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ABSTRACT Federated Learning (FL) is a new paradigm aimed at solving data access problems. It provides
a solution by moving the focus from sharing data to sharing models. The FL paradigm involves different
entities (institutions) holding proprietary datasets that, contributing with each other to train a global Artificial
Intelligence (AI) model using their own locally available data. Although several studies have proposed
methods to distribute the computation or aggregate results, few efforts have been made to cover on how to
implement FL pipelines. With the aim of accelerating the exploitation of FL frameworks, this paper proposes
a survey of public tools that are currently available for building FL pipelines, an objective ranking based on
the current state of user preferences, and an assessment of the growing trend of the tool’s popularity over a one
year time window, with measurements performed every six months. These measurements include objective
metrics, like the number of ‘‘Watch,’’ ‘‘Star’’ and ‘‘Follow’’ available from software repositories as well as
thirteen custom metrics grouped into three main categories: Usability, Portability, and Flexibility. Finally,
a ranking of the maturity of the tools is derived based on the key aspects to consider when building a FL
pipeline.

INDEX TERMS Federated learning tools, distributed systems, AI at scale.

I. INTRODUCTION
Federated learning (FL) is a paradigm that aims to solve
the data access problem. In the Artificial Intelligence (AI)
domain, data represents the starting point for many research
and development activities [1], [2], [3].With increasing atten-
tion given to the field, data have also grown in demand and
appreciation, redefining priorities in designing and building
solutions for real-world applications. A clear demonstration
of this growing importance is the creation of dedicated laws,
such as the General Data Privacy Regulations (GDPR) [4] in
place in the EuropeanUnion, the Protection of Personal Infor-
mation Act (POPIA) [5], and the Health Insurance Portability
and Accountability Act (HIPAA) [6] in the USA, which is
specific for accessing clinical data and medical records. From
the AI perspective, this reflects the need to access data to
advance the State of the Art (SOA) in a given environment
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while fully complying with regulations. FL is an effective
way to satisfy all these requirements. In a federation of col-
laborating institutions, what is shared is a common global
model that is partially trained by every collaborator using
local data. Historically, the approach of training AI models
assumes that data would be collected and centralized in a
unique infrastructure appropriately equipped with dedicated
hardware and software to sustain the computation. High per-
formance computing (HPC ) centers are great examples of
this approach, as illustrated in Figure 1. In constrast, in an FL
setting, data are expected to stay in the exact location where
they were collected, while a copy of the AI global model
is shared across all institutions participating in a federation.
A generic example is shown in Figure 2.
The research community has already started investigat-

ing this emerging topic either for its privacy-compliant
aspects [1], [7] or as a viable tool for addressingAI challenges
in critical domains such as the biomedical context [8], [9],
[10]. Although the domain is still relatively new, the literature
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FIGURE 1. Data-to-model: example of legacy approach where data would
move to a centralized training facility. Here the AI model is represented
as a graph or neural network.

FIGURE 2. Model-to-data: example of a federated approach. A central
unit called aggregator would clone and distribute copies of the same
model to each collaborating institution. Each of them would then train its
copy of the model using local datasets before sharing it back to the
aggregator. As the name suggests, the aggregator would ultimately merge
the models from different institutions and restart the process by sending
out the latest aggregated version.

can already provide helpful surveys on how the concept works
and complies with privacy aspects [1], how it can be trans-
ferred to the Internet of Things (IoT) world [11], and what
are the steps to implement it from a protocol, software, and
hardware standpoint [11]. The rising interest in the research
community and industries R&D departments has enriched the
literature, which has, in turn, influenced the development and
evolution of many new tools for implementing FL pipelines.
If, from one perspective, this aspect is encouraging, it reflects
the need to obtain clear indications about what tools are
currently available, which are the most popular, and what is
their level of maturity (in terms of features).

This paper aims at providing four main contributions:
1) Provide an updated list of tools publicly available for

implementing FL pipelines.
2) Share the current state of adoption of each tool, includ-

ing growth trends calculated over a one year time
window where measurements from three ‘‘harvests’’
(Hi) were performed.

3) Identify and describe the key aspects required by the
research community andmap them into a list of features
that tools should include.

4) Propose a ranking based on objectivemetrics, including
common indicators and the ability to match the needs
highlighted in the previous point.

We genuinely believe that by providing a quantitative and
qualitative survey of the FL tools, the research community
will be able to: accelerate its activities, promote fairness by
proposing an inclusive method to collect comparable studies,
and help tool providers identify ways to improve their prod-
ucts. The availability of a ranking of FL tools will also boost
their exploitation in the production environment, where such
tools still need to be explored.

A. PAPER ORGANIZATION
This paper is composed of six Sections. In section II, we dis-
cuss FL implementation related works. Section III focuses on
the list of tools currently available to the community, shar-
ing a high-level overview of their popularity and adoption.
Section IV augments the retrieved list of tools with the current
state of adoption, including the growth trend observed over
one year, and Section V discusses the key aspects that should
be considered when implementing federated environments
for research purposes. These factors are then translated into
requirements that FL tools need to satisfy for successful
exploitation and consolidated in a raking table. The results are
discussed in Section VI and future directions and conclusions
are finally addressed in VII.

