IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 9 August 2023, accepted 31 August 2023, date of publication 5 September 2023, date of current version 15 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3312286

=5 sTANDARDS

Overview and Comparison of Asset Information
Model Standards

TORBEN MINY™1, (Member, IEEE), MICHAEL THIES', (Member, IEEE),

LINA LUKIC"2, (Member, IEEE), SEBASTIAN KABISCH”3, (Member, IEEE),
KAZEEM OLADIPUPO?, (Member, IEEE), CHRISTIAN DIEDRICH*, (Member, IEEE),
AND TOBIAS KLEINERT!, (Member, IEEE)

! Chair of Information and Automation Systems for the Process and Material Technology, RWTH Aachen University, 52064 Aachen, Germany
2SysTec Systemtechnik und Industricautomation GmbH, 50129 Bergheim, Germany

3Siemens AG, 81739 Munich, Germany

#Chair of Integrated Automation, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany

Corresponding author: Torben Miny (t.miny @iat.rwth-aachen.de)

ABSTRACT Different organizations are currently working on concepts and standards pertaining to the
integration of industrial automation devices into a communication network. For manufacturers, suppliers,
integrators, and operators of automation components, the variety of available protocols for information
exchange raises the question of which standard to use. To address this question, this contribution provides
an overview of different standards for the virtual description of an automation device in the context of
device integration and presents a detailed comparison of the following selected standards: W3C WoT
Thing Description, Asset Administration Shell, Digital Factory Framework, Automation Markup Language,
Module Type Package, OPC UA Process Automation - Device Information Model, and Field Device
Integration. These standards are compared with respect to four categories: 1) Representation of a property; 2)
Representation of services; 3) Information modeling for direct automation device access; and 4) Mechanism
for discovery. The comparison is summarized in an evaluation of the suitability of each standard for different
use cases. Since none of the standards fully covers all use cases generic integration strategies are presented
for combining the device information models. Finally, a description of a demonstration showcasing this
integration, including an implementation as a proof of concept, concludes this contribution.

INDEX TERMS Asset administration shell (AAS), automation markup language (AML), field device
integration (FDI), industrial automation device, integration standards, module type package (MTP), OPC
UA process automation—device information model (PA-DIM), W3C web of thing—thing description (W3C
TD).

I. INTRODUCTION processes can add significant value e. g. with respect to accel-

The integration of industrial automation devices (e. g., field
devices or package units) in a communication network is
a recurring task, especially in production systems of higher
flexibility [1]. A standardized integration process preferably
applicable to a large variety of automation devices could
simplify the path towards effective data communication, data
usage and automation device control. For example, in the pro-
cess industry where a single plant can have several thousand
of automation devices, standardized and efficient integration

The associate editor coordinating the review of this manuscript and

approving it for publication was Gaetano Zizzo

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

erated commissioning. In an Industry 4.0 (I4.0) scenario,
communication and interpretation of data are automatically
accomplished by every connected device performing sys-
tem functionalities [2]. To achieve this in a simple manner,
uniform industry standards for information exchange are
especially important [3], instead of technology-specific solu-
tions. For future development, it is therefore necessary that
standards provide protocol-agnostic interoperability, utilizing
protocol bindings for different communication technologies.

Different organizations are currently working on this topic,
e. g., the Industry IoT Consortium (IIC) with its “Industrial
Internet of Things” (IIoT) [4], the Institute of Electrical and

99189

https://orcid.org/0000-0002-4304-3735
https://orcid.org/0009-0005-7307-6668
https://orcid.org/0000-0002-0544-4204
https://orcid.org/0000-0003-4413-4855

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

Electronics Engineers (IEEE) with its “Architectural Frame-
work for the Internet of Things” [5], the European Telecom-
munications Standards Institute (ETSI) with its “Smart
machine-to-machine communication” (SmartM2M) [6],
or the World Wide Web Consortium (W3C) with its Web
of Things [7]. One goal of these activities is to provide the
following information about automation devices:

« What kind of data and functionalities does the automa-
tion device provide and is capable of (Capability)?

« How can an application access the data and the invocable
functionalities (Service)?

o What kind of protocols and serializations are used?

« What kind of security constraints are applied?

« Are there relationships to other automation devices?

o How is the exchanged information structured?

