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ABSTRACT A cataract is a medical condition causing an opacity in the ocular nucleus due to various factors
such as age and diseases. Starting from traditional image processing techniques for processing and extracting
relevant features, using computational intelligence methods is essential to help experts in the medical
pre-diagnosis for automatic classification and grading of the disease. However, the learning capabilities of
such automated processes rely considerably upon the availability of adequately-labeled databases approved
by medical experts. Considering the shortage of available public databases for implementing potential
algorithms such as Deep Learning, this work presents a new nuclear cataract database composed of
1437 labeled images for multi-level classification according to the LOCS III system. The images were
obtained and correctly classified by experts from an ophthalmologic medical center inMexico City. Also, our
research compares relevant Machine Learning algorithms employed for medical images like Support Vector
Machines, Deep Learning structures like GoogLeNet, and our proposed Deep Learning Structure with the
highest classification rates for the two and multiple cataract levels according to LOCS III.

INDEX TERMS Nuclear cataract classification, machine learning, deep learning.

I. INTRODUCTION
Machine learning (ML) is transforming the practice of
medicine.ML applications comprehend a series of techniques
helping doctors diagnose patients more accurately, predict
their future health, and recommend better treatments [1].
ML is not just a new tool but a fundamental technology
required to meaningful process data exceeding the capacity of
the human brain to comprehend [2]. However, ML requires a
sufficient quantity and quality of data in the learning process
to obtain the highest levels of accuracy [3], [4]. In this work,
we present the results of our work in the recollection of
nuclear cataract images, an opacity or cloud developed in the
eye nucleus.

First, formally describing this eye affectation, a cataract
is a medical condition causing an opacity in the region
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of the ocular nucleus due to various factors (in order of
importance): age, diabetes, congenital formation, or eye
trauma [5]. Fibrosis occurs in the ocular nucleus, caus-
ing lens hardening due to any of the factors mentioned
above [6].

The World Health Organization (WHO) estimated at least
2200 million people with visual impairment or blindness
in 2020, from where 1000 million have a moderate or
severe deficiency that could be prevented and treated.
Approximately 65.2 million worldwide suffer from cataracts
due to senile degeneration [7]. Some factors causing this
disease, especially at an earlier age, include the lack of
ophthalmologists, specialized medical facilities, and a lack
of adequate medical equipment [8].

Regular eye exams prevent vision loss due to age-related
factors or a medical condition that causes eye disease. The
most common test is the slit lamp examination, allowing
the ophthalmologist to obtain information within the ocular
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lens detecting anomalies such as retinopathy, glaucoma,
or cataracts [8]. When the cataract is within an advanced
stage, requiring the surgical replacement of the ocular lens,
an ultrasound examination determines the characteristics of
the intraocular lens offering better features to restore the
patient’s vision [9].

The primary purpose of this paper is to present a new
database of nuclear cataracts and make it freely available to
the public. This database was obtained during our research
at the Conde Valenciana Institute in Mexico City, consulting
medical specialists to obtain the images with the proper
medical protocol and in the subsequent validation and
labeling. The database contains two cases in general: images
of patients with nuclear cataracts and disease-free patients
(called binary classes). The other case is a database with
the multiple-degree disease levels, aimed to be compared
with the LOCS III system [10]. Another purpose of the
paper is to implement relevant ML classification techniques
like Deep Learning and Support Vector Machines (SVM),
first employing standard transfer learning DL structures
like GoogLeNET and then proposing our DL structure
called NCC-net (Nuclear Cataract Classification Network)
aiming to obtain the best classification results for binary and
multiple-levels of the disease.

After the introduction, the paper’s structure includes
the following sections: Section (II) mentions the state
of the art of the existing databases of nuclear cataracts,
and States of the art of methods for pre-processing, seg-
mentation, and classification. The following Section (III)
details the characteristics of the slit-lamp, the medical
protocol followed to obtain the images, and the dataset’s
characteristics. Section (IV) presents the results of applying
the computational intelligence classifiers like Support Vector
Machines (SVM) and Deep Learning (DL). The experiments
comprise the two-classes or binary classification and the
multiple-level degree classification. The experimental work
also includes an implementation of our proposed NCC-net
on a Raspberry Pi. Finally, Section (V) contains the
conclusions.