II. RELATED WORKS
FL is a distributed machine learning (ML) approach that
enables organizations to collaborate on projects without shar-
ing sensitive data [12], such as patient records [13], [14] or
financial data [15], or data that is not easily accessible, such
those stored in remote locations such as satellites or space
stations from high-resolution sensors [16]. The basic premise
of FL [1], [2] is that the model moves to meet the data rather
than the data moving to meet the model. Therefore, the only
minimum data movement required across the federation is the
model parameters and their updates.

A. FL SETTINGS
There are two essential components of an FL pipeline: one or
multiple institutions owing data and a mechanism to orches-
trate the process. Each institution must have local data and be
accountable for hosting the training process on proprietary
data. The orchestration mechanism may vary, but is mainly
of two types: Synchronous or Asynchronous.

In a synchronous scenario, the idea is to have a central
unit, often identified as an aggregator [12], [13], acting as a
central pivot and determining when to start a new iteration.
The aggregator is responsible for cloning the initial model to
each collaborating institution, waiting to receive the locally
trained copies, and finally merging them, as the name sug-
gests. This type of FL pipeline is usually implemented in big
data centers (cross-silo), such as those involved in medical
environments [3], [17]. Data centers can store vast amounts of
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data and provide the computational power required to process
them. In addition, big computing infrastructures, such as HPC
centers, can rely on fast and stable connections to the network,
simplifying the creation of a more reliable communication
channel to interact with a hypothetical aggregator unit.

However, as soon as we move away from data centers
towards edge devices, new challenges arise owing to the high
variance in products and manufacturers. Devices with differ-
ent latencies, working frequencies, and hardware features can
have different computation times [18], [19]. These are the
reasons for the need for an asynchronous FL pipeline. In this
scenario, each collaborating institution can share its update at
any time, either to a unique aggregator [18], [20], [21] or to
other participants in an ‘‘all-to-all’’ setup [22], [23].
Another critical point to address is the difference between

the horizontal (HFL) and vertical (VFL) federated learning.
To understand this difference, we need to consider the space
of the features and the model type. In the examples shared
thus far, we implicitly refer to the Horizontal FL, where the
different collaborators have different data but contribute to
the federation by sharing the feature space and training the
same model. This is the case for institutions with offices
distributed across different locations that would like to train
a common model by leveraging the local data stored in each
facility in a privacy-compliant manner. In Vertical FL, each
collaborator is expected to contribute by providing differ-
ent bits of information from the same sample. This leads
to a scenario in which the feature space accessed by every
collaborator may be different from the others. Therefore,
each collaborator might train a different model in the vertical
configuration. Aggregation, in this case, is represented by
the interoperability between collaborators, where to update
a model, information coming from the model of another
collaborator might be required [24], [25]. For example, in a
typical VFL setting, we can see a life insurance agency
collaborating with hospitals to build a decision model to
obtain more precise estimations of their affiliates. In this
case, it is expected that the entities involved in the federation
can provide different information about the same user. These
two ways of articulating the data for a federation impact the
choice of model and how the federation is orchestrated.While
in the HFL, there is only one model, and all the collabora-
tors are responsible for ensuring that data are normalized to
feed it, the VFL brings some more complexity. In this case,
to handle different data types from several institutions, each
collaborator should have a local model that can accept the
data from that specific institution as input. In addition, there
must be a federated model that takes all outputs of the various
local models as inputs. As illustrated by Chen et al. [25], the
procedure for training Deep Learning (DL) models based on
back-propagation [26], [27], needs to deal with the two-level
training procedure represented by the different models that
need to bemanaged: one at the collaborator level and the other
at the aggregation point. This complexity is also reflected
in the challenges that might arise in finding a satisfactory
convergence point for the adopted DL model.

B. FL CHALLENGES
Regardless of which FL setting (Synchronous or Asyn-
chronous) or configuration (Horizontal or Vertical) is adopted
by a given federation, the research community currently
adresses three main areas:

1) Aggregation functions and model convergence starting
from different data distributions.

2) Privacy aspects and ways to build a secure FL pipeline
for protecting the IP during experiments.

3) Communication efficiency and protocols to improve
the FL base infrastructure.

Protecting dataset ownership implies that in most cases,
the assumption of dealing with independent and identically
distributed (i.i.d.) samples across local nodes does not hold
for FL setups [28], [29]. Data distribution can severely impact
the training performance by affecting the total accuracy [30],
convergence capability, authentication processes (especially
in the case of different devices), and speed of the process
intended as total time-to-train [31]. In summary, in this
setting, the performance of the training process may vary
significantly according to the imbalance of the local data
samples and the particular statistical distribution of the train-
ing examples (i.e., features and labels) stored at the local
nodes [2].

