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ABSTRACT The characteristics of hydrological data include nonconsistency and nonlinearity. The pre-
diction accuracy can be improved through the combination of both the decomposition algorithm and
the runoff model. Previous studies have typically focused on the combination of a single decomposition
algorithm and model. These studies have compared the prediction accuracy before and after decomposition,
ignoring the role of multiple decomposition algorithms and models. Considering the limitations of previous
single combinations of decomposition algorithms and models, this study will explore the unique features
of hydrological data by using a combination of five algorithms, including Empirical Mode Decomposi-
tion (EMD), Ensemble Empirical Mode Decomposition (EEMD), TIME series decomposition (TIME),
Variational Mode Decomposition (VMD), and Singular Spectrum Analysis (SSA). The study constructed
models for Prophet, Long Short-Term Memory (LSTM), Multiple Regression (MLR), Random Forest
Regression (RFR), Gradient Boosting Regression (GBR), and Support Vector Regression (SVR). Thirty
combined prediction models were then developed and used to forecast medium and long-term runoff at
Xianyang Station. To comprehensively evaluate the forecasted runoff results, multiple evaluation metrics
were used. The prediction accuracy improved after using EMD and TIME decomposition, but the difference
was insignificant, and TIME decomposition was the least effective. VMD, EEMD, and SSA, on the other
hand, yielded higher data quality. The combined model achieved an NSE above 0.70, demonstrating good
prediction results. Of the thirty combined models, the SSA-SVR and SSA-LSTM models were most accurate,
with a verification NSE of 0.90. This study developed a comprehensive, reliable, and accurate combination
prediction model by employing multiple decomposition algorithms and models. These findings provide a
framework for characteristics-driven watershed runoff prediction and water resources scheduling.

INDEX TERMS Decomposition algorithm, singular spectrum analysis, LSTM, combination model, medium
and long term runoff forecast.

I. INTRODUCTION

Runoff prediction is an important component of hydrological
forecasting that is founded on the objective hydrological
law. It involves the qualitative or quantitative prediction of
hydrological variables at a particular time along the hydro-
logical cross-section. This is achieved by utilizing present or
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past hydrometeorological data in conjunction with relevant
theories and methods.

In recent decades, the development of computer
information technology and hydrological prediction theory
has led to a growing number of new prediction model
methods proposed by scholars to enhance the theoretical
framework of runoff prediction. Process-driven and data-
driven models are the two primary categories of runoff
prediction models. The data-driven model is commonly used
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in medium and long-term runoff prediction as it does not
require an in-depth exploration of hydrophysical mechanism
and hydrological movement process. This technique mainly
focuses on simulating the optimal relationship between inde-
pendent and dependent variables. In this model, the predictive
factors serve as input data, while runoff factors are used as
output, with the optimal algorithm being used to simulate
the correlation between the two. The most frequently used
models in medium and long-term runoff prediction are the
ARIMA model, ANN model, BP neural network model,
LSTM model, SVR model, and MLR mode [1], [2], [3], [4].

Hydrological data is characterized by inconsistency and
nonlinearity, resulting in low precision in predicting runoff
by traditional methods. Numerous studies have demonstrated
that data decomposition algorithms can address hydro-
logical data’s nonlinearity, enhance data quality and aug-
ment the model’s prediction accuracy. Yan et al. [5]
improved runoff prediction accuracy by combining EEMD
and ARIMA, resulting in better results than the traditional
ARIMA model. Kisi [6] improved the modeling by cou-
pling wavelet decomposition with the GRNN neural net-
work model, achieving significantly higher prediction accu-
racy. Weiyao [7] decomposed monthly runoff into EEMD
and predicted separately by ANN and LSTM models. The
results exhibit an excellent performance with the Nash
efficiency coefficient above 0.75. Guoyong et al. [8] devel-
oped the EEMD-LSSVM model by reconstructing EEMD
and LSSVM and verified its reliability by comparing with
other models. Furthermore, numerous studies suggest that
EMD, Wavelet Decomposition [6] and VMD can effec-
tively enhance the accuracy of model prediction. Xie et al. [9]
em-ployed the EMD method and weighted Markov chain
to establish EMDMK and EMD-WDD-MK models, which
yield the highest prediction accuracy according to the results.
Huang et al. [10] proposed the VMD-DBN-IPSO, a hybrid
model-based “feature decomposition-learning reconstruc-
tion,” to leverage hydrometeorological information, develop
high-precision prediction models, and swiftly and accurately
predict runoff.

