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ABSTRACT In the fire scene investigation, the firefighting Internet of Things (IoT) data is the key
electronic evidence for event analysis and responsibility determination. However, the traditional centralized
storage method leads to data easy to be tampered with and damaged. To solve these problems, this paper
designs and implements a secure, reliable and low-cost distributed firefighting IoT data storage scheme
based on the Fabric framework, combining blockchain technology, Interplanetary File System (IPFS) and
Practical Byzantine Fault Tolerance (PBFT) consensus algorithm to provide a strong support for fire
accident traceability. This scheme mainly includes the storage model, key algorithms and Fabric construction
and improvement. IPFS stores the complete firefighting IoT data, as the off-chain storage system of the
blockchain, and the blockchain only stores the storage address (IPFS hash) of data returned by IPFS, thus
reducing the storage space overhead of the blockchain and ensuring data security. Further, we adopt the Fabric
framework as the blockchain platform for firefighting IoT data, and embed the PBFT consensus algorithm
into the framework to ensure the reliability of consensus nodes in Fabric, thus improving the availability
of the blockchain. In addition, we use the AES and RSA algorithms to ensure the security of firefighting
IoT data storage and transmission. Through system analysis and experimental testing, the proposed scheme
meets the need for secure storage and traceability of firefighting IoT data. Compared with the storage scheme
using only blockchain, the blockchain combined with IPFS technology has advantages in storage space
occupation, significantly improved throughput, and lower latency overhead. Meanwhile, compared with the
official Fabric, the improved Fabric supports Byzantine fault tolerance and has better security.

INDEX TERMS Firefighting IoT data, blockchain, IPFS, secure storage system, PBFT consensus algorithm,
hyperledger fabric.

I. INTRODUCTION system, the firefighting IoT [2] data is stored on the central

Nowadays, fire is still the most common and dangerous
hazard to public life and property. In order to reduce
the occurrence of fire, many public and private places
are equipped with appropriate fire safety equipment, such
as fire extinguishers, smoke sensors and video monitors,
to monitor the fire and provide electronic evidence during fire
incident investigation [1]. In the traditional fire monitoring
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server. Although cloud computing [3] and other technologies
are used to achieve collaborative storage across multiple
regions [4], the centralized data storage in the region is vul-
nerable to malicious tampering and destruction [5], which
may interfere with the determination of fire responsibility.
Therefore, the secure and reliable storage of firefighting IoT
data is crucial.

There are two main data storage solutions for the storage
of firefighting IoT data: (1) Traditional solutions, which store
the fire sensor information and monitoring video together
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to the central server [1], [6], [7]; (2) Blockchain-based
solutions. Only the fire sensor information is stored in the
blockchain, and the fire monitoring video is stored on the
central server [8], [9]. The above schemes solve the storage
of firefighting IoT data, especially the second solution can
effectively ensure the security of sensor data. However, both
of them store the surveillance video that occupies a large
amount of space in the central server, which is costly to store
and cannot prevent tampering and malicious deletion. Mean-
while, since the blockchain network is likely to be attacked,
there are still potential security risks in the data storage and
transmission of the blockchain. In addition, there is no spe-
cific user-oriented available system implemented. Therefore,
itis necessary and urgent to design and implement a low-cost,
secure and reliable storage solution for the firefighting IoT
data.

The application of blockchain technology to IoT data stor-
age has become a hot research topic. For example, [10]
presents a model which converts transaction records and
sensor data occurring on IoT into blockchain structure and
stores them in Raspberry Pi 3. Reference [11] proposes
a data-sharing scheme based on blockchain and identity
authentication. Reference [12] stores IoT information in
blockchain and proposes a compression-aware data com-
pression and reconstruction method to improve the effi-
ciency of IoT information storage. Reference [13] proposes
a blockchain-based secure transmission and storage scheme
for IoT data, which improves the security of data transmis-
sion and storage. Although blockchain effectively prevents
data from malicious tampering and deletion, each node in
the blockchain holds a ledger, resulting in the occupation
of a large amount of storage space [14]. To solve the prob-
lem of blockchain storage scaling, many solutions based on
off-chain [15] storage have been proposed. For example, off-
chain storage using Distributed Hash Table (DHT) [16], [17],
[18], IPFS-based off-chain storage [19], [20], [21], [22], [23].
IPFS is gaining more and more attention as a blockchain
off-chain storage solution that both extend the storage space
of the blockchain and ensures that files are not tampered with
once they are stored.

Currently, no work has been done to use blockchain and
IPES together for firefighting IoT data storage, nor has it
been implemented in specific blockchain framework deploy-
ment. The firefighting IoT data storage scheme combining
blockchain and IPFS needs to solve the following three
challenges: (1) How to design and implement a storage frame-
work combining blockchain and IPFS to ensure secure and
low-cost fire data storage; (2) The distributed blockchain net-
work has the Byzantine Generals Problem. How to ensure the
reliability of the firefighting Consortium blockchain network;
(3) How to ensure the security of data transmission in the
process of submitting and downloading the firefighting IoT
data.

In order to achieve the secure, reliable and low-cost stor-
age scheme of firefighting IoT data, we refer to previous
work and are inspired to design a storage framework based
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on blockchain and IPFS, including storage models and key
algorithms, and use RSA and AES [24] to ensure the secu-
rity of data transmission. Meanwhile, we take Fabric [25]
as the blockchain framework and improve the reliability
of blockchain by adding the PBFT consensus algorithm to
solve Byzantine fault tolerance, and design and implement a
blockchain browser [26]. The contributions of our work are
as follows.

1) To the best of knowledge, we are the first to propose
a secure and low-cost data storage solution for the firefight-
ing IoT based on blockchain and IPFS. In this scheme, the
firefighting IoT data is stored in IPFS in a distributed man-
ner, and the blockchain only stores the IPFS hash value of
the data, which not only prevents malicious tampering and
deletion of the firefighting IoT data, but also saves the stor-
age space of the blockchain, thus improving the operational
efficiency of the blockchain system.