In the past few years, institutions have introduced FL
deployments to address the need to train AI models. Sectors
such as healthcare and finance would benefit from having
a setting with greater access to more extensive and diverse
datasets without violating privacy laws [32], [33], such as
HIPAA, GDPR [4], and POPIA [5]. On the one hand, FL has
been designed with security in mind [30], and the set up is
just the beginning. Securing execution environments intro-
duces many open challenges to the research field [34]. Key
questions include finding a consolidated method to guarantee
secure execution (encryption, key exchange, and hardware
features) and validating the reliability of intermediate results
and collaborators within the federation.

Massive amounts of data are usually stored in ‘‘Data-
Lake’’ infrastructures. The more machines/institutions that
participate in a federation, the more critical is the ability to
scale. As mentioned in the previous section, a consolidated
method for detecting scarse training contributions (coming
from institutions with corrupted or redundant data) is still
lacking, to the best of our knowledge. Aggregation functions
are currently being evaluated by the research community [28],
[33], [35]. Another implication when discussing big scales is
the infrastructure and the connectivity chosen by the institu-
tions for communication [2].

C. STUDY RELEVANCE
Several studies have proposed surveys to illustrate the
advancement in the field [1], [11]; however, to the best of
our knowledge, no one has provided a ranked list based
on the ad hoc quality assessment criteria of all the (pos-
sible) tools available to the community to implement FL
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experiments. A comparison of five tools is provided in [36],
which are accessible through a licensed service, without clari-
fyingwhy or how these tools were precisely selected. Another
study [37] provides an attractive comparison table. However,
the main focus of this work is to promote an alternative
tool specifically for FL benchmarks instead of providing a
complete list of the available options to boost the exploita-
tion of FL across the community. Even in this related work,
it is unclear why and how the tools discussed were selected.
Similarly, [38] proposed a complete benchmarking suite with
a helpful decision tree to help users choose a tool based on
their requirements. Their recommended ranking also includes
some of the evaluation metrics proposed in this study with an
even deeper level of detail. However, while we believe in the
value of such an approach, the breadth of the offer in terms of
tools that can be chosen might represent a constraint for end
users. In fact, [38] centers its evaluation on nine tools, but
the criteria for which those tools were identified and selected
need to be clarified. As we discovered in this work, the list of
open-source FL tools can exceed 30, and it is interesting to
note how the most popular tool to date was not considered in
their decision tree.

III. FEDERATED LEARNING TOOLS
A. METHODS AND PREMISES
This article aims to provide an inclusive and informative
list of the current FL tools available to the community
for implementing research pipelines in any environment in
which accessing distributed data is challenging. To better
understand the present scenario, we performed three liter-
ature searches, Hi, where i ∈ 1, 2, 3. H1 was conducted
on March 28, 2022, H2 on September 28, 2022, and H3 on
April 10, 2023.

This activity was inspired by the Preferred Reporting
Items for Systematic Reviews andMeta-Analyses (PRISMA)
guidelines. More specifically, we followed the Preferred
Reporting Items for Systematic Review and Meta-Analysis
of Diagnostic Test Accuracy Studies (PRISMA-DTA): expla-
nation, elaboration, and checklist [39]. In particular, the
guidelines we followed were a selection of the guidelines
described in the PRISMA 2020 checklist, accessible on the
official PRISMAwebsite: http://www.prisma-statement.org/.
Below is a detailed description of the items extracted from the
PRISMA guidelines that were identified as applicable to this
collection. Items not included in the list belowwere either not
sharing best practices on the ‘‘Method’’ (i.e., best practices
for ‘‘Title,’’ ‘‘Introduction,’’ and ‘‘Abstract’’ for systematic
reviews) or not directly relatable to this contribution as it does
not fully match a ‘‘Systematic Review.’’ Some examples of
discarded items are as follows:

• 12) Specify for each outcome the effect measure(s) (e.g.,
risk ratio, mean difference) used in the synthesis or
presentation of results.

• 14)Describe any methods used to assess risk of bias due
to missing results in a synthesis (arising from reporting
biases).

• 19) For all outcomes, present, for each study: (a) sum-
mary statistics for each group (where appropriate) and
(b) an effect estimate and its precision (e.g., confi-
dence/credible interval), ideally using structured tables
or plots.

On the contrary, here is the list of items considered for this
work. The numbers reported below are a direct references to
the PRISMA document.

• 5) Specify the inclusion and exclusion criteria for the
review and how studies were grouped for the syntheses.

• 6) Specify all databases, registers, websites, organi-
sations, reference lists and other sources searched or
consulted to identify studies. Specify the date when each
source was last searched or consulted.

• 7) Present the full search strategies for all databases,
registers and websites, including any filters and limits
used.

• 8) Specify the methods used to decide whether a study
met the inclusion criteria of the review, including how
many reviewers screened each record and each report
retrieved, whether they worked independently, and if
applicable, details of automation tools used in the
process.

