A–V-C and summarized in Table 3. The RNS
residues ri are converted by the CRT block to obtain the
integer part of 8.

In the fractional part (right hand side of Figure 12), from
the P inputs {γi} the fractional values of the angles {8} is
computed by selecting the correct value among the results
generated by the block2a (implementing (14)) and the block
2h/l (implementing (16)) and depicted by the block diagram
of Fig. 10.

The architecture of Figure 12 is completed by the adder
and scaling blocks (at bottom left) to reconstruct the angle 8.
Expression (7) is rewritten to match the symbols in the figure
as

8 = ( ⌊8⌋ + {8} ) · Q

The block Enable Round/SubR at the far right of Figure 12
generates the control signals necessary to select the actual
case among the ones in Table 3. The inputs {γi} are compared
with a number of thresholds, corresponding to the different
sub-interval segments, to activate the correct rounding func-
tion according to Table 3. If some {γi} are in both the s.L and
s.C sub-intervals, rounding is required and the Round signal
is activated.

98592 VOLUME 11, 2023



G. C. Cardarilli et al.: RNS-Based Initial Absolute Position Estimator for Electrical Encoders.

FIGURE 12. The main blocks used to estimate the initial position taking into account of measurement errors within ±Nmax .
The inputs of the system are the measured angles ϕi of each trace and the output is the reconstructed absolute angle 8.

In addition, the Enable Round/SubR unit evaluates the
positions of the majority of {γi}, and if they are in s.C the
signal SubR is activated to perform ri = ⌊γi⌉ − 1.
An example of angle reconstruction in presence of noise,

and error-detection and correction implemented, is shown in
Fig. 13. The noise, in this context, is used to emulate some
unwanted real phenomena, such as thermal noise, mechanical
imperfection, vibrations, electromagnetic noise, etc. In real
applications, all these effects may produce the wrong read
value of the angle on one or more traces. To emulate these
unwanted phenomena, the authors first created a data set by
sampling the 360◦ angle with 0.01◦ steps (36000 values) and
added to each sample a random value between −Nmax and
+Nmax. To generate these values to be added to the read
angle, the authors generated 36000 random values following
a Gaussian distribution because most of them should be
0-centered as it happens in real cases. However, even if
we use other types of noise the result is exactly the same
because the samples that are used for both angle estimation
and error detection are uncorrelated. The system parameters
are: P = 3, mi ∈ {2, 3, 11}, M=66 and Q=5.4545◦. The
upper graph (Fig. 13.a) represents the input of the system, i.e.,
the measured absolute angle which varies from 0◦ to 360◦

with an angular step of 18 = 0.001◦. By applying addi-
tive white gaussian noise, or AWGN, several measurement
errors appear in Fig. 13.b. Since the noise introduces angular
errors smaller than Nmax = Q/4 = 1.36◦, the system is able
to correct them and the reconstructed angle is shown in the
third graph (Fig. 13.c). The graph at the bottom (Fig. 13.d)
shows the error distribution for the reconstructed angle with
AWGN (i.e. the difference between the input angle and the
reconstructed one). The average and maximum errors are:

eaverage = 6.7 · 10−3 and |emax | = 1.4 · 10−2.

VI. THE CHOICE OF MODULI AND THE NUMBER OF
REVOLUTION PERIODS IN AN EE
Since the quantity Nmax depends on interval Q, the system
is more tolerant if this interval is larger. This corresponds

FIGURE 13. Applying noise to the input angle (a) , the system detects and
corrects the errors (b) and finally reconstructs the angle (c). The resulting
noise in the output is shown in (d).

to choosing traces with the least possible number of revo-
lutions per trace rpt (i.e., small values of M ). However, the
final choice must also take into account the resolution Q
of the measurement. The algorithm shown in this work is
used only for the computation of the initial position in an
EE. Afterward, the system calculates the following positions
by integrating the newly measured angles of a single trace.
In other words, the variation of the measured angle 1ϕi in
the reference, trace is added to the initial (previous) value.
The reference trace used for these successive computations
is the one with the smaller modulus mi representing the trace
with the higher number of rpt. This choice is justified by the
relationship, derived from (9), between the absolute angle 8

and the local angles ϕi of each modulus:

ϕi =

〈
8 ·M
mi

〉
360◦

= ⟨8 · Ki⟩360◦ (18)
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FIGURE 14. Noise attenuation with varying P and M.

In (18), a small variation of 8 is amplified Ki times in the
angle ϕi. That is,

1ϕi = 18 · Ki (19)

From (19), we define in (20) the quantity Gs,i = Ki repre-
senting the sensitivity gain of modular angle ϕi:

Gs,i =
1ϕi

18
=
M
mi

= Ki (20)

Since the sensitivity of a modular angle ϕi with respect to the
absolute angle 8 is directly proportional to Gs,i and then to
Ki, we have to find a trade-off between Nmax and Gs,i given
by

Gs,i =
360◦

4·Nmax · mi
(21)

A reasonable choice could be to use P−1 moduli with as
small as possible values, while the P-th modulus should be
chosen to match the desired sensitivity. If we consider P = 3,
the best configuration for noise tolerance is the one having
moduli mi ∈ {2, 3, 5}. In this case, the maximum sensitivity
gain useful for the computation of successive positions is
given by using themodulusm1 = 2withGs,1 = 15. However,
if we want to improve the sensitivity, we can increase the
value of m3 from 5 to 11, doubling the sensitivity gain from
15 to 33.

Commercial EEs have traces revolving up to 128 rpt (traces
with more rpt are physically very difficult to realize), and
a number of rpts in this range can be represented by a
moduli-set such as mi ∈ {3, 8, 15}.

A. NOISE ATTENUATION WITH VARYING P AND M
Another important aspect to consider is the relationship
between the tolerance to the noise and the number of moduli
P. Fig. 14 plots the system noise attenuation using three and
four moduli (P = 3 and P = 4) for different values of
M . The experiments are performed applying a uniform noise
distribution between ±Nmax , to the smallest modulus m1, for

each of the (P,M ) pairings. The plots in Figure 14 show that
a larger P improves the system’s capability to attenuate noise
at a comparable dynamic rangeM .

VII. CONCLUSION
In this work, we present a system to estimate the initial
position of a type of electrical encoder by using the RNS
representation and the CRT algorithm for the reconstruction
of themeasured angle.With respect to previouswork, we gen-
eralize the reconstruction algorithm to handle systems with
more than two tracks and add robustness to the reconstruction
by detection and correction of errors due to noise, when
less than Nmax . The proposed approach is very flexible and
reconfigurable by choosing the set of moduli satisfying the
design constraints. Since the moduli set influences the noise
robustness and the sensitivity of the measurement, the best
choice can be made by considering their trade-off.

An improvement, for future work, is to have a redundant
set of moduli to be able to correct measurement errors also in
presence of noise greater than Nmax .
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