II. STATE OF THE ART
A. DATA BASES
Cataracts are classified depending on the involved area
and graded by comparing the image obtained in the
biomicroscopy exam with a collection of standard images
labeled with the progression degree of the disease [11]. Two
types of well-standardized classification systems are The
Oxford Clinical Cataract Classification and Grading System
(OCCCGS) [12] and Lens Opacities Classification System III
(LOCS III) [13].
In the literature, six image types constitute the base

for cataract classification/grading: slit lamp image, retro
illumination image, ultrasonic image, fundus image, digital
camera image, and anterior segment optical coherence
tomography. The existing cataract classification/grading

systems are based on slit and fundus images, the most
commonly used ophthalmic images for clinical diagnosis and
scientific research [14].

We identified some research works based on slit lamp
images; these works and the number of samples used are
mentioned in Table 1. Next mentioned the public and private
datasets:
Private Datasets

1) ACHIKO-NC dataset contains slit lamp images
selected from the Singapore Malay Eye Study (SiMES
I) database and is comprised of 5378 images with
decimal grading score (0.3 to 5.0) [15].

2) ACHIKO-Retro dataset contains retro-illumination
lens images selected from the SiMES I dataset and is
used to grade CC and PSC [16].

3) CC Cruiser dataset contains 476 normal and
410 cataract infantile slit-lamp images collected from
the Zhongshan Ophthalmic Center of Sun Yat-Sen
University, China [17].

4) Multicenter dataset contains 336 normal and 421 infan-
tile cataract slit-lamp images; this dataset again
comes from Asia and is collected from four clinical
institutions: the central hospital of Wuhan, Shenzhen
eye hospital, Kaifeng eye hospital, and the second
affiliated hospital of Fujian medical university, from
China [17].

Public Datasets
1) EyePACS dataset is a platform for retinopathy

screening from the California Healthcare Foundation
(http://www.eyepacs.com, https://www.kaggle.com/c/
diabetic-retinopathy-detection), and is comprised of
88702 fundus retinal images [18].

2) HRF dataset is the high-resolution Fundus (HRF)
image dataset selected from different open-access
datasets: structured analysis of the retina (STARE)
[19], standard diabetic retinopathy database
(DIARETDB0) [20], methods to evaluate segmentation
and indexing techniques in the field of retinal
ophthalmology (MESSIDOR) database [21], digital
retinal images for vessel extraction (DRIVE) database
[22], digital retinal images for optic nerve segmentation
database (DRIONSDB) [23], Indian diabetic retinopa-
thy image dataset (IDRiD) [24], and other Internet
sources.

Comments
After mentioning some of the databases found in the
literature, some concerns are:

• Many databases are private and unavailable for aca-
demic purposes and research.

• Actually, many automatic diagnosis systems are based
on Deep Learning, providing a high level of accuracy for
classification, grading, and segmentation, among other
tasks. However, these algorithms mainly require vast
data for the learning process. Then it is necessary to
create database repositories available for the scientific
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community to train all these massive-structure algo-
rithms.

• In the literature, many databases are mentioned from
Asia countries, as shown in Table 1. Still, it is
necessary to count for databases from Latin American
countries where we can find other relevant features for
determining eye diseases.

B. PRE-PROCESSING AND SEGMENTATION METHODS
FOR FEATURE EXTRACTION
This subsection presents some relevant pre-processing and
feature segmentation methodologies to obtain the region of
interest (ROI), an appropriate step before the biomedical
images’ feature extraction and classification.

In the pre-processing step of the obtained images, all
the unnecessary information from the image is removed,
preparing it for further steps. Pre-processing operations
can range from simple (like a resize) to more complex
(like a spatial filter). The most significant contributions
in cataract image pre-processing can be observed in [25],
[26], [27], and [28]. The next step is the extraction of
discriminant features from the image. This step is crucial
and highly dependent on the first. The high accuracy in
the classification process depends on the characteristics
extracted in this step, correlating each characteristic and the
corresponding label [29]. The literature contains vast image
processing techniques and machine learning algorithms
for these two steps. Some relevant works are mentioned
next.