2) Further, based on Fabric, we implement the firefighting
IoT data storage system. Specifically, we improve the Fabric
framework by embedding the PBFT consensus algorithm to
ensure the reliability of consensus nodes in the Fabric. Mean-
while, IPFS storage algorithms and Fabric smart contract
algorithms are designed, and the AES and RSA algorithms
are adopted to encrypt the firefighting IoT data, the IPFS hash
value and the AES key, respectively, to support the secure
storage and transmission of firefighting IoT data.

3) We evaluate our storage framework through system
analysis and simulation experiments. The system analysis
proves the security and reliability of the framework, and the
simulation experiment shows the storage advantages of our
framework by comparing with the two storage frameworks.
In addition, we test the system throughput and latency to
verify that our proposed framework performs better when
applied to firefighting IoT data storage. In addition, we test
the system throughput and latency to verify that our pro-
posed framework has better performance when applied to
firefighting IoT data storage.

The rest of this paper is organized as follows. Section II
describes the related work, Section III describes the pre-
liminaries of our work, Section IV discusses the proposed
framework, Section V shows the implementation details,
Section VI is the performance analysis of the blockchain
system, and Section VII concludes the paper.

Il. RELATED WORKS

In this section, we review some existing research works
related to the work of this paper, including blockchain-based
firefighting data storage, joint data storage of blockchain and
IPES, and performance improvements for Fabric, and discuss
the shortcomings of these works.

Blockchain technology has been introduced in some works
to solve the problem of secure storage of firefighting IoT
data. Reference [8] stores fire equipment information in
blockchain and uses Fabric to implement the traceability
function of fire equipment information. Reference [9] uses
blockchain to store and pass sensor data to specific units
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to quickly predict the path of fire points and stop fires, but
does not store video surveillance data. Both solutions store
fixed information or real-time data via blockchain, which
leads to a large storage space requirement. Many researchers
have conducted research on expanding the storage space
of blockchain. LightChain, proposed in [27], extends the
blockchain using DHT, where each node no longer needs to
keep the complete ledger, resulting in a 66-fold reduction
in storage space for nodes. A blockchain storage expansion
model based on the Chinese residual theorem is proposed
in [28], which reduces the storage consumption of nodes by
adopting different storage strategies for blocks with different
security. In the Bitcoin network, blockchain expansion uses
the Simple Payment Verification (SPV) protocol [29], which
is a light node solution. The above solutions mainly improve
blockchain storage from the perspective of reducing duplicate
storage of ledgers, which reduces the storage space to some
extent but does not change the nature of blockchain storage
data, and there is still a large storage requirement.

In recent years, more work has combined blockchain
with IPFS, in which IPFS has expanded the storage space
of blockchain. Reference [20] proposes an IPFS-based
blockchain storage model that solves the problem of limiting
nodes to join the network due to the gradual increase in the
size of the Bitcoin ledger, and the security and synchroniza-
tion speed of new nodes are also better. Reference [30] uses a
ciphertext policy-based system to store encrypted electronic
medical data in IPFS and utilizes blockchain technology to
achieve secure storage and search of medical data in the
storage platform. Reference [31] proposes a decentralized
peer-to-peer image and video sharing platform based on IPFS
and blockchain, uploads multimedia into IPFS and stores
multimedia phash into the blockchain, and then uses phash
technology to detect multimedia copyright infringement. Ref-
erence [32] proposes BlockMedCare, a secure healthcare
system integrating IoT and blockchain, which uses IPES as an
off-chain database to store data, and then adopts smart con-
tracts to control user access. Although the above work better
solves the storage expansion problem of blockchain, there is
no work on using IPFS as an off-chain storage expansion for
firefighting IoT data.

Hyperledger Fabric is a mainstream blockchain platform,
which has a large improvement in transaction processing
speed compared to Bitcoin [29] or Ethereum [33] and pro-
vides enterprise-grade security. However, there are imperfec-
tions in Fabric functionality, and some work has optimized it.
For example, [34] improves the transaction speed of Fabric
to 20,000 transactions per second by optimizing the 1/O,
caching, parallelism, and data access parts of the Fabric trans-
action flow. Reference [35] proposes to apply BFT-SMART
to the Fabric sorting process to support Byzantine fault tol-
erance, and optimizes the wide-area deployment to ensure
that the blockchain system has fast transaction speed. Refer-
ence [36] uses gating and ring signature to hide the initiator in
each consensus round, and divides the network into multiple
minimum connection networks to reduce system overhead
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and improve scalability and security. Reference [37] proposes
an efficient and low-cost dynamic Byzantine Fault Tolerance
(BFT) algorithm. It handles member requests independently
of view changes, and nodes can join and leave the system.
Although the above work improves the performance and
security of Fabric from different aspects, it is difficult to avoid
affecting the stability of the system due to the large changes
to Fabric.

Ill. PRELIMINARIES

We expound some background information in this section,
including blockchain, IPFS and Fabric, which will be the
basis of the proposed framework of firefighting IoT data
storage system.

A. BLOCKCHAIN

Blockchain originates from the Bitcoin basic technology pro-
posed by Nakamoto (pseudonym) in 2008 [29], which is a
distributed ledger (database) maintained by multiple parties,
and each party holds a complete ledger. Blockchain attacks
need to primary at least half of the computing power of the
entire network to achieve, thus ensuring the invariability of
the ledger and the traceability of transaction records [38].
Blockchain consensus algorithm is one of the core technolo-
gies of blockchain, which solves the problem of consistency
between nodes in distributed scenarios. Different consensus
algorithms have different performance and security [39].
Consortium blockchain [40] is a blockchain composed of
multiple trusted institutions, usually using the consensus
algorithm of distributed systems. Smart contract [41] is a
computer program first proposed by American computer
scientist Nick Szabo in 1994. The contract terms in the
blockchain are pre-defined and automatically executed by
developers. Compared with traditional contracts, smart con-
tracts have the advantages of trust removal, low cost, security
and no third-party arbitration [42].