• 13.b) Describe any methods required to prepare the
data for presentation or synthesis, such as handling of
missing summary statistics, or data conversions.

• 13.d) Describe any methods used to synthesize
results and provide a rationale for the choice(s).
If meta-analysis was performed, describe the model(s),
method(s) to identify the presence and extent of statisti-
cal heterogeneity, and software package(s) used.

• 16.a) Describe the results of the search and selection
process, from the number of records identified in the
search to the number of studies included in the review,
ideally using a flow diagram.

• 16.b) Cite studies that might appear to meet the inclu-
sion criteria, but which were excluded, and explain why
they were excluded.

• 23c) Discuss any limitations of the review processes
used.

Each of these items was used to frame the study. The fol-
lowing map illustrates how the single guidelines contributed
to shaping the sections:

• Items 5, 6, 7 and 8 were considered for building this
Section;

• Items 13a and 13d, were used to build the comparison
table in Section IV;

• Items 16a, 16b and 23c, were used to structure the
discussion of the results provided in Section V.

B. EXPLORING TOOLS
To objectively build the list of tools, we performed three
harvests,H1,H2, andH3, with roughly six months of cadence
(184 and 194 days respectively). The collection method was
the same as that described below. We used three different
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FIGURE 3. Collection pipeline implemented for the harvests. On each
arrow is outlined the number of articles retrieved and filtered. Numbers
between squared brackets refer to the outcome of H2, while the curly
brackets summarize the numbers from H3. The output numbers of the
second review are obtained by summing the numbers of a given category
from the first review with the respective class of the second review.
Please note that despite the September harvest returning 1292 articles,
only 270 were new findings. The same consideration applies for H3, with
1298 to 248 articles.

search engines: Google Scholar [40], Semantic Scholar [41],
and the standard Google website.

For the first two, we developed a script to automatically
query search engines using a collection of keywords on
the topic. We built such a collection by combining each
item p of a list of prefixes P with each element s in a list
of suffixes S. The set of prefixes was populated with the
‘‘federated learning’’ keyword, and other synonyms or more
related terms used in the literature to express similar con-
cepts: P=’federated learning’, ‘privacy-preserving machine
learning’, ‘collaborative learning’, ‘collaborative machine
learning’.

The set of suffixes was built around adjectives and
secondary aspects, like ‘tools, library’ and ’open-source’:
S=’framework’, ‘tool and framework open source’, ‘tool and
framework open-source’, ‘open source framework’, ‘open
source tool’, ‘open source library’.

This led to a prosperous and inclusive search of all the
relevant articles and works in the domain.

Google Scholar helped capture all related works where a
given keyword (or part of it) was mentioned in the paper and
not only in the title. In H1, we identified a cumulative list of
420 related articles, of which 217 were unique. Despite the
contribution, due to a service limitation, the reported numbers
refer to H1: the article harvest completed in March ’22 only.
To build a more robust and consistent set of related works,

we leveraged the Semantic Scholar service [42]. The website
allows users to perform queries and sort the outcome accord-
ing to four metrics: ‘‘Relevance’’, ‘‘Citations-count’’, ‘‘Most
Influential Paper’’, and ‘‘Recency’’.

We repeated searches using all the keywords for all the
four sorting types mentioned above, obtaining 1121 (out of
8320) unique articles during H1, 1291/8284 unique articles
with H2 and 1298/8360 unique articles in H3. The number of
new articles retrieved in H2 that were unavailable in H1 was
270, while H3 enriched the search with 248 new findings.

FIGURE 4. A subset of examples of selected articles for each category:
‘‘relevant’’ green, ‘‘uncertain’’ blue and ‘‘non-relevant’’ red.

Finally, we used the standard Google search engine to
ensure we could capture all the relevant FL tools yet to be
described in a published paper. To do so, we evaluated the
first ten results obtained by querying the search engine with
the same list of keywords used previously. This step allowed
us to enrich the list with additional FL frameworks, such
as Nvidia Flare [43], Tensorflow Federated [44], and IBM
Federated [45].

Once we obtained the three lists of unique titles described
above, we finally merged them, resulting in 1195 unique
articles discovered in H1, 1292 retrieved in H2, and 1298
inH3. We then started pruning results by manually reviewing
and labeling the list in three different buckets: ‘‘relevant’’(R),
‘‘non-relevant’’ (NR), and ‘‘uncertain’’ (TBD).