At present, much of the research in the field focuses on
combinations of either a single decomposition algorithm and
a single model, or a single decomposition algorithm and
multiple models. However, the lack of prediction of com-
binations of multiple decomposition algorithms and models
results in the inability to accurately select the combination
model with the best prediction effect. Without comprehensive
consideration of the combination prediction results, accuracy
and comprehensiveness suffer. Therefore, this paper utilizes a
five-pronged approach, including empirical mode decompo-
sition, ensemble empirical mode decomposition, time series
decomposition, variational mode decomposition and singular
spectrum analysis, in order to explore the inherent char-
acteristics of hydrological data. Following this, we build
thirty models, including Prophet, short and long memory
neural networks, multiple regression, random forest regres-
sion, gradient lifting regression, and support vector regression
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models. We then apply thirty combined prediction models
to the medium and long term runoff prediction of Xianyang
Station. We use a variety of evaluation indices to provide
comprehensive evaluation of the predictions in order to gain a
better understanding of the hydrological characteristics of the
region and forecast runoff in advance, providing necessary
support for future water control, flood control and drought
relief work.

The main innovation of this paper lies in the combination
calculation of multiple models and multiple decomposition
algorithms. Compared with the comparative analysis of a
single model and a single algorithm, the combination model
calculation can more comprehensively determine the optimal
model for runoff prediction in the current study area and
the decomposition algorithm more applicable to the model.
EMD, EEMD, TIME, VMD and SSA have all been verified
on the basis of predecessors, and these decomposition algo-
rithms can improve the prediction accuracy of a single model.
Therefore, this paper selects the decomposition algorithm
with proven conclusions to calculate the combined model.

Il. DATA AND METHODS

A. DATA COLLECTION

The Shaanxi Hydrology and Water Resources Exploration
Center provided the runoff data for the hydrological sta-
tion in this study, while the meteorological data was
obtained from China’s surface climatological data daily value
dataset V3.0. Specifically, it included the daily runoff data
from Weijiapu Station and Xianyang Station for the period
between January 1, 1970, and December 31, 2019, covering
the Weihe River Basin. Additionally, precipitation, evapora-
tion, air pressure and temperature data from Changwu and
Wugong meteorological stations were included in the period
ranging from January 1, 1960, to December 31, 2019.

B. DATA PROCESSING
1) DATA DECOMPOSITION ANALYSIS
a: EMPIRICAL MODE DECOMPOSITION
The empirical mode decomposition (EMD) proposed by
Vautard et al. [11] is a powerful approach used to analyze
unstable and nonlinear data. This method can effectively
decompose complex input signals into a small number of
intrinsic mode functions (IMFs), making it superior to other
decomposition methods such as wavelet. In particular, the
EMD technique provides great advantages in processing
non-stationary time series.

The daily flow data of Xianyang Station is decomposed by
EMD, and the decomposition results are shown in Figure 1.

b: SINGULAR SPECTRUM ANALYSIS

SSA [12] uses the singular value decomposition (SVD) in
linear algebra to construct the corresponding singular value
sequence and decompose the input signal into independent
signal components.
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FIGURE 1. Empirical mode decomposition of rainfall flow data.
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FIGURE 2. Singular spectrum analysis of rainfall flow data.
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FIGURE 3. Empirical mode decomposition of rainfall flow data.

The daily flow data of Xianyang Station is decomposed
by SSA, and the number of Windows “L” is set as 8. The
decomposition results are shown in Figure 2.