B. IPFS

IPFS [43] is a peer-to-peer distributed file system protocol
that uses a new hypermedia transfer protocol based on content
addressing, and its transfer mode is non-centralized peer-to-
peer (P2P) mode, reducing the risk of attack on the central
server. Meanwhile, when uploading files, IPFS calculates
the file’s hash value, which ensures that the file cannot
be tampered with after uploading and is more suitable for
storing important data. the core technology of IPFS mainly
involves DHT [44], Merkle Directed Acyclic Graph (DAG),
BitTorrent protocol [45], distributed version control Git [46]
and Self-Certifying File System (SFS) [47]. Merkle DAG
is a tree-like data structure used to ensure the integrity and
verifiability of files stored in IPFS. In IPFS, a file is divided
into several data blocks, and the hash value of each data
block is stored on the leaf node of the Merkle DAG. The
hash value of the parent node is calculated and generated
by the hash value of its leaf node. Finally, the hash value
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of the root node is the IPFS hash of the file. DHT is a
distributed key-value storage system, which provides IPFS
with powerful distributed storage and addressing capabilities
and helps reduce the pressure of single point of failure on the
central server.

C. FABRIC

Hyperledger Fabric [48] is an open-source, enterprise-
oriented blockchain platform that not only has the decentral-
ized, tamper-evident and traceable features of a blockchain,
but also an enterprise-level access mechanism that blocks
unauthorized access to the blockchain network and is suitable
for storing sensitive data [49]. Fabric has a highly modular
and configurable Fabric’s smart contracts, called Chaincode,
can execute relevant business code on the blockchain accord-
ing to the logic pre-written by the developer [50], which
currently supports Go language, Java language, and NodeJS
language. We can also change the consensus algorithm and
performance tuning of Fabric according to business require-
ments, which is more energy efficient compared to the Proof
of Work (POW) algorithm used by Bitcoin [51], and more
flexible in terms of block out time and block size. Due to
performance issues, Hyperledger Fabric no longer supports
PBFT algorithm after version 1.0. The existing consen-
sus algorithms are Solo algorithm, Raft algorithm [52] and
Kafka [53] algorithm.

IV. PROPOSED FRAMEWORK

A. THE SYSTEM MODEL

The blockchain and IPFS-based firefighting IoT data storage
system model consists of four main parts: the firefighting IoT
data acquisition module, the IPFS-based data storage module,
the Fabric-based blockchain module and the browser-based
firefighting IoT data query module, as shown in Figure 1.
The data acquisition module is used to obtain video mon-
itor data and various types of sensor data, such as smoke
sensors, temperature sensors and water pressure sensors; the
IPFS module stores firefighting IoT data; the blockchain
module only stores the transmission records of firefighting
10T data; the query module supports users to query and track
the transmission records of firefighting IoT data through the
web page, and the browser data is stored in PostgreSQL.
In this paper, we mainly focus on and describe the design and
implementation of IPFS and blockchain modules.

In this model, the users of the system include departmental
users and administrators, where the departmental users are
responsible for collecting firefighting IoT data, referred to
as users in the following, and the administrator’s machine
and the IPFS server each store a copy of the firefighting
10T data, the firefighting IoT data is collected by the hosts
of each firefighting department, and the monitoring video
and sensor data in JavaScript Object Notation (JSON) format
are packaged into.zip format by using automatic scripts, and
then sent to the web server through web pages. After receiv-
ing the data, the Web server uploads the data to the IPFS
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Algorithm 1 Users Upload Firefighting IoT Data to IPFS
Input: sender’s private key, administrator’s public key, fire-
fighting IoT data
Output: IPFS Hash of encrypted firefighting IoT data,
encrypted AES key

aes_key < generate_random_aes_key()

enc_data < aes_encript(data, aes_key)

enc_aes_key <— encript_with_rsa(aes_key, Admin_pk)
data.ipfs_hash < ipfs.add(enc_data)
data.encrypted_ipfs_hash <«
ursa.encrypt(data.ipfs_hash, Admin_pk)

6: if data.encrypted_ipfs_hash # nil then

7 return data.encrypted_ipfs_hash, enc_aes_key

A L

8: return Error(“upload err.”)

storage server, and calls the Fabric Software Development
Kit (SDK) to upload the transmission record. Once the data
is successfully uploaded, the system will return the success
information to web pages, and users can view the transaction
record in the blockchain browser to confirm whether the
data is successfully uploaded. Then, the administrator can
query the firefighting IoT data through the private key in the
query interface, and fill in the encrypted IPFS address and
his private key into the download interface to download the
corresponding data. The process of storing and downloading
firefighting IoT data is shown in Figure 2.

B. KEY ALGORITHMS

1) IPFS STORAGE ALGORITHMS

In the framework, IPFS is used on the storage server to store
the complete firefighting IoT data, thus expanding the storage
space of the blockchain, and providing the blockchain with
the address of firefighting IoT data in IPFS, namely IPFS
hash. There are two IPFS offline storage algorithms: the
firefighting IoT data upload algorithm and the firefighting
Internet of Things data download algorithm, which ensure the
storage and availability of firefighting IoT data.

Algorithm 1 (upload function) is used for users to upload
firefighting IoT data to IPFS. First, the user generates a
random AES key and encrypts the firefighting IoT data with
it. Then the user uses the administrator’s RSA public key
to encrypt the AES key and destroys it after sending the
encrypted key to the administrator via HyperText Transfer
Protocol Secure (HTTPS). Next, the user fills in the private
key, the administrator’s public key and the encrypted fire-
fighting IoT data on the web page, and submits the upload
request to the web server. After receiving the user’s request,
the web server calls the ipfs-http-client library to store the
encrypted firefighting IoT data to the IPFS server. Then,
the IPFS server generates an IPFS hash and encrypts it
with the administrator’s public key. Finally, the encrypted
IPFS hash and AES key are returned to the web server.