Articles considerably unrelated to the topic (e.g., work
mentioning ML methods or collaborative learning platforms
for schools) were discarded from the collection. After the first
labeling cycle, we had 65R, 980NR, and 150 TBD forH1, 9R,
227 NR, and 34 TBD for H2 and 17 R, 198 NR, and 33 TBD
for H3
Figure 4 shows an example of articles captured by the three

categories.
The ‘‘uncertain’’ category required us to conduct a deeper

review of the work. All articles in this list underwent a second
round of labeling. The objective was to review 150 papers on
the TBD list and to allocate them to the R or NR. As a result,
we obtained 83 R and 1112 NR for H1, 12 R and 258 NR for
H2 and 19 R with 229 NR for H3.
A summary of the adopted research pipeline and the results

collected during each harvest is shown in Figure 3.
Ultimately, a deeper understanding of the relevant papers

was performed to draw the final list of FL tools. This final
review allowed us to identify 36 suitable tools duringH1, two
additional tools duringH2, and one last tool added toH3. The
complete list of tools retrieved in H1 with the indicators from
the Github and Gitlab repositories is presented in Table 1.
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TABLE 1. Tool popularity table, March harvest H1. Legend: This table shows the list of 36 tools retrieved in March with their respective Git indicators and
the cumulative scores. The results are sorted from the most popular tools on the top to the less popular tools on the bottom. Indicated with NA are the
tools for which the Git repository was unavailable or not publicly accessible. If not specified otherwise, all the repositories are Github projects.

IV. TOOLS POPULARITY AND LEVEL OF ADOPTION
After retrieving the list of tools, our goal was to understand
each item’s popularity and adoption level from a community
perspective. EachGit repository has public indicators, such as
the number ofwatches (W), forks (F), and stars(S). TheWatch
indicator captures the number of users who actively watch the
repository. These users receive updates when new actions are
taken from a repository. The number of forks indicates the

number of times a repository has been forked. It is a good
indicator of how many interested users might develop code
to extend the tool. Finally, the number of stars indicates the
number of likes that the repository has received. This final
indicator might need to be more accurate in capturing actual
users, but it can provide a reasonable estimation of reach in
terms of how many people have seen the tool at least once.
For practicality, we aimed to combine these three aspects into
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one consolidated score to provide a popularity driven ranking
of the tools. Since popularity would also depend on the time
a given repository was made available to the community,
we wanted to normalize all the values with a timing factor.
This step ensured that newer repositories with less exposure
to the community would not be affected by a low score. The
scores are calculated as follows:

ScoreHi =

1
3 (W + F + S)Hi

ETHi

(1)

where ETHi is the time elapsed between the day of the tool’s
first commit and the harvest dateHi. Table 1 shows the scores
associated with the tools retrieved in H1, the March harvest.
An initial understanding of which tools were accessible

to the community was helpful but could provide a limited
view of the bigger picture. Indeed, while Git indicators can
share important insights about user preferences in a given
time frame, they do not necessarily capture community trends
from a popularity growth rate perspective.

To access this information, we observed the list of tools
over a time window to determine which tools were being
considered by the community at a higher pace. Thanks to
the second harvest H2 held on September 22) and the third
H3 done on April 23, we discovered new tools to add to the
list and updated the values of W, F, and S for each of the
tools found in March. Knowing the differences between the
indicator’s value recorded in the various harvests, given two
harvests,Hi andHj where j > i, we computed the growth rate
for each tool as follows:

GRij =

1
3 ((W + F + S)Hj − (W + F + S)Hi )

1ji
(2)

where 1ji, is the difference in days between Date(Hj) and
Date(Hi). More precisely, 121 = 184 days, 132 = 194 days
and 131 = 378 days. We calculated the growth rate GR
for all possible combinations: GR12 captures the growth of
the repositories between H1 and H2, GR23 for the growth
between H2 and H3 and GR13 captures the yearly evolution
between H1 and H3. The results of these computations are
shown in Figure 5.

Interestingly, the order of the tools based on the popularity
level observed in H1 and captured in Table 1 does not match
the growth rate highlighted in Figure 5.

V. PRIORITIES IN FL TOOLS FOR RESEARCH
The previous Sections illustrated how we could retrieve a
list of relevant tools for building FL pipelines and which are
preferred by the community. In this Section, our goal is to
provide a new ranking of tools to identify the most mature.
We focused on the specific features of each tool, regardless
of the popularity aspects, as outlined in the previous Sections.

The task consists of retrieving and evaluating FL tools that
can be adopted to boost the exploitability. To perform this
classification, we defined a set of measures based on the
different needs and expectations that a tool should satisfy
according to the application field and final objectives.

FIGURE 5. Popularity growth rate: this graph illustrates which tools have
been gaining more popularity in the community between March and
September ’22 GR12, between September ’22 and April 23 GR23, and over
an observation window of 374 days (roughly one year), GR13. Tools that
did not have a repository available in H1 (March ’22) were excluded from
this chart as it would not be possible to track any evolution.

As described in the SOA Section, there are several ways of
implementing FL. From bridging different data-center insti-
tutions together at the production level to leverage the agile
nature of IoT devices, FL pipelines must be shaped according
to the needs, goals, and constraints to consider. However,
in line with our purpose of identifying the most mature FL
tools for research activities, there is no need to filter results
based on data centers or edge devices as long as the tools
will provide the possibility to simulate multiple decentralized
abstracted computing hubs.