¢: SINGULAR SPECTRUM ANALYSIS
On the basis of EMD decomposition, EEMD [13] introduced
“Gaussian white noise a(t)”’. a(t) is uniformly distributed in
the whole sequence with a mean of zero, and its influence
on the original sequence is eliminated after multiple calcu-
lations, so as to solve the mode aliasing problem of EMD
decomposition.

The daily flow data of Xianyang Station is decomposed by
EEMD, the decomposition results are shown in Figure 3.
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d: VARIATIONAL MODE DECOMPOSITION
VMD [14]is an improvement on the basis of EMD algorithm.
Through the adaptive solution of the structurally constrained
variational equation, the signal components are effec-
tively decomposed into a series of single-oscillation modal
components.

The daily flow data of Xianyang Station is decomposed by
VMD, the decomposition results are shown in Figure 4.
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FIGURE 4. Variational modal decomposition of rainfall flow data.

2) PREDICTOR LAG

The correlation of predictive factor series and its lag series
is an important content in feature mining of time series pre-
diction data. The higher the correlation of data, the better
the prediction accuracy. The correlation of series with dif-
ferent lags varies greatly, which has a significant impact on
the accuracy of subsequent prediction. The predictive factor
sequences of different lags were constructed, and the rela-
tionship between sequence correlation and lag was observed
to select the lag period with the strongest correlation. The
hysteresis correlation diagram of predictive factor sequence
and the autocorrelation analysis diagram of predictive target
are shown in Figure 5.
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FIGURE 5. Prediction target autocorrelation and partial correlation
diagram.

As can be seen from Figure 5, different data have different
lag periods and different correlation coefficients. In subfig-
ure a), the correlation coefficient between Xianyang flow
and Weijiapu flow decreases with the increase of lag time,
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and the highest correlation coefficient is close to 0.9.
In subfigure b), the highest correlation coefficient between
Xianyang discharge and Wugong precipitation is 0.35, and
the lag time is 1. In subfigure c), the correlation between
Xianyang flow rate and martial arts pressure is poor, and the
correlation is negative. Subfigure d) is the autocorrelation
analysis of Xianyang flow sequence.

C. RUNOFF PREDICTION MODEL

The multi-factor model considers other key factors other than
the forecast target, and comprehensively analyzes the statis-
tical law between each factor and the forecast object, so as
to build the model for prediction. The multi-factor prediction
models mainly studied in this paper include Prophet model,
long and short term memory neural network model, multiple
regression model, random forest regression model, gradient
lifting regression model and support vector regression.

1) PROPHET MODEL

Prophet [15] is a time series prediction model proposed by
FaceBook in 2018. Prophet model has a wide range of flex-
ible applications. After users set parameters, the model will
automatically complete manual model construction, predic-
tion evaluation, problem description and visual inspection
prediction, and constantly cycle correction.

2) LONG SHORT-TERM MEMORY

LSTM [16] is a cyclic neural network, which is modified on
the basis of RNN so that it can learn long-term dependent
information.

3) MULTIPLE LINEAR REGRESSION

When multi-factor time series data are available, the linear
regression relationship between multiple variables and pre-
diction target variables can be established, and the target
variables can be predicted from the combination of multiple
variables.

4) RANDOM FOREST REGRESSION

RFR [17] is a regression model based on RF algorithm of
random forest. RFR model adopts decision binary tree. The
RFR model is trained to make the binary tree continuously
slice variables and points, measure the quality of the chopped
variables and points, and use the exhaustive method to tra-
verse all the features and their values, and finally find the
optimal slice variables and points.

5) GRADIENT BOOSTING REGRESSION

GBR [18] algorithm is derived from gradient descent
algorithm. In the process of machine learning, continuous
training needs to minimize the loss function L(9), 0 is the
parameter of the solution required by the model. Gradient
descent method is an iterative algorithm, which needs to ini-
tialize 8y and iterate continuously until the loss is minimized.
The gradient lift method is similar to the gradient descent
method in that the gradient value is iteratively raised to
minimize losses.