The following scenario is intended to illustrate a desired
way for automated integration of new automation devices:
A plant operator modifies one of his plants by integrat-
ing a new automation device. Therefore, he purchases the
needed automation device and connects it to the network of
the automation system. The automation device immediately
becomes discoverable in the network, and other applications
can access the information about the automation device.
This information is used by other applications or automation
devices to determine whether they need to interact with this
automation device and, if so, to obtain information about
the accessibility (where and how) of the automation device.
Moreover, the application can find out how to establish a
connection to the stored information and, if needed, how to
access the automation device itself, e. g., for configuration or
actuation.

To achieve this scenario and enable automation devices
to be discernible to computer programs and automated
decision or optimization algorithms, a virtual represen-
tation of the automation device is required. This vir-
tual representation supports the automatic exchange of
machine-processable information between different automa-
tion devices and automation systems throughout the life cycle
of an automation device. This exchange includes information
about the automation device itself as well as about its com-
munication skills including its semantics and data structures.
These virtual representations, also known as ““device descrip-
tions”’, ““‘digital representations’” or *“‘digital twins”’, are used
in various environments [8].

To facilitate information exchange between heterogeneous
software systems, a common information and data model is
necessary to define the virtual description, semantics, and
serialization format. In setups where components from differ-
ent suppliers participate in the information exchange, these
models should be provided according to existing industry
standards.

Usually originating from the cooperation between mul-
tiple parties, standards are typically promoted by different
organizations, each providing their own concepts: For manu-
facturers, suppliers, integrators and operators of automation

99190

components, the choice of which standard to use for informa-
tion exchange raises questions. This is discussed in various
industrial user organizations or communities of interest, e. g.,
NAMUR,! ZVEL? or VDI.?

Current research investigates existing standards, the prob-
lems they can solve, how implementation of existing stan-
dards can be interconnected or used together, and the need
for further development [9], [10]. Therefore, it is necessary to
survey standards for exchanging information about automa-
tion devices, compare these standards, and describe and
classify the different goals, application areas and information
modeling concepts. While a few standards like IEC 63278-
1 [11] provide high-level comparisons to other standards,
detailed overview is lacking.

Thus, this paper aims to provide an overview of different
standards for the virtual description of an automation device,
focusing on integration aspects, and conducts a detailed com-
parison of selected standards. The comparison considers vari-
ous perspectives, such as the virtual description of automation
device properties and services, the represented information
about direct automation device access, and the automation
device discovery mechanisms. A unified vocabulary for com-
mon concepts is presented to facilitate the comparison despite
the differing terms used in the considered standards.

Since different automation device description standards
may be used in different organizations and companies, tai-
lored to different use cases, combination and integration
strategies between implementations of the standards are
needed. Therefore, different generic integration strategies to
combine the information and data models or integrate them
into each other are presented and demonstrated with selected
standards, including an implementation as a proof of concept.

The contributions of this paper can be summarized as
follows:

o This review provides a detailed summary of the main
international standards providing automation device
information models and their suitability for the required
use cases in the integration task which, is currently not
covered in other review papers.

o A detailed overview of each of the suitable standards is
provided.

o The selected standards are compared with respect to four
different use cases, and the results are presented and
discussed.

« Different methods to combine the standards are pre-
sented, and one of the methods is demonstrated using
two of the described standards.

The paper is structured as follows: Section II defines the
concepts of an automation device and its virtual description.
A literature review of the main international standards based
on the described use cases is presented in Section III. The
suitable standards are selected, and a brief presentation of

1 https://www.namur.net/en/index.html
2https://www.zvei.org/
3 https://www.vdi.de/en/home

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

each standards is given in Section IV. In Section V, the
selected standards are compared in four categories: represen-
tation of a property, representation of a service, information
modeling for direct automation device access and mechanism
for discovery. The results of these comparisons are discussed.
Section VI presents three generic methods for integrating
multiple standards, along with a demonstration using two
standards as an example. Finally, Section VII provides a
summary of the paper’s content and an outlook.

1. AUTOMATION DEVICE AND ITS VIRTUAL
DESCRIPTION

A. DEFINITION OF AUTOMATION DEVICE

In the context of the paper, an automation device refers to
a component designed to perform automation-related tasks,
consisting of both hardware and software. There are three
types of automation devices:

« actuators (e. g., motors or pumps),

« sensors (e. g., temperature or flow sensors), and

« control components (e.g., Programmable Logic Con-
trollers or microcontrollers)

Automation devices always have an industrial communica-
tion interface to interact with other devices in the system or
with higher-level applications, such as diagnostics or main-
tenance tools. These devices can also be combined to form
aggregated automation devices, which still adhere to the def-
inition of an automation device in this paper. Aggregated
automation devices may have a modular design.