However, other considerations should be drawn around
what has been highlighted in the FL challenges regarding
data distribution, confidential computing, and communica-
tion efficiency.

Indeed, those aspects are essential because they can
directly reflect requirements that FL tools need to fulfill to
be considered. For example, they all highlight the need for a
flexible andmodular architecture to allowmaximum research
customization for aggregation functions, communication pro-
tocols, or privacy-preserving and security features. Another
practical insight derived from Items 2 and 3 concerns the
ability of a tool to scale out on multiple computing machines.
As demonstrated in [16], the applicability of FL is not only
related to the need to access data complying with regulations.
It can also refer to data that are not readily retrievable, such
as those from a satellite or space station. Furthermore, the
Medical [3], or Geo-spatial [16] environments are usually
sources of high-resolution data acquired by machines man-
ufactured by different companies, which could map the need
for dedicated pre-processing routines to be used to feed an
AI model. FL approaches can be tested on multiple machines
hosting different datasets (generated by different equipment)
or by simulating multiple parallel instances running on the
same computing node. The first setting is preferred because it
enhances the reliability of the conclusions when investigating
the privacy and communication efficiency aspects.

In addition to what has been outlined, other practical
considerations related to the research environment may also
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apply. The easier the path to results in a research environ-
ment, the faster the deployment of this technology in real
institutions. For example, being able to set up a federated
environment quickly by leveraging friendly API, re-using
common and well-established language (such as Python), and
AI platforms (such as PyTorch or Tensorflow to mention two)
having access to direct support channels or useful documen-
tation can represent critical aspects for simplifying research
activities in different domains.

A. EVALUATION METRICS
Based on these observations, we consolidated a list of evalu-
ation parameters and guidelines organized as follows:

1) Usability
• Documentation (Docs.)
• Developer Experience (DX)
• Language (Lang.): Python, R, C++, etc.
• Supported AI frameworks: PyTorch, Tensorflow
(TF), etc.

• Type of AI: Machine Learning (ML), Deep Learn-
ing (DL)

2) Portability
• Templates/Examples availability (T/E)
• Distribution channels: Anaconda, Pipy, etc.
• Multi-node mode
• Open-source

3) Flexibility
• Containers/Virtualization (C/V)
• Modular architecture
• Horizontal or Vertical (H/V) FL
• Synchronous or Asynchronous (S/A) FL
• Privacy and Security independent module?
(PVC/SEC)

• Easy integration with other tools
We used these parameters to build an ‘‘Evaluation Table’’ 2

for the tools identified in the previous Section. The table was
populated with information retrieved from publicly available
resources for each tool (see ‘‘Docs.’’ column in Table 2).
As can be seen, there is a mismatch between the tools listed
in Table 1 and those listed in Table 2. This is mainly due to
the following four reasons:

1) Tools not open-source, like Sherpa-ai [70].
2) Missing repositories: is the case of tools that have not

yet released their codes after the paper publication:
Chiron [72], FedHealth [73], FAE [74], GENO [75],
FedTGan [76] and IPLS [78].

3) Coherent but not suitable: is the case for LEAF [52],
FL-Bench [77], and PyFed [64], which are positioned
for benchmarking purposes and, therefore, might
lack essential features for conducting more extensive
research activities. FedGraphNN [53] is a sub-project
of the more significant initiative known as FedML [48]
already included in this survey.

4) New tools or new openings: is the case for Nvidia-
Flare [43] (a sub-project of Nvidia-Clara) and

FL-Pytorch [71] which opened their repositories at
some point after H1 harvest, as well as FLUTE [79],
and PLATO [80], which were retrieved (and added)
during H2 and XFL [81] retrieved in H3.

After pruning the 12 tools that did not qualify, adding 2
(despite the substitution with Nvidia-Flare [43], Nvidia-Clara
was already captured by Table 1) at the end of April ’23
harvest H3, we ended up with a list of 28 total tools.

In a second instance, a score was associated with each
cell based on a quantitative assessment. Aiming at objective
classification of the tools, we captured qualitative aspects in
a very inclusive manner. These rewarding tools demonstrated
additional development efforts for the community through
the available material without penalizing new promising tools
that might still be under development.

More precisely, the proposed scoringmethod rewards com-
pleteness rather than excellence. This means that a tool that
supports 20 programming languages but needs other relevant
features would not outperform a tool that supports only one
programming language but has more features that simplify
the user experience. This is achieved using scores with a
reduced range of values to allow newer but promising tools to
compete with more mature tools. More in detail, we adopted
a simple approach to assign a score to each cell and designed
the ‘‘Score Table’’ 3:

• Documentation: We considered having Paper P and/or
a public repository for the tool Gh (Github) or Gl (Git-
lab) as a minimum requirement. Therefore, we assigned
zero to all the tools that did not match this expecta-
tion; rewarded with 1 point the tools with at least one
additional source of information (such as a dedicated
web page or richer documentation that would go beyond
Readme files on repositories or Slack support). Finally,
1.5 points were given to all those that provided two or
more sources.