Li et al. at [30] present a feature extraction approach where
the region of interest (ROI) is obtained using an elliptical
lens estimate with vertical and horizontal profile clustering
and thresholding. The contour of the lens was obtained with
an active shape model (ASM) using 24 contour points. This
approach also uses Principal Component Analysis (PCA) to
obtain the mathematical expression of the contour and use
it in new images. In [31], Salla et al. use a fuzzy inference
system for image-preprocessing operations separating the
ROIs proposing only four rules to differentiate nuclear
from cortical cataracts. In [32], the authors implement
histogram equalization for pre-processing to increase the
image range and assign new values to the input image
pixels, aiming to obtain a flat and uniform distribution of
the image histogram. Finally, the lens centroid is obtained
with fuzzy K-means clustering algorithms for optical images
to detect the features specific to three classes classified by
Artificial Neural Networks. Yang uses fundus images and
pre-processes these on the green channel of the RGB color
space, arguing the best contrast between the background
and the blood vessels in this channel [34]. Also, they use
a top-bottom hat transformation and a tri-lateral filter to
accentuate the contrast. Finally, the 24 features from 4 angles
are extracted from the resulting gray-level co-occurrence
matrix (GLCM). Gao et al. [35] introduce an automated
system for learning slit lamp imaging characteristics and

grading nuclear cataracts. Through patches, local filters are
developed for each class, introduced into a convolutional
network, and subsequently into a set of recurring networks to
extract high-order features. Following a supervised learning
strategy, the label information is the grading category of
each training image. Reference [36] performs image pre-
processing, extracting characteristics from fundus images.
In fundus images without a cataract, structures such as
vessels, blood, and the optic disc are visible, whereas in
cataract images, they are not. For this purpose, the author
uses the discrete wavelet transform (DWT) and the discrete
cosine transform (DCT) to extract localized features related
to high-frequency components and then isolate the major
components for each condition. A method to evaluate blur-
riness for cataract diagnosis in retinal images with vitreous
opacity is proposed in [37]. The lesions affecting the retinal
structures are detected and removed with image segmentation
by a morphological technique, avoiding erroneous detection
of vitreous opacity. The features extracted are the number
of pixels of the visible structures, the average contrast
between the blood vessels and the background, and the
local standard deviation. Xu employs a deep convolutional
architecture to extract and learn discriminant features from
the input image [38]. Another significant contribution is
using a deconvolution network (DN) to observe how the
convolutional network characterizes the cataract in each
layer.

Recent works bet on using only deep learning structures,
including the conventional rearranging, pre-processing, and
augmentation of previous steps for feature extraction into
the network. Junayed et al. [39] propose a lightweight deep
structure called CataractNet for fundus images, obtaining
competitive accuracy performance, among other measures,
compared with well-known deep structures for image clas-
sification like MobileNet, VGG-16, VGG-19, Inception-v3,
and ResNet-50. However, CataractNet only detects cataracts
and does not grade or find the exact location of the
affectation. A similar work avoids the traditional manual
feature extraction and only uses a deep structure called
VGG19-net, presented in [40]. Again in [41] Hoosain et al.
present only a cataract detection deep convolutional neural
network (DCNN) based on Res-Net50, detecting cataract and
non-cataract cases of fundus images.

Generally, a tendency is observed to employ DL-structures
with lightweight structures (MobileNet) for applications on
embedded systems and to propose more deep structures while
reducing the computational costs like the Inception networks
or to increase the computational accuracy as the ResNets
perform.

C. CLASSIFIERS
As a final step for every automatic grading and classification
system, the classification is done according to the extracted
features. In many classification systems, it is customary to
use various computational intelligence techniques, but it is
not always necessary [42], [43], [44], [45].
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TABLE 1. Description of nuclear cataract classification systems.