6) SUPPORT VECTOR REGRESSION

SVR [19] is the application of support vector machine (SVM)
in the field of regression estimation of nonlinear systems.
The main processes of SVR include variable selection and
variable processing. In this paper, RBF is selected as the
kernel function of SVR.

D. EVALUATION INDEX AND MODEL PARAMETER
OPTIMIZATION

1) EVALUATION INDEX

In the sampling of model parameters and the evaluation of
prediction results, the evaluation indexes used were Nash
efficiency coefficient (NSE), mean absolute error (MAE),
root mean square error (RMSE) and mean percentage error
(MAPE). The mean square error (MSE) was selected as the
evaluation index for model training and pruning. The closer
the value of NSE is to 1, the higher the prediction accuracy
is, and the smaller the value of other indexes is, the higher the
prediction accuracy is.

2) MODEL PARAMETER OPTIMIZATION

The model parameters were sampled by grid search GS,
random search RS, TPE algorithm and CMA-ES algorithm.
Taking the SSA-GBR model as an example, a total of 30 years
of Xianyang average flow sequence from 1990 to 2019 was
used, the rate period was from 1990 to 2013, and the val-
idation period was from 2014 to 2019. Table 1 shows the
prediction results of the four sampling algorithms under
different iterations. The objective function of the sampling
algorithm is the maximum NSE.

The analysis of Table 1 shows that: 1) When the number of
iterations is small, TPE can better find the optimal parameter
set; 2) When the number of iterations is sufficient, RS and GS
can find a better set of parameters.

TABLE 1. Evaluation table of parameters optimization calculation results of SSA-GBR model.

50 iterations

200 iterations

Sampling algorithm Evaluation index of SSA-GBR validation period Time Evaluation index of SSA-GBR validation period Time
NSE MAE RMSE MAPE consuming NSE MAE RMSE MAPE consuming
RS 0.54 4145 69.49 0.58 7s 0.64 419 61.42 0.7 33s
GS 0.61 40.02 64.3 0.59 Ts 0.62 40.3 62.88 0.58 33s
TPE 0.63 39.02 62.34 0.57 10s 0.64 385 59.77 0.56 40s
CMA-ES 0.52 40.74 70.89 0.61 9s 0.57 40.2 67.44 0.59 35s
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TABLE 2. Parameter optimization calculation loss table.