Algorithm 2 (download function) is the algorithm for the
administrator to download the firefighting IoT data from
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FIGURE 1. The model of firefighting loT data storage system.

Package Firefighting loT Data

l

Submit Firefighting loT Data

l

Upload data to IPFS

l

Save data transfer records to the blockchain

l

Query records and download data

FIGURE 2. The storage and download process of firefighting loT data.

IPES. After querying the firefighting IoT data, the administra-
tor fills in the private key and the encrypted IPFS hash of the
firefighting IoT data in the web page, and submits the down-
load request to the web server. Once the web server receives
the download request, it uses the administrator’s private key
to decrypt the encrypted IPFS hash value of the encrypted
firefighting IoT data, and calls the ipfs-http-client library to
download the encrypted firefighting IoT data from the IPFS
server and returns it to the administrator. The administrator
uses the private key to decrypt the encrypted AES key, and
then uses the AES key to decrypt the encrypted firefighting
IoT data.
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Algorithm 2 Administrators Download Firefighting IoT Data
Input: administrator’s private key, encrypted IPFS Hash of
firefighting [oT data, encrypted AES key
Output: firefighting [oT data

1: data.ipfs_hash <
ursa.decrypt(data.encrypted_ipfs_hash, Admin_sk)

enc_data < ipfs.download(data.ipfs_hash)

aes_key < decrypt_with_rsa(enc_aes_key, Admin_sk)

data < aes_decrypt(enc_data, aes_key)

return data

request pre-prepare

) /A

prepare commit reply

3 N

FIGURE 3. The PBFT consensus process.

2) PBFT CONSENSUS ALGORITHM

In our framework, due to hardware errors, network con-
gestion or interruption and malicious attacks, the nodes in
the system may become Byzantine nodes, thus affecting
the safe operation of the blockchain network. In order to
improve the security of the blockchain network, this paper
embeds the PBFT consensus algorithm into Fabric. PBFT is
a widely used distributed consensus algorithm proposed by
Castro et al. [54] in 1999, which mainly solves the Byzantine
general problem. The fault-tolerant number of the algorithm
is 3f + 1 < n, where f is the number of Byzantine nodes and
n is the total number of nodes. The complexity of the PBFT
algorithm is polynomial, which makes it feasible in practical
applications.

VOLUME 11, 2023



L. Li et al.: Secure, Reliable and Low-Cost Distributed Storage Scheme Based on Blockchain and IPFS

IEEE Access

Algorithm 3 Users Upload the Transmission Record
Input: sender’s private key, administrator’s public key,
timestamp, encrypted IPFS Hash of firefighting IoT data
Output: uploading success or failure

1: Sender_pk < ursa.getPublicKey(sender_sk)
2: record <
Sender_pk, Admin_pk, Ts, data.encrypted_ipfs_hash
3: flag <— APIstub.PutState(record)
4: if flag # nil then
5: return Error(*‘stub.PutState err.”’)
6: return Success(‘‘Upload success!”)

The PBFT algorithm needs five phases to reach a consen-
sus, as shown in Figure 3, where “C” is the client, “0”,
“1, “2” and “3” represent four nodes, and the node with
the symbol “x” is the fault node (Byzantine node). The
details of the consensus are as follows. (1) request phase. The
firefighting department user sends a request to the primary
node of PBFT in the Fabric network through the web page;
(2) pre-prepare phase. The orderer primary node in Fabric
verifies the request message and broadcasts it to other nodes
if it passes the verification; (3) prepare phase. PBFT node
verifies whether the pre-prepare message is valid, and if it
passes, it broadcasts the pre-prepare message to other nodes.
After receiving 2f + 1 prepare messages, the node broad-
casts the commit message; (4) commit phase. After receiving
2f + 1 valid commit confirmation messages, the node sends
a reply message to the web server; (5) reply phase. When
the web server receives f + 1 reply messages, the PBFT
consensus node is considered to have completed consensus
on the message.

3) SMART CONTRACT ALGORITHMS

In this framework, we design two smart contract algorithms:
the uplink algorithm and the query algorithm, which store
the transmission records of firefighting IoT data on the
blockchain to ensure its tamper-proof and traceability, and
can be queried.

Algorithm 3 (sendhash function) is the uplink algorithm
of the transmission record of the firefighting IoT data. First,
the user obtains the sender’s public key from the sender’s
private key by using the ursa library. Then the user generates
a transfer record of the firefighting IoT data into IPFS, which
contains the sender’s public key, the administrator’s public
key, the timestamp and the encrypted IPFS hash. Finally, the
user calls the APIstub.PutState() function to upload the record
to the blockchain.

Algorithm 4 (query function) is the algorithm for the
administrator to query the firefighting IoT data. After receiv-
ing the firefighting IoT data, the administrator converts the
private key into the public key through the ursa library on
the web server, and then calls the query function in the smart
contract with the public key to view the transmission records
of all firefighting IoT data.
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V. IMPLEMENTATION OF SYSTEMS

A. IPFS-BASED STORAGE

The firefighting IoT data is mainly divided into fire equip-
ment sensor data and video monitoring data. The sensor data
mainly contains water pressure, temperature and vibration of
the pump, water pressure of the firefighting network, smoke
sensor of the smoke alarm, temperature of the temperature
sensor, fire door opening and closing situation and equip-
ment location information, etc. In this system, sensor data is
stored using JSON format, occupying a space of generally
1KB; video monitoring data is the 24-hour monitoring video
of multiple cameras, taking the monitoring video of 1080P
surveillance cameras as an example, the 24-hour monitoring
video occupies a space of 50 GB or so.

In the firefighting IoT data storage system, the IPFS server
stores files in chunks and each file is organized in the Merkle
DAG format, using the root hash of the Merkle DAG (IPFS
hash) to represent the file. The version of IPFS we use is go-
ipfs_v0.4.19_linux-amd64, which is installed directly on the
web server. When the IPFS server is started, the web server
implements the function of uploading and downloading data
by using the ipfs-http-client module, and the process is as
follows.