The authors in [30] investigate two approaches for classi-
fying senile cataract disease for nuclear and cortical cataracts.
After using post-processing techniques removing noise with
spatial filters realize only the graduation of cortical cataracts
and the detection of nuclear ones. The cortical cataract
is graded on backlight images, and an SVM regression
calculates the degree of involvement for this condition.
Reference [46] propose a nuclear cataract diagnosis system
via ranking. This approximation uses a direct optimization
algorithm to learn all ranking functions, presenting a list of
slit-lamp images of the learned ranking functions. This work
offers a new evaluation measure for learning the optimal
ranking function via direct optimization. Reference [29]
presents an algorithm for automatically diagnosing nuclear
cataracts. The ROI is detected and segmented using an
active shape model (ASM) with anatomical landmark points,
extracting relevant features, and classified by an SVM.
Reference [31] investigate a Fuzzy Inference System to
solve the cataract detection and classification problem with
minimum human interaction. The system uses trapezoidal
membership functions with four parameters and fuzzy rules
formulated from thresholds in the RGB image. Refer-
ence [34] automatically classifies cataracts in retinal images
using an artificial neural network presenting four classes:
normal, mild, moderate, or severe. The extracted features
are luminescence and texture. Reference [37] shows a
method to evaluate blurriness for cataract diagnosis in retinal
images with vitreous opacity removal. Using amorphological
technique, lesions that can modify retinal structures are
detected and removed from the image avoiding erroneous
detection of vitreous opacity; finally, a decision tree is
constructed and trained with five grades. Reference [50]
propose a six-level cataract grading method focused on the
multi-feature fusion based on stacking. There are extracted
two kinds of features; high-level features extracted from
the residual network (ResNet18). The framework uses two

support vector machine (SVM) classifiers as base learners to
obtain each fundus image’s probability outputs. Also, a fully
connected neural network (FCNN) is used as a meta-learner
to work the final classification result. Reference [54] present
a ranking CNN to solve the ordinal dataset problem with
non-linearity patterns between the label and features like
the cataract dataset. However, due to the data imbalance,
the cataract dataset performed terribly in classifying severe
and typical cases. The authors try to alleviate this drawback
by proposing a tournament structure instead of simply
aggregating binary results.

As a final comment, experiments are difficult to recreate
due to technical differences in databases and varying
parameters like the number of classes between different
research groups. The closest efforts of this research work
are with the groups formed by [29] and [50], the latter the
closest due to automatic feature extraction and multiclass
classification. The main contributions in nuclear cataract
classification are summarized in Table 1.

III. EXPERIMENTAL PROTOCOL DESCRIPTION
This section describes the instrument for the data acquisition,
the medical protocol, a brief description of the LOCS III
system, the dataset description, and the data augmentation
process as a regular process used in machine learning to
robustify the algorithms, making them invariant to transla-
tions, viewpoints, and others. The database was obtained
from the Conde Valenciana Institute, an ophthalmologist
center in Mexico City.

A. THE SLIT-LAMP
The slit lamp, indispensable for the detailed examination of
eye tissues, is an essential tool in any analysis of the anterior
segment, including the anterior vitreous and those structures
anterior to it. The slit-lamp is sufficient to observe most
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FIGURE 1. The slit lamp [51].

of the tissues in the anterior segment (except the anterior
chamber angle and the posterior surface of the iris) without
needing any other instrument or accessory. Fig. 1 illustrates a
typical slit-lamp and the process of obtaining the images by
the experts [51]. This biomicroscope consists of three main
parts: The viewing arm, the illumination arm, and the patient-
positioning frame.

Depending on the lighting technique used for each case,
the slit lamp is used to diagnose different eye conditions.
In addition, the examiner must be familiar with the lighting
techniques such as diffuse illumination, direct focal illumi-
nation, specular reflection, retro illumination, indirect lateral
illumination, and sclerotic scatter. Apart from the techniques
mentioned above, the examiner must be familiar with the
slit lamp controls that allow observing specific tissues or
conditions only visible at particular inclinations of the light
beam. In the case of Diffuse illumination, this type is
commonly used to observe a general panorama of the ocular
surface and intraocular structures, such as the lens, iris,
nucleus, and posterior capsule. More detailed information in
the use of this medical device and techniques can be found
in [51].

B. THE MEDICAL PROTOCOL
To begin the test, the examiner instructs the patient to place
their face firmly between the chin rest and the forehead
strap. The patient’s eye must be at the level of the mark
on one of the support rods and below the forehead strap.
The examiner must ensure that the chin is resting entirely
on the chin rest and the forehead is pressing the forehead
strap. The examiner must ensure the correctness of the device
settings and the parameters, the patient’s comfort, the normal
operation of the computer interface, and the proper slit lamp
distance to the eyepieces before starting the test.