Test 1 Test 2 Test 3 Test 4 Test 5 Mean value
Pruning algorithm
Time MSE Time MSE Time MSE Time MSE Time MSE Time MSE
Primitive 807 2910 863 2122 853 2467 819 3152 846 2610 838 2652
Median pruning 350 3815 347 2541 362 3003 328 3401 278 2657 333 3083
Threshold pruning 331 3816 344 3126 351 2891 298 2797 291 3726 323 3271
HyperBand 175 3855 190 4160 159 5639 164 3578 207 4687 179 4384
ASHA 84 5352 41 5633 57 5633 59 5426 52 4278 59 5264
TABLE 3. Combination model rate periodic and validation period NSE evaluation index results.
odel Rate period Verification period
Decompositt SVR LSTM GBR RFR Prophet ~ MLR SVR LSTM GBR RFR Prophet MLR
Raw data 0.44 0.40 0.46 0.46 0.37 0.34 0.33 0.36 0.40 0.40 0.26 0.32
SSA 0.92 0.90 0.99 0.98 0.85 0.84 0.92 0.90 0.87 0.81 0.84 0.83
VMD 0.89 0.92 0.98 0.97 0.80 0.80 0.87 0.86 0.81 0.77 0.77 0.76
EEMD 0.85 0.86 0.93 0.97 0.74 0.74 0.80 0.71 0.76 0.77 0.70 0.69
EMD 0.83 0.71 0.92 0.95 0.63 0.62 0.65 0.70 0.64 0.58 0.60 0.60
TIME 0.40 0.41 0.61 0.62 0.39 0.37 0.33 0.34 0.38 0.35 0.33 0.33
TABLE 4. Combination model rate periodic and validation period MAE evaluation index results.
odel Rate period Verification period
Decomposift SVR LSTM GBR RFR Prophet MLR SVR LSTM GBR RFR Prophet MLR
Raw data 274 385 34.7 34.1 41.0 42.4 32.1 373 34.0 32.8 73.1 383
SSA 13.6 24.1 6.3 6.6 24.5 24.8 16.8 243 18.6 19.4 28.8 29.3
VMD 15.1 18.5 124 8.0 28.3 28.4 20.2 23.1 23.8 23.1 335 337
EEMD 16.8 21.8 20.1 7.5 30.7 30.5 23.6 27.7 26.9 245 36.2 36.2
EMD 17.0 29.3 20.8 9.3 36.3 36.4 28.0 32.7 34.7 34.0 38.6 38.1
TIME 283 36.5 32.8 25.7 422 41.6 31.6 427 354 35.0 443 41.9
TABLE 5. Combination model rate periodic and validation period MAPE evaluation index results.
Rate period Verification period
SVR LSTM GBR RFR Prophet MLR SVR LSTM GBR RFR Prophet MLR
Raw data 0.29 0.36 0.90 0.82 1.23 1.82 3.25 4.42 4.05 3.64 10.17 4.52
SSA 0.22 1.46 0.19 0.08 0.68 0.62 1.64 3.96 2.25 2.34 3.69 3.37
VMD 0.25 0.60 0.36 0.11 0.79 0.78 243 3.32 3.25 2.95 4.28 3.89
EEMD 0.28 0.66 0.67 0.10 0.92 0.89 3.10 3.06 4.04 4.03 3.85 3.66
EMD 0.26 0.89 0.65 0.12 1.04 1.08 3.12 2.46 3.48 3.80 3.89 3.75
TIME 0.28 0.89 0.83 0.36 1.27 1.22 3.47 6.76 4.92 4.05 6.64 6.80

The key to the performance of machine learning algorithm
depends on a set of determined super-parameters. The above
mentioned parameter configuration can be selected adap-
tively by a variety of sampling algorithms, but there is still the
problem of resource waste. Therefore, it is necessary to accel-
erate random search through adaptive resource allocation
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and stop in advance. In order to avoid too many iterations,
it is very necessary to automatically stop the hopeless test
at the early stage of training. When the training loss is
always at the same level, it is considered that continuing
training will not bring better results, so parameter opti-
mization, namely pruning, should be ended. In this study,

97103



IEEE Access

H. Liu et al.: Comparative Study of Multi-Combination Models

TABLE 6. Combination model rate periodic and validation period RMSE evaluation index results.

del Rate period Verification period
Decompd®qen gy rstTM  GBR RFR  Prophet  MLR SVR  LSTM  GBR RFR Prophet ~ MLR
Raw data 115 107 113 113 122 125 137 134 130 129 144 138
SSA 43.9 43.5 9.7 23.8 60.4 60.9 48.0 52.4 60.9 76.7 65.4 65.6
VMD 50.2 39.1 21.1 26.5 68.3 68.6 61.2 62.9 73.0 79.6 79.9 80.0
EEMD 59.7 52.3 39.6 26.4 78.0 78.2 74.6 90.5 81.3 79.4 92.0 91.9
EMD 62.8 74.3 435 32.9 94.2 94.8 98.3 92.3 101 109 106 105
TIME 119 106 96.2 95.1 120 122 137 136 132 135 136 136
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FIGURE 6. SSA-SVR flow measurement and simulation comparison chart.

four commonly used pruning algorithms were adopted:
median pruning algorithm, threshold pruning algorithm,
Hyperband algorithm and ASHA algorithm.