(1) The web server initiates a request to upload firefighting
IoT data using the ipfs.add function in the ipfs-http-client
module, and the function parameter is the path to upload the
firefighting IoT data.

(2) The IPFS server, after receiving the request about
uploading data, splits the data into 256KB chunks (IPFS
objects), then assigns a unique hash value (Content ID) to
each object and organizes the objects using Merkle DAG
format, and the root hash is the IPFS hash of the firefighting
IoT data.

(3) The web server initiates a request to download the
firefighting IoT data using the ipfs.get function in the ipfs-
http-client module, with the function parameters being the
IPFS hash of the data and the path to store it.

(4) After receiving the IPFS hash, the IPFS server finds the
location of the firefighting IoT data through DHT and then
downloads the firefighting IoT data from the node holding
the data using the bitswap protocol.

(5) The data is returned to the user through the web server.

B. FABRIC-BASED BLOCKCHAIN

1) ADDING PBFT TO FABRIC FOR BLOCKCHAIN RELIABILITY
In this section, we describe the process of adding the PBFT
consensus algorithm to Fabric 1.4.4. First, we need to make
configtxgen recognize the PBFT consensus algorithm, then
the orderer node runs the PBFT algorithm, and finally, just
start the corresponding orderer container [55] when starting
the blockchain network. The steps to add PBFT to the first
network in Fabric 1.4.4 are as follows.

(1) Configure the basic environment, including installing
gce, make and g++ packages, the go language environ-
ment, and configuring GOPATH and GOROOT environment
variables.
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Algorithm 4 Administrators Query the Transmission
Records

Input: administrator’s private key

Output: all transmission records

1: Admin_pk < ursa.getPublicKey(Admin_sk)
2: records, flag < APIstub.GetState(Admin_pk)
3: if flag # nil then

4 return Error(“stub.GetState err.”)

5: return records

(2) Copy the source code of PBFT consensus algorithm to
Fabric source code orderer/consensus/ directory.

(3) Modify the Fabric source code, including config.go,
encoder.go, and main.go files, to make it support PBFT,
as shown in Table 1.

(4) Get the tools related to compiling the source code
by cloning the github.com/golang/tools project to the
$GOPATH/src/golang.org/x directory.

(5) Set GO111MODULE to off, and use the command
“make” to compile configtxgen and orderer-docker to
support the modification of PBFT consensus algorithm.

(6) Start first-network related files, mainly including:
crypto-config.yaml, configtx.yaml, docker-compose-cli.
yaml, byfn.sh, scripts/script.sh, scripts/utils.sh, docker-
compose-base.yaml, peer-base.yaml. Then, modify the above
files except for the crypto-config.yaml file. The profile
is written in configtx.yaml to start PBFT, and refers to
SampleMultiNodeEtcdRaft for details.

(7) Modity three scripts in sequence: byfn.sh, scripts/script.
sh, and scripts/utils.sh, as shown in Table 2.

(8) Create the docker-compose-pbft.yaml file, add three
orderer configuration files to the file, and keep the other
contents the same as docker-compose-cli.yaml.

(9) Use the command ““./byfn.sh up -o pbft” to start the
first-network using the PBFT consensus algorithm.

2) BUILDING A BLOCKCHAIN NETWORK FOR FIREFIGHTING
loT

Fabric mainly consists of system module and tool module.
The system module includes orderer and peer, in which
the orderer node sequences and verifies transactions accord-
ing to the consensus algorithm, while the peer node main-
tains the ledger and smart contracts (chaincode), handles
SDK requests, and maintains the consistency of the ledger
across multiple nodes. The tool modules include cryptogen,
configtxgen and configtxlator, where cryptogen is used to
generate cryptographic certificates and keys, and to gener-
ate certificates and keys for the organization according to
the user’s configuration requirements; configtxgen is used
to generate the configuration files for the channel’s cre-
ation blocks and channel transactions, which can be used
to blockchain network for performance tuning, such as set-
ting block size, generating block time, modifying consensus
algorithm, and realizing tuning of upper layer applications of
blockchain network; configtxlator mainly serves to convert
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some binary files that cannot be edited by users, such as.tx
founding block files and.block files, into user-readable JSON
files.

We use the above modules to build the blockchain network,
which is mainly composed of Fabric Certificate Authority
(CA), peer node and orderer node. Specifically, we first add
the same channel to each peer node, and then install and
instantiate the chaincode to implement the uplink of fire-
fighting IoT data. In the firefighting IoT data blockchain,
peer nodes can be enterprises, regulatory departments and
other institutions. This paper aims to solve the problem of
firefighting IoT data blockchain storage expansion. There-
fore, the peer node is simplified into four departments of
an enterprise. Each department has a server for saving the
firefighting IoT data, which not only realizes the transparent
sharing of information between departments, but also ensures
the security of data. The peer node settings in the firefighting
Fabric instance are shown in Table 3

In the firefighting blockchain network, the transaction con-
sensus is used to ensure that the firefighting IoT data is not
tampered with or deleted, and supports the query operation
on the blockchain through the blockchain browser to confirm
the transmission process of the firefighting IoT data on the
blockchain. The basic steps to reach a consensus on the data
transmission transaction of the firefighting IoT are shown in
Figure 4.

(1) The web server invokes the certificate service through
the SDK to communicate with the designated Fabric-CA
server for registration and enrollment, and obtains the Identity
Document (ID) certificate.

(2) The SDK of the web server sends a transaction proposal
to the Endorser node of Fabric according to the API pro-
vided by the blockchain network, which contains the channel
information, the ID of the invoked smart contract, timestamp,
client signature, transaction content (chaincode functions and
parameters).