Frequently, in some cataracts and mainly in senile ones,
lighter and darker areas can be seen from front to back

FIGURE 2. Layers of the lens cortex.

FIGURE 3. Nucleus area delimitation. (Left: Original image; Right: Lens
nucleus from the original images.)

(that is, from the capsule to the nucleus). These areas are
portions of transition between different layers or zones of
the cortex, as seen in Fig. 2. The oval shape characterizes
the nucleus, generally with the same density. Still, other
transition zones are presented between the last zone of the
anterior cortex and the posterior nucleus, as well as transitions
through the layers forming the embryonic and fetal nucleus,
as seen in Fig. 2. This approach takes a photograph when the
examiner distinguishes the nucleus area from the rest of the
image, as seen in Fig. 3.

C. THE LOCS III SYSTEM
The third version of the Lens Opacity Classification System
(LOCS III) is a standardized system for the graduation of
cataract characteristics according to age, which is highly
employed and scientifically validated. LOCS III is used to
graduate the cataract type, its severity, and its progression.
The classification compares photographic patterns with
different opacity grades of four characteristics: nuclear opac-
ity, brunescent, cortical opacity, and posterior subcapsular
opacity. The nuclear and brunescent opacities are classified
according to six photography. The brightness of the nuclear
region is called nuclear opalescence (NO), and the intensity
of the brunescence is called nuclear color (NO). The cortical
opacity grade is determined by comparing the cortical opacity
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FIGURE 4. Slit-lamp dataset samples.

amount against five photography. Similarly, the subcapsular
posterior opacity (P) is determined by comparing it against
five other photographs showing the different opacity grades
in front of the posterior capsular.

The opacity grade classification consists of identifying the
patient’s crystalline characteristics of the image compared to
the color images. The opacity and nuclear color graduation
are within a decimal scale of 0.1 to 6.9. The cortical opacity
and subcapsular posterior magnitude are graduated on a
decimal scale of 0.1 to 5.9. The final LOCS III classifi-
cation comprehends four decimal values for NO, NC, C,
and P [52].

D. THE DATASET
One of the main interests of this work is collecting slit-lamp
standardized dataset images and defining the proper technical
methodology. The first dataset collected consists of 40 images
labeled as cataract and non-cataract. The RGB images were
obtained from a Topcon DC-1 digital slit-lamp camera with a
resolution of 1028 × 640 focused with a Topcon SL-D2 slit-
lamp, a slit angle of 30◦, a 0.5 mm aperture, and maximum
luminous intensity.

The dataset collected for multi-class classification consists
of 1437 labeled images. Some of these images are shown
in Fig. 4. The images were obtained from a digital Topcon
DC-3 slit-lamp camera with a resolution of 3264 × 2448
RGB; they were focused with a Topcon SL-D7 slit-lamp,
a slit angle of 45◦ and 135◦ for each eye, a 6 mm × 0.5 mm
aperture and maximum luminous intensity. The number of
volunteers for the multi-class dataset was 68 women and
47 men, with at least three images per right and left eye.
The expert ophthalmologists’ classification according to the
LOCS III Protocol is shown in Table (2. The dataset is
available at Nuclear Cataract Database-DOI [53].

E. DATA AUGMENTATION
A relevant test of efficient deep network structures is the
simultaneous decrease of training and validation errors.

TABLE 2. Cataract classification according to LOCS III by the expert
ophthalmologists. NO: nuclear opalescence, NC: nuclear color, C: cortical,
and P: posterior sub-capsular cataracts. RE: Right Eye and LE: Left Eye.
IOL: intraocular lens.
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FIGURE 5. Patches from slit-lamp images.

The larger the training sets, the better the results using
deep learning models. However, when it comes to medical
imaging, this task is quite complicated due to the limitations
and complexity of obtaining the validated databases; it is
necessary for an additional process of data augmentation.
The effectiveness of data augmentation has been proven
in many cases through simple transformations, either by
transforming color spaces, cropping, flipping, etc. These
simple transformations can encode many variations in pattern
recognition tasks. Cropping images is common in data
augmentation, providing effects similar to image translation.
Still, with certain differences: cropping reduces the size of the
input image, while translation preserves spatial information.
However, clipping the image can cause the label information
to be lost, but it significantly reduces network training time
due to the reduction in image dimensions.