• Developer Experience (DX): we assigned 0 points to all
the tools that did not seem to mention nor provide a user
interface of some sort (e.g., Jupyter notebook [82] or
Google Colab [83] to mention two). We assigned 1 point
to all the tools with at least 1 form of user interface
abstracting from programming on the command line.
Finally, 1.5 points were given to all the tools with two
or more user interfaces.

• Language: We assigned 0 points where information
about the supported version was not clearly outlined in
the documentation. One point was given to the tools
supporting at least one language (or one version), and
1.5 points were given to all tools supporting two lan-
guages (or two versions of a language). Finally, 2 points
were given to all the tools where the engineering team
made an the extra effort to support more than two
languages (or more than two versions of the same lan-
guage).

• Supported AI frameworks: We assigned 0 points where
the information about the supported AI frameworks was
not clearly outlined in the documentation; 1 point was

96872 VOLUME 11, 2023



W. Riviera et al.: FeLebrities: A User-Centric Assessment of Federated Learning Frameworks

TABLE 2. Tool evaluation table: in documentation (‘‘Docs.’’) and distribution channels (‘‘Dist. channel’’) columns, P = Paper, Gh = Github, Gl = GitLab,
W = Website. In the ‘‘Supported AI Type’’ column, DL = Deep Learning and ML = Machine Learning. Column ‘‘H/V’’ differentiates between ‘‘Horizontal’’
and ‘‘Vertical’’ FL, while the ‘‘Sync/Async’’ column indicates whether the tool supports synchronous S or asynchronous (A) workflows. The NM label refers
to ‘‘Not Mentioned’’, meaning that the information did not appear as mentioned in the available documentation.

given to each supported framework.When the number of
different supported frameworks exceeded 2, we assigned
a maximum score of 2.5 points.

• Type of AI: 0 points if not mentioned in the documenta-
tion, and 1 for each type of AI supported (ML or DL).

• Templates/Examples availability.
• Distribution channels: we set the minimum requirement
for the ability to download a repository and install the
tool from there. Therefore we assigned zero points to all
the tools respecting this minimum requirement, 1 point
to all the tools that had at least one additional way to
access the software package (e.g., Pipy or Anaconda);
finally, 1.5 points for all the tools that could be installed
in two or more ways.

• Multi-node mode: zero when only the simulated envi-
ronment on a single computing machine was mentioned.
One point to all the tools that allow implementing real
federation on multiple nodes and 0.5 if this capability
has limitations or constraints.

• Open-source: all the tools presented in the table are
open-source. This column was not included in the table.

• Containers/Virtualization: zero was given where the
documentation did not provide any of the two options.
One point was given where either a containerized or
virtualized environment was supplied. 1.5 points when
two or more options were listed and 0.5 when containers
were available but also presented as the only way to
access the tool.
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TABLE 3. Tool scoring table.

• Modular architecture: based on the analysis of the repos-
itories of the tools, we trust that all of them respect this
parameter. More specifically, they all have proven to
have separate entities (such as client-server and orches-
tration processes) that can be launched independently.

• Horizontal or Vertical: a tool must implement at least
one. Therefore we rewarded 1 point only to the tools that
would allow executions in both settings.

• Synchronous or Asynchronous: Asynchronous tools can
simulate synchronous orchestration with fewer efforts
(i.e., active waiting from the aggregation point) than
the one required in the opposite scenario (i.e., differ-
ent communication protocol orchestration). Therefore,
we rewarded 1 point only to the tools that would
allow execution in Asynchronous. Where ‘‘Not men-
tioned’’, given that a tool must implement at least one,
we assumed the default to be synchronous and assigned
0 points.

• Privacy and Security independent module: zero point to
the tools that focused on the ability to implement an
FL pipeline but did not seem to mention nor highlight
the possibility of tweaking or injecting any privacy or
securitymodule (i.e., Homomorphic encryption, secured
communication protocols, blockchain). One point to all
the tools that included at least one.

• Easy integration with other tools: same process
applied for evaluating the containers and virtualization
mechanism.

VI. DISCUSSION
This paper proposes a survey of the public tools currently
available for building FL pipelines. After retrieving the list
of tools, we evaluated them using three different metrics:
the tool’s popularity (based on community adoption), growth
rate, and maturity (based on our proposed review). These
evaluations led to various rankings. An in-depth discussion
of the results is provided below.

Based on the resulting ranking in Table 3, the most mature
tools are Flower [49], OpenFL [50], and IBM-Federated [45].
Although the firsts two are fairly close to each other, the
third appears to have a solid distance. PySyft [46], Nvidia-
flare [43] and FedML [48] followed the same rate. Fedn [60]
comes 7th.