(3) The Endorser node validates and simulates the execu-
tion (endorsement) of the received transaction proposal, and
the contents of the validation are: whether the format of the
proposal is correct, whether the transaction has been submit-
ted (to prevent double flower attack), the client signature of
the proposal, and the client authority. When the verification of
the transaction proposal is passed, the simulation execution is
carried out and the corresponding values generated after the
execution, the results of the read-write set are endorsed and
returned to the web server.

(4) After the web server collects enough information
returned by the Endorser node, if it is querying the ledger
information, the information will be returned directly; if the
transaction modifies the ledger, a transaction request signed
by the transaction proposal and the Endorser node will be sent
to the Orderer node;

(5) Once receiving the transaction request, the Orderer
node sorts the transaction request in chronological order,
creates a transaction block, and then broadcasts it to the
Leader nodes of all organizations in the same channel.
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TABLE 1. Fabric source code modification details.

filename line number modification
common/tools/configtxgen/localconfig/config.go 388 Add “case "pbft":”
common/tools/configtxgen/encoder/encoder.go 39 Add “ConsensusTypePbft = "pbft"”
common/tools/configtxgen/encoder/encoder.go 216 Add “case ConsensusTypePbft:”
orderer/common/server/main.go 50 Add “"github.com/hyperledger/fabric/orderer/consensus/pbft"”
orderer/common/server/main.go 650 Add “consenters = pbft.New()”

TABLE 2. Fabric first-network scripts modification details.

filename line number modification

byfn.sh 171 Add “elif ; then COMPOSE_FILES="-f §COMPOSE_FILE_PBFT"”

byfn.sh 196 Add “if ; then sleep 1 echo "Sleeping 15s to allow $CONSENSUS_TYPE cluster to complete booting"
sleep 14 fi”

byfn.sh 237 Add “elif ; then COMPOSE_FILES="-f SCOMPOSE_FILE_PBFT"”

byfn.sh 442 Add “elif ; then configtxgen -profile SamplePbft -channelID $SYS_CHANNEL -outputBlock ./channel-
artifacts/genesis.block™

byfn.sh 519 Add “COMPOSE_FILE_PBFT=docker-compose-pbft.yaml"

scripts/script.sh Replace all "7050" with "6050"

script/utils.sh Replace all "7050" with "6050"

5.50ort the
transactions and then
generate blocks

]

Fabric-CA

1.Registration—»
'y
%
%

Orderer

D .Broadcast Block;—bm
Py Pty

Leader peer

7.Broadcast Blocks

Application

——2.Submit transaction requesl—bm
-4——3.5ignature transaction = =

Endorser peer

Commiter peer

FIGURE 4. The data transmission transaction process of the firefighting loT.

TABLE 3. Fabric peer node settings.

Participant Organization Node

Department 1  Orgl peer0.orgl. example.com
Department 2 Orgl peerl.orgl. example.com
Department 1 Org2 peer0.org2. example.com
Department 2 Org2 peerl.org2. example.com

(6) The Leader node verifies the block sent by the Orderer
node after receiving it: read/write set version, transaction
format, whether it is duplicated, whether it has sufficient
endorsement, and if the block passes the verification, it writes
the block to the local ledger.

(7) The Leader node broadcasts the validated block within
the organization, and the anchor node is responsible for
broadcasting the block across the organization. The peer node
writes the received block to the ledger and notifies the web
server that the transaction proposal has been written to the
blockchain.

VI. EXPERIMENTAL EVALUATION

A. EXPERIMENTAL SETUP AND DEPLOYMENT

The firefighting IoT data storage system is built in the virtual
machine Vmware workstation 16.0, and the main hardware
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TABLE 4. Hardware and software specifications.

Name Specification/Version
CPU AMD R5 5600X 4 core
Disk 100G SSD

Memory 8GB

Operating System  Ubuntu 20.04
Docker 20.10.13
Docker-compose 222

Hyperledger Fabric 1.4.4

NodelS 8.15

Sails.js 1.52

IPFS 0.4.19

Python 2.7

and software information for the experimental simulation test
is shown in Table 4. The system environment and deployment
are as follows.

(1) The blockchain network of this system is the
first-network in fabric-samples (version 1.4.4), which has a
built-in byfn.sh script that can be started easily with the start
command “‘byfn.sh up -n -o pbft”. In addition, the “docker
ps”’ command allows us to check whether the network is
running properly.

(2) Install the chaincode on the Endorser node. In this sys-
tem, peer0 of organization 1 and peer0Q of organization 2 are
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FIGURE 5. An example of generating a key pair.

the Endorser nodes of Fabric, and the endorsement policy is
“OR”. Therefore, the chaincode needs to be installed and
instantiated on these two nodes to support the application to
initiate transaction requests.

(3) Start the IPFS server. The “IPFS daemon &’ command
is used to start the IPFS server to support the web server to
send requests to the IPFS server.

(4) Start PostgreSQL. The ‘“‘docker-compose” command
is adopted to start PostgreSQL, the database container of the
blockchain browser.

(5) Launch the Sails.js framework through the command
“sudo $SHOME/.nvm/versions/node/v8.15.0/bin/node./node_
modules/sails/bin/sails.js”” to support users to access the
blockchain storage system through the browser.

B. ANALYSIS OF SECURITY AND RELIABILITY OF
FIREFIGHTING IoT DATA

Firstly, in our scheme, the transmission records including
IPFES hash of the firefighting [oT data are stored in the Fabric
blockchain, ensuring that the firefighting IoT data can not
be tampered with. On the one hand, Fabric has the general
characteristics of blockchain, making it impossible to tamper
with IPFS hashes stored in each block. Specifically, Fabric’s
ledger consists of two parts: world state and blockchain. The
world state stores the current value of the Ledger status,
which is expressed as a key value pair; The blockchain is a
transaction log that records all changes in the current world
state of construction. Once data is written to the blockchain,
it cannot be tampered with. Specifically, in the structure of
blockchain, blocks are composed of three parts, namely block
headers, block data, and block metadata. Among them, the
block header includes the block number, the hash value of
the current block (hash calculation from all transactions, hash
algorithm SHA256), and the hash value of the previous block
header. Each block is tight junction with each other through
hash values, and has the non processability of anti-collision
brought by the hash algorithm. On the other hand, Fabric
uses Membership Service Provider (MSP) based on a Public
Key Infrastructure (PKI) system to create and manage a set
of X.509 certificates [56] and private keys for members, and
writes them to the Genesis block to authenticate the members’
authority [57], thereby preventing attackers from attacking
Fabric by replacing certificates and private keys. Meanwhile,
the complete firefighting IoT data is stored on the IPFS server,
which generates the IPFS hash of the firefighting IoT data.
Due to the irreversibility of hash operations, the use of IPFS
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to store firefighting IoT data enhances the scheme’s tamper
resistance.