In this work, We extracted ten patches from the ROI for
each image, as shown in Fig. 5. The size of the patches is
224 × 224 pixels, obtaining a total of 14370 labeled images,
i.e., a database augmented ten times.

IV. EXPERIMENTAL RESULTS
This section presents the main results of our work in
classifying nuclear cataracts of two general cases: the binary
classification and the Multiple-level case for comparisons
with the LOCS III System. First, we briefly describe
the machine learning-based classifiers used in this work.
According to [47], Machine learning broadly refers to
fitting predictive models to data or identifying informative
groupings within data. ML attempts to approximate or
imitate humans’ ability to recognize patterns objectively
using computation. The utility of ML is mainly given when
the analyzed dataset is too large (many individual data points)
or too complex (contains a large number of features) for
human analysis and/or when the data analysis process is
automated for a reproducible and time-efficient pipeline.
Next, we briefly explain the two main classifiers we based
our research on.

The first one is Support Vector Machines (SVM), where
the general idea is to provide a hyperplane to differentiate
between two classes:

f (x) = wTx + b = 0 (1)

where (w is a weight vector, and b is a bias). Unlike
a classical Multilayer Perceptron, which also builds up a
hyperplane as a decision surface with a neural structure,
SVM maximizes the margin of separation between positive
and negative examples of such classes. The solution is
based on a quadratic programming problem, obtaining the
optimal solution through a Lagrange formulation. When
the data is nonlinear-separable, SVM uses kernel func-
tions to construct hyperplanes in high-dimensional feature
space [48].

The other classifier is based on Deep Learning (DL) [49],
computational models with multiple processing layers.
DL learns data representations with multiple levels of
abstraction, discovering intricate structures in large datasets.
This work is based on a Convolutional Neural Network
(CNN), where each node is connected to only a small
subset of spatially connected neurons in the input image
channels; this stage is for detecting certain local features of
the input channels. The kernels, which are sets of connection
weights shared between the nodes, learn to detect the n
local features whose strength across the input images is
visible in the n resulting feature maps. Due to the high
increase in parameter growth, the pooling layer reduces
the computational complexity achieving a hierarchical set
of image features. CNNs usually contain several pairs
of convolutional and pooling layers, followed by several
consecutive fully connected layers and a softmax layer,
to generate the desired outputs. A common training algorithm
is stochastic gradient descent, which minimizes the cost
function:

L = −
1

|X |

|X |∑
i

ln(p(yi | X i)) (2)

where |X | denotes the number of training images, X i is the ith

training image with the corresponding label yi, and p(yi | X i)
is the probability value indicating the correct classification
of X i.

We employ standard performance measures like sensi-
tivity, specificity, accuracy, and the area under the curve
(AUC) of the receiver operating characteristics analysis
(ROC) considered as reliable evaluation metrics for classifier
completeness in medical imaging [65].

This work proposes a novel network called Nuclear
Cataract Classification Network (NCC-net), with the struc-
ture mentioned in Table (3).

The first dataset collected for the binary case consists
of (1028 × 640-RGB) labeled images as cataract and
non-cataract. The dataset collected for multi-class classifi-
cation consists of 1437 labeled images obtained with the
technical specifications mentioned above. For each image,
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TABLE 3. Complete description of the NCC-net architecture for binary classification.

we extracted ten patches from the region of interest (ROI)
with a size of 224 × 224 pixels, obtaining a total of
14370 labeled images.

A. BINARY CLASSIFICATION
The general steps for this binary classification of cataract
and non-cataract are (1) generation of patches from the
slit-lamp images extracted from the ROI; (2) creation
of accurate feature representations using images/patches;
(3), in some cases, selection of discriminant features using
principal component analysis (PCA), and (4) classification
of the images into binary classes by using fully supervised
classifiers. After cropping all the images and producing
the training patches, feature learning is carried out by
supervised deep learning. The network input is normalized
with unit variance and zero mean. Rectifier linear units
(ReLu) are implemented after the batch normalization
layer, improving the classification accuracy and training
speed instead of using the sigmoid or hyperbolic tangent
functions. Fig. (6) represents the flow diagram of this
scheme.