This is just an initial observation, but things change when
we integrate the popularity results highlighted in Table 1
and the growth rate outlined in Figure 5 into the equation.
In Table 1, PySyft [46] and FATE [47] are the two most
popular tools according to the developer’s community, while
Flower [49], OpenFL [50], and IBM-federated [45], cover the
5th, 6th, and 7th placement, respectively, with a considerable
distance from the first two. An interesting aspect is the clear
gap between what the community awarded as the most pop-
ular tools and what this work outlined as the most matures.
Similarly, another essential element is the result highlighted
by the growth rates reported in Figure 5. Leading that ranking
is Flower [49], followed by FedML [48], FATE [47] and
PySyft [46]. OpenFL [50] is in the 7th placement, with a
growth rate of 0.23, approximately nine times smaller than the
Table leader, which has a value of 1.82. With a deeper look at
the various growth rates, we can see how generally GR23 >

GR12. This means that the tools grew more between H2 and
H3, than between H1 and H2 despite having a time gap of
approximately six months in each window. While this is true
for almost all tools, the first four seem to have taken a much
more significant leap. This could confirm the effectiveness
of the work done by the development team and community
contributions. However, it is crucial to note that these leaps
did not have a significant impact over an observation window
of 374 days (nearly one year). With some exceptions, growth
rate GR13 seems to confirm the growth rates highlighted
by GR12. By comparing these two curves, we can see how
Flower [49] had a stronger start in the first six months but
then decreased over one year (i.e., GR12 > GR13) compared
to FedML [48], which gained more points in GR23 than it
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had in GR12. The same considerations apply to Tensorflow-
Federated (tff) [44], and Substra [59].
One interesting aspect is that regardless of the scoring

we decide to consider, the top five placements seem to
be occupied by the same names, re-shuffled a bit. Of the
15 possible names, we can only count up to eight different
tools. Of these eight different names, four are more domi-
nant as they appear in at least two rankings: Flower [49],
FedML [48], FATE [47], and PySyft [46]. The remaining four
were Tensorflow-Federated (tff) [44], OpenFL [50], Nvidia-
flare [43] and IBM-federated [45]. Among these eight, only
OpenFL [50] supports Vertical FL.
Despite our efforts to adopt objective scoring when build-

ing Table 3 as described in Section V, we are aware that other
valid scoring alternatives might exist. For example, a more
in-depth analysis of all functional features provided by each
tool (such as communication protocols or level of modularity
in the architecture) and a more granular differentiation of
external tools that can be integrated into the FL pipeline could
lead to different results. However, although we appreciate
that such a finer approach might eventually change the dis-
tances of the current points between the elements in the lists,
we would expect the main order to remain the same. This
consideration arises when examining the definition of the
current ranking. The success of the top two tools is mainly
justified by the high scores obtained in the ‘‘Usability’’ and
‘‘Portability’’ factors outlined in SectionV. This suggests that
when tools have similar features with an equivalent level of
maturity, the preference goes to the one with a lower entry
barrier for users. Providing different documentation sources,
tutorials, and access to multiple standard languages and tools
may be critical for the community. As confirmed in the lower
part of Table 3, low scoring for the worse-ranked tools might
not necessarily be related to a lack of critical features, but
rather to insufficient documentation that might have com-
promised exploitation. However, we noticed a discrepancy in
Table 1 that led us to the following question: Why are tools
with features comparable to the most popular ones, but with
better documentation and more accessible entry points, not
currently being considered at the same (or higher) level by
the community?

Among the possible causes, we identified three main fac-
tors: participation in more significant international projects
involving multiple institutions, tool adoption in various appli-
cation fields, and dissemination and marketing activities by
the respective engineering teams.

Although summarizing the results of the three tables might
be difficult, we can say that if someone does not know where
to start with FL, tools such as Flower [49] or PySyft [46] rep-
resent a good compromise between maturity and popularity
for horizontal pipelines (HFL) either in data-centers or IoT
devices. When Vertical FL (VFL) is required, OpenFL [50]
can be the tool of choice. These recommendations are
valid regardless of the application fields, as all the tools
can support different models and data types. At the same
time, we recognize that as future directions, more in-depth

benchmarking with dedicated tools such as [38], LEAF [52],
or FL-bench [77] may be needed to further understand the
different peculiarities of each tool.

Another future goal is to revise the proposed criteria to
account for these arguments and other factors to get closer
to a comprehensive measure harmonizing the overall results.

VII. CONCLUSION
Several tools for implementing FL pipelines can accelerate
research activities in this field. In this study, we provided a
survey of all open-source solutions and two rankings based
on the tools’ popularity and readiness with the aim of guid-
ing users (including non-experts) in adopting FL solutions,
boosting their exploitation, and accelerating their research
and development. One key aspect of this study is that tools
primarily adopted by the community are not necessarily
the most mature tools available. Owing to the three har-
vests (searches) performed over nearly one year (374 days),
we could understand the growth rate of the majority of the
tools. With all the data collected, we were able to provide
clear recommendations to end-users on what tool to choose
when starting a new journey in FL research.
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