Training pruning is the main way to reduce the calculation
loss of parameter optimization. Taking LSTM model as an
example, the average flow data of Xianyang from 1990 to
2019 were taken to optimize the model parameters. The
parameter sampling algorithm was TPE algorithm, and the
optimization objective was the minimum MSE, batch size of
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batch training sample was 32. The number of training epochs
is 100. In order to reduce the randomness of the sampling
path of the parametric sampling algorithm, five tests were
conducted on each pruning algorithm, and the average value
was taken to compare the advantages and disadvantages of
each algorithm. The preheating training times of median and
threshold pruning algorithms were 20, and the comparison
pruning was performed every 5 training sessions. Table 2
shows the calculation loss table of parameter optimization.
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FIGURE 7. SSA-LSTM model flow measurement and simulation comparison cha

It can be seen from the Table 2 that: 1) the use of
pruning algorithm can greatly reduce the time loss of parame-
ter optimization and avoid spending time on hopeless param-
eter configuration; 2) Median and threshold pruning need to
be preheated for training, and the calculation time of these
two algorithms is relatively long; 3) For the MSE error, if the
threshold of the threshold pruning algorithm is set too large,
most of the parameter configurations will be pruned away,
while if the threshold is set too small, the hopeless parameter
configurations cannot be pruned away. 4) ASHA pruning
algorithm can reduce the calculation time of parameter opti-
mization to the shortest, but the accuracy of calculation results
is lower than the other three algorithms.

Ill. RESULTS AND DISCUSSION

The runoff meteorological data is used to forecast the medium
and long term runoff, with the periodic rate accounting
for 80% of the whole time series length and the verification
period accounting for 20%. The runoff prediction results are
evaluated through the comprehensive evaluation index sys-
tem, and the model with the best prediction effect is selected.
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rt.

The multifactor prediction was calculated by using the data
feature mining of Xianyang discharge, Weijiapu discharge
and Wugong meteorological (precipitation, pressure) daily
data from 1990 to 2019. The prediction period was 3 days,
in which the periodic data were from 1990 to 2013 (24 years),
and the verification period was from 2014 to 2019 (6 years).
TPE algorithm was used to optimize the model parameters,
and the number of iterations was 50. Table 3 to Table 6
are the evaluation results of all combination models with
evaluation indexes of NSE, MAE, MAPE and RMSE, respec-
tively. Figure 6 and Figure 7 show the measured simulation
comparison of predicted flow of SSA-SVR and SSA-LSTM
models, the two combination models with the highest predic-
tion accuracy.

Conclusions can be drawn from the table and figure:

(1) Among the five data decomposition algorithms, SSA,
VMD and EEMD greatly helped to improve the accuracy of
the simulation prediction results. Compared with the unde-
composed raw data, NSE value increased to at least 0.69, and
SSA greatly helped to improve the prediction accuracy. EMD
and TIME have little effect on the accuracy of prediction
results, and TIME has the worst effect.
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(2) Among the six prediction models, SVR, LSTM and
GBR models have higher prediction accuracy. Compared
with other models, they have higher adaptability to the six
data sets, and the accuracy of prediction indicators is rela-
tively higher.

(3) Among the 30 combination models, the NSE index of
the prediction results of the combination models using SSA
and VMD algorithms for data decomposition is above 0.75 in
the verification period. Notably, SSA-SVR and SSA-LSTM
models delivered higher prediction accuracy. Specifically, the
validation period NSE, MAE, MAPE, and RMSE indexes of
the SSA-SVR model were 0.92, 16.8, 1.64 and 47.95, respec-
tively, while the corresponding indexes of SSA-LSTM were
0.90, 24.3, 3.96, and 52.4. The refined writing follows stan-
dard academic style guidelines, enhancing concision, clarity,
and readability.

This study considered a comprehensive range of decompo-
sition algorithms and model combinations for the prediction
of runoff. Additionally, multiple evaluation indexes were uti-
lized to assess the accuracy of the predictions, leading to the
selection of the combination model with the highest preci-
sion. The default parameters for the decomposition algorithm
were utilized in the data analysis and processing, thus limiting
adaptability and adjustability. Although efforts were made to
enhance the suppleness of model integration and parameter
adjustment, there is still ample room for further improvement.
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