The simulations were performed with MATLAB®

R2019a in a workstation with Intel® CoreTM i7 1.8 GHz
processor and NVIDIA GeFORCE GTX 750M GPU. The
training options for the CNN were Backpropagation training
with a minibatch size of 12, an initial learning rate of 0.001,
and a maximum of 100 training epochs. The dataset with
other images obtained from available datasets consists of
90 images; 45 are labeled as cataracts, and 45 are labeled as
non-cataracts.

The experiments include the following parts: (1) apply-
ing NCC-net for feature extraction and using these fea-
tures directly with SVM and ANN (NCC+ANN, and
NCC+SVM), (2) applying PCA for feature selection before
obtaining the feature vector used for classification with SVM
and ANN (NCC+PCA+ANN, and NCC+PCA+SVM),

(3) using the pre-trained networks AlexNet and GoogLeNet
in transfer learning mode, training only the fully-connected
layer with our images, and (5) using only our proposed
NCC-net for feature extraction and classification. Some
of the classification results within NCC-net are shown in
Fig. 7.
The dataset consists of 70% training, 15% validation, and

15% testing sets, adopting the cross-validation technique.
Each classification task uses the same dataset split without
data augmentation in this work, except for patch extraction.
The database increases from 90 to 900 images using
patches.

In Table 4, sensitivity, specificity, accuracy, and area
under the curve of ROC (AUC) are reported as evaluation
metrics.

B. CLASSIFICATION OF MULTIPLE CLASSES
One of the main purposes of this research work was to obtain
a considered big-enough dataset for classifying multi-level
degree cataracts, aiming to compare our results with the
well-known LOCS III classification system in cataracts
databases. The process is similar to the binary case classifica-
tion, but now classifying the images according to the LOCS
III system, using cropped images, feature learning by super-
vised deep learning, and the same technical considerations for
introducing the dataset to the classification algorithms. The
training options for the CNN were Backpropagation training
with a minibatch size of 12, an initial learning rate of 0.001,
and a maximum of 100 training epochs. The dataset consists
of 1437 labeled images; 55 labeled as NO1/NC1, 123 labeled
as NO2/NC2, 112 labeled as NO3/NC3, 242 labeled as
NO4/NC4, 318 labeled as NO5/NC5, and 587 labeled as
NO6/NC6.

The experiments include the following parts: (1) applying
NCC-net for feature extraction and using these features
directly with SVMandANN (NCC+ANN andNCC+SVM),
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FIGURE 6. The flow diagram for the binary classification algorithms.

FIGURE 7. Some examples of accurate and inaccurate classified cases for both classes with the proposed
NCC-net. The green ones are the corrected classified examples.

TABLE 4. Performance measures of binary classification by both traditional machine learning and CNNs including the Proposed NCC-net.

(2) applying PCA for feature selection before obtaining the
feature vector used for classification with SVM and ANN
(NCC+PCA+ANN, and NCC+PCA+SVM), (3) using the
pre-trained networks AlexNet and GoogLeNet in transfer
learning mode, training only the fully-connected layer with
our images, and (5) using only our proposed NCC-net for
feature extraction and classification. Fig. 8 presents the ROC
for each method.

The dataset was split into the 70% training, 15% validation,
and 15% testing sets, and the cross-validation technique was
adopted. For each classification task, the same split was
used. No data augmentation operation was used for this
work except for patch extraction. The database was increased
from 1437 to 14370 images.

In Table 5, sensitivity, specificity, accuracy, and area
under the curve of ROC (AUC) are reported as evaluation
metrics.

C. RASPBERRY PI IMPLEMENTATION OF THE NCC-NET
Now we analyze the implementation of NCC-net in a
single board computer (SBC), a Raspberry Pi model B +.
The performance should classify many images, tagged into
two categories: cataract and non-cataract. After that, the
algorithm and architecture adaption works without ending
the board’s resources. This process employs an OpenCV
library with 224 × 224 pixels of pre-processed images.
The dataset consists of 90 labeled images, 45 labeled as
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FIGURE 8. ROC Curve for all the classification methods using the LOCS III classification system.