Furthermore, we also use AES algorithm, RSA algorithm,
Merkle DAG, and data backup to ensure the confidentiality,
integrity, and verifiability of firefighting IoT data. Firstly,
the firefighting IoT data is encrypted using AES keys, which
are securely distributed using RSA algorithms to ensure the
confidentiality of data. Then, users use the administrator’s
RSA public key to encrypt the IPFS hash of firefighting
IoT data, then attackers cannot directly obtain the IPFS
hash, thus unable to obtain firefighting IoT data. In spe-
cial circumstances, if attackers eavesdrop on IPFS hashes,
they need to further obtain the AES key randomly gener-
ated by the user. Due to the use of the administrator’s RSA
public key for encryption, attackers are unable to access
the administrator’s RSA private key, making it difficult to
decrypt firefighting IoT data, thereby ensuring data security.
In addition, the Merkle DAG of IPFS is used to generate
IPES hashes of encrypted firefighting IoT data, ensuring
integrity and verifiability. Meanwhile, both IPFS and the
machines used by administrators store data simultaneously.
When IPFS is attacked, the data on the administrator’s
machine is still available, reducing the probability of data
loss.

C. SYSTEM TESTING AND PERFORMANCE ANALYSIS

1) FIREFIGHTING loT DATA UPLINKING TO BLOCKCHAIN
TEST ANALYSIS

In this section, we conduct the process analysis of uploading
the firefighting IoT data to the blockchain, which is divided
into the following steps.

(1) The administrator and the user register and obtain a
key pair, as shown in Figure 5. Users can get their own key
pairs by clicking the Menu button, New Key Pair button and
Generate button in turn on the main page. Accordingly, the
web server will call the ursa library to generate the RSA
algorithm key pair and return it to the web page.

(2) The administrator provides his public key to the user
for receiving the file, as shown in Figure 6. In the upload
firefighting IoT data page, the user selects the upload file,
fills in his private key and the administrator’s public key, and
clicks the upload button to complete the file upload.

(3) As shown in Figure 7, if the file is uploaded success-
fully, it indicates that the file has been stored in the IPFS
network and the hash of the Fabric transaction is gener-
ated, which can be queried in the blockchain browser. The
administrator uses its private key to download firefighting IoT
data.

(4) The user uses the blockchain browser to query the trans-
action, as shown in Figure 8. The message is an encrypted
IPFS hash, which is generated by encrypting the IPFS hash
with the administrator’s public key. Therefore, only the
administrator can use his private key to decrypt the message,
and then download the firefighting IoT data, thus ensuring the
secure transmission of data.
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FIGURE 6. The user uploads firefighting loT data.
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FIGURE 7. The uploading results of firefighting loT data.

FIGURE 8. Transaction details in the blockchain explorer.

2) SYSTEM STORAGE SPACE USAGE TEST ANALYSIS

The traditional blockchain storage system puts the data into
the ledger of each node, while this system stores the fire-
fighting IoT data in IPFS, and the transmission records of the
data are stored in the LevelDB database of the peer node of
the Fabric network. This system registers users by generating
RSA key pairs, and the key pairs are generated using the RSA
algorithm. We test the space usage of 1-10 users using the
system respectively. For the test data, this system uses one
mp4 file (one minute of video surveillance data from a single
768kbps video monitor, which takes up 6.224MB of space)
and one JSON file (which takes up about 1KB of space)
packaged in a zip file named by a timestamp. The user sends
the firefighting IoT data to the administrator account by using
the web page, and the data is stored in the backend on the
IPES server in the data center. Optionally, the administrator
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FIGURE 9. Comparison of occupied space under different schemes.

can download the firefighting IoT data from the user using
his private key upon receipt.

This experiment tests the space occupation of three
schemes: (1) firefighting IoT data is not on the blockchain
and only stored locally; (2) all firefighting [oT data is on the
blockchain (traditional blockchain storage system); (3) the
combination of blockchain and IPFS proposed in this paper
is used for firefighting IoT data storage. In the case of 4 peer
nodes, a different number of users use different schemes to
upload one minute of firefighting IoT data respectively. The
result of space occupation of firefighting IoT data for storage
is shown in Figure 9. In scheme (1), when the firefighting
IoT data is not on the blockchain, the space occupation is the
least, but there is a possibility that the data is destroyed and
the security of the data cannot be guaranteed; in scheme (2),
each peer node stores the backup of firefighting IoT data,
which can securely store the firefighting IoT data, but when
the number of peer nodes and users increases (ensure secu-
rity), with the accumulation of time, the occupied space is
much larger than scheme (1) and scheme (3); in particular,
scheme (3) stores the data in IPFS server, and Fabric only
records the transmission records of all firefighting IoT data,
compared with scheme (2), on the premise of ensuring the
secure storage of firefighting IoT data, the storage space of
nodes is saved by about 50% and the storage space occupation
is only doubled compared with scheme (1), but the secu-
rity of firefighting IoT data is greatly improved. Therefore,
scheme (3) proposed in this paper improves the security than
the traditional centralized storage, and at the same time, saves
the node storage space than the common blockchain storage
system.