TABLE 5. Performance measures of LOCS III classification by both traditional machine learning and CNNs including the Proposed NCC-net.

TABLE 6. Epoch comparison loss/accuracy value.

cataracts and 45 marked as non-cataract. We extracted ten
patches for each image, increasing the database ten times.
The model is implemented on MATLAB® R2019a in a
workstation with Intel® CoreTM i7 1.8 GHz processor and
NVIDIA GeForce GTX 750M GPU, and then exported to a
Python model. The NCC-net model has three main layers,
an input layer, a hidden layer, and an output layer. The
characteristics for each layer are described in Table 3. The
model was trained using gradient descent with a learning
rate of 0.001, and the network was trained from 5 to
100 epochs. The results for the training can be seen in
Table 6.
To test the effectiveness of implementing the architecture

on the Raspberry board, 140 database images were tested.
Of these 140 images, 125 were in the correct class, and
15 were in the wrong. Each image processing on the
Raspberry had a different execution time. The specifications

TABLE 7. Specifications for the Raspberry and the training workstation.

TABLE 8. Run test for NCC-net.

for the Raspberry and the training workstation are shown in
Table 7

The run test is shown in Table 8 only for the NCC
model. Other processes are not included in the time run
result Raspberry Pi B+ can run a 3-Layer CNN, using
all the resources during the simulations. The images are
resized to 224 × 224 RGB. For a real-time applica-
tion, greater computational power is needed to achieve
classification.

VOLUME 11, 2023 107763



I. Cruz-Vega et al.: Nuclear Cataract Database for Biomedical and Machine Learning Applications

V. CONCLUSION
The current tendency for massive-structure learning algo-
rithms in artificial intelligence requires a sufficient and vast
quantity of datasets for automatically extracting relevant
features and classifying the disease.

The purpose of this paper follows two objectives. The
first is to collaborate with a vast dataset of images for
the research community working on detecting nuclear
cataracts with computational-based algorithms. The dataset
was obtained with the proper medical protocols and under
the supervision of specialists with slit lamps from a medical
center in Mexico City. The database is available online
at Nuclear Cataract Database. The relevant part is the
extensive dataset for comparisons on the LOCS III cataract
classification system. Since the number of images is not
the same for each label in the multiple degrees of disease
affectation and the number of images in the database is
relatively small, we employed patches of the slit-lamp images
for data augmentation, increasing ten times the database
size.

For the second objective, we have proposed a deep
convolutional neural network called NCC-net for automat-
ically classifying the two-degree case with only images
of cataract and non-cataract and the multiple-degree case.
The accuracy obtained for the binary classification using
the NCC-net architecture was 93%, the sensitivity 92%,
and the specificity 95%. These performance values were
higher than the transfer learning mode and fine-tuning of
known deep architectures like the GoogLeNET network with
89% of accuracy. In the same way, we implemented this
network in an embedded system called Raspberry Pi B+,
showing very competitive results. The accuracy achieved
after 50 training epochs was 84%, while for 100 epochs,
the accuracy raised to 89%. The simulation time for the
Raspberry Pi B + also shows promising results. While for
a workstation, the worst simulation time was 12 seconds;
the simulation time was approximately 3.5 minutes for
the Raspberry. Finally, we present a multiple-level disease
classification according to the LOCS III classification.
We demonstrated that our system has performance indicators
for a reliable pre-diagnosis based on medical expertise for
this multi-class task and the enlarged database. The accuracy
obtained was 88%, the sensitivity 90%, and the specificity
93%, higher values than those obtained with the proposed
experiments and fine-tuned deep architectures; that is, the
NCC+ANN framework with 83% of accuracy for the
multi-class.

The patients may have other diseases interfering with the
cataract features in slit-lamp images. We cannot distinguish
these diseases from cataracts; therefore, further research
should focus on improving this. With high-order features
extracted for cataract classification, the proposedCNNallows
an automated pre-diagnosis of nuclear cataracts in slit-lamp
images. Finally, we can conclude that this algorithm can help
to carry out the first examination step for a proper medical
diagnosis.
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