3) SYSTEM THROUGHPUT AND LATENCY TEST ANALYSIS
Fabric 1.4.4 has three built-in consensus algorithms, Solo,
Kafka, and Raft. Different consensus algorithms use different
system resources [58], which can affect the throughput of
contract functions in Fabric, and the security of different
consensus algorithms also differs. In order to choose a suit-
able consensus algorithm, we first test the performance of
the Fabric network with the built-in consensus algorithm
and the PBFT consensus algorithm respectively, and then
analyze the performance test results and the security of the
consensus algorithm together, and finally select the PBFT
consensus algorithm.

In order to verify the performance of Fabric networks
based on different consensus algorithms, the Transactions Per
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Second (TPS) [59] in this paper. The testing tool is Tape from
the Hyperledger Technical Community Group China, which
is used by first cloning the Tape repository and compiling
the Tape binaries locally, and then modifying the configu-
ration file and testing the Fabric network according to the
documentation. In the test, the Tape is used to stress test the
query function and sendhash function of the Fabric network
chaincode, and the number of concurrency is set to 10, 20, 50,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. Each test
is conducted 10 times at different levels of concurrency, with
an average result expressed as a 95% confidence interval.

In Figures 10 and 11, the three consensus algorithms built
in Fabric perform better under different concurrency num-
bers, with throughput ranging from 21.16 to 768.43 TPS.
The Solo consensus algorithm contains only a single sort-
ing node, which does not involve communication between
consensus nodes, and the algorithm has a higher TPS, but
with only one node, resulting in poorer security. The system
throughput level of Kafka and Raft consensus algorithms is
equivalent, but the additional management overhead of Kafka
cluster is large, and users generally choose Raft consensus
algorithm. The PBFT consensus algorithm has the lowest
throughput at only 21.16 to 299.38 TPS. The reason is that
the three-stage consensus of the PBFT consensus algorithm
increases the network communication overhead [60], but
ensures the security of blockchain transactions. Although the
built-in consensus algorithms have better throughput perfor-
mance, they have the problems of poor security and high
overhead, and they do not support Byzantine fault tolerance,
which leads to the security risks of Fabric. The PBFT con-
sensus algorithm exactly makes up for the security defects
of the Fabric 1.4.4 network. Therefore, this system uses the
PBFT consensus algorithm as the sorting service algorithm
of Fabric.

In addition, for all consensus algorithms, the system
throughput of the query function and sendhash function
under different concurrent numbers is maintained between
21.16 and 768.43 TPS, and the throughput of the query
function is higher than that of the sendhash function as a
whole. The reason is that the query function only reads
the world state, while the sendhash function belongs to the
invoke operation, which requires more time to communicate
with the orderer node. Although the throughput of sendhash
function and query function under PBFT is 21.16 TPS at
the lowest, compared with the Bitcoin throughput of 7 TPS
and the Ethereum throughput of 15 TPS [61], the throughput
has increased by 202% and 41%, respectively. Furthermore,
we also test the latency of these functions. We use the Caliper
to send 2000 transactions to the query and sendash functions,
with an average delay of 0.55s and 0.75s, respectively. This
means that the average transaction time of the Fabric network
using the PBFT consensus algorithm is completed within
1 second. Correspondingly, the transaction confirmation time
of Bitcoin is 10 minutes [62]. Compared with the public
blockchain, the transaction confirmation delay of Fabric is
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FIGURE 11. Throughput of sendhash function under different
concurrency.

extremely low. Therefore, the blockchain of Fabric embedded
in PBFT can still better meet the needs of enterprises and
ensure the reliability of the blockchain network.

4) ENCRYPTION ALGORITHM PERFORMANCE TEST
ANALYSIS

In our scheme, we use AES and RSA algorithms to protect
firefighting 10T data, IPFS Hash, and the user’s information,
respectively. In this case, the AES algorithm runs on the
department user’s PC and RSA algorithm runs on the server.
The firefighting IoT devices in this scheme are only used
to collect firefighting IoT data and no encryption algorithm
is involved. In more details, we use AES symmetry key to
encrypt the firefighting IoT data, RSA public key to encrypt
IPFS Hash, and RSA 1024 bits to generate user’s account.
We test the above applications involving encryption algo-
rithms, and each is tested ten times to take the average.
The average time required to encrypt and decrypt simulated
firefighting IoT data using AES is 24.98ms and 24.78ms,
respectively; the average time required to encrypt and decrypt
IPFS Hash using RSA is 57.50us and 417.12us; the average
time required to generate user accounts, i.e., public-private
key pairs, using RSA is 21.22ms. From the above data, it can
be seen that the encryption (decryption) time of the encryp-
tion algorithms in our scheme can be basically ignored, which
can ensure the safe transmission of firefighting IoT data with
low time overhead.
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VIi. CONCLUSION

In this paper, we design and implement a distributed storage
framework for firefighting IoT data based on blockchain and
IPFS. In this framework, a large amount of firefighting IoT
data is stored off-chain using IPFS, and the blockchain only
stores the transmission records of firefighting IoT data, which
saves the hard disk storage space of each blockchain node and
ensures the security and low-cost of data storage. Meanwhile,
RSA and AES algorithms are used to encrypt firefight-
ing IoT data and transmission records, which improves the
security of data storage and transmission. By adding the
PBFT consensus algorithm to Fabric, the blockchain net-
work supports Byzantine fault tolerance and enhances the
reliability of the blockchain system. In addition, through
the blockchain browser, users can query the transmission
records of all firefighting IoT data and realize real-time super-
vision of the transactions. Simulation experimental results
and security analysis show that the proposed firefighting
IoT data storage system can store firefighting IoT data
securely and at low cost, and ensure the integrity, validity and
non-tamperability of firefighting IoT data. Compared with
the traditional blockchain storage system, it saves storage
space with high system throughput and low latency overhead.
In the future work, we will consider allowing more orga-
nizations to join the blockchain, including government and
firefighting departments, and use access control to achieve the
data sharing security, while adding privacy protection func-
tions, so as to further improve the integrity and practicability
of the framework.
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