Automation devices are characterized by their automation-
related services, as their configuration and parameterization
can be adjusted through software interfaces. Typically, the
automation-related services of a device need be to be cus-
tomized for specific task it is used for, as devices are often
developed for a broad range of applications.

The industrial communication interfaces allow users to
access and modify the individual services and properties of
the automation device, such as parameters and actual values.
To access these services and properties, the user needs the
definition and the corresponding description, which can be
provided through a machine-processable virtual description
of the device’s features. In the next section of the paper, vari-
ous use cases, general considerations and existing approaches
for modeling these virtual descriptions are discussed.

B. VIRTUAL DESCRIPTION OF AUTOMATION DEVICES

In the context of automated integration of automation devices,
the standardized virtual description of a device plays a crucial
role in facilitating information exchange between heteroge-
neous devices. Different use cases require the exchange of
specific information about the automation device between
automation systems and other devices. The following list
gives some examples of use cases and the associated kind of
automation device information:

« assisted device type selection during engineering (digital
catalogue data, datasheets)

VOLUME 11, 2023

« assisted mechanical engineering (3D models)

o assisted integration into control system engineering
(description of automation device capabilites, associated
invocable services, variables, automation device inter-
face)

o integration into monitoring and maintenance systems
(configuration parameters, communication interface
descriptions, maintenance user interface descriptions)

« asset maintenance management (maintenance life-cycle
record, digital manuals, test reports)

o product life-cycle assessment (product data record,
maintenance life-cycle record, energy consumption
logs)

The virtual description of a device is often called a ““digital
twin” [8]. However, this term is quite ambiguous: Other
definitions include specific models —like 3D models or
physical simulation models — as well as physical simulation
datasets [12], [13], [14]. In contrast to these concepts, in the
context of this paper, the concept of a digital representation
of the device under consideration will be referred to as the
virtual description.

Focussing on automated integration of automation devices
into an automation system, only some use cases for virtual
descriptions are considered in this paper:

« automation device bootstrapping, especially automation
device discovery

« representation of static and dynamic automation device
properties in the virtual description, with defined seman-
tics and values

« description of automation device capabilities and addi-
tional services that are not directly associated with the
asset

« description of the automation device’s communication
interface, including available invocable services and
properties

To enable information exchange between heterogeneous
automation devices, a common data and information model
is required to define the virtual description and its seman-
tics. Industry standards are typically implemented to define
these models when multiple vendors are involved. The first
purpose of such standards is to define an information model,
sometimes also called a “‘conceptual data model” [15]. The
information model describes how data and information in
a specific domain are structured for the virtual descrip-
tion, allowing automated processing based on the recognized
semantics of the structured data.

Additionally, a data model is needed to describe the binary
serialization [15]. This data model can be based on generic
data format specifications like XML or JSON.

Some automation device information model standards
focus specific use cases and provide means to represent
automation device information from relevant domains. How-
ever, some standards aim to be applicable to a wide range
of use cases, related to device information exchange (e. g.,
OPC UA [16], Asset Administration Shell [17]). Hence, they

99191

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

only specify the structure of the information model as a set
of generic information model elements but leave out the
domain-specific details of the semantics of single data ele-
ments. Instead, they either allow to specify domain-specific
models based on the generic model elements (e.g., OPC
UA companion specifications, Asset Administration Shell
“submodel templates’’) or they provide means to specify the
semantics of individual information elements using semantic
vocabulary references.

The represented information about an automation device,
according to a specific information model, can be seen as a
model of the automation device itself, containing pertinent
information about the device required for one or more use
cases. Therefore, an information model standard, defining the
model elements of each automation device’s virtual descrip-
tion, can be seen as a “metamodel”.*

Ill. LITERATURE REVIEW FOR RELATED INFORMATION
MODELS

Standards are published from different national (e. g. DIN,
ASME) and international organizations (e. g., IEC, ISO) or
industry consortia and associations (e.g., W3C, NAMUR,
FieldComm Group). In this paper we focus on standards from
14.0, Smart Manufacturing and IIoT. According to DIN -
German Institute for Standardization, there exist more than
650 standards in the considered field, from the following
organizations: IEC (256), ISO (208), ISO/IEC (173), IEEE
(28), CEN (9) and W3C (7) [19]. Additionally, several lit-
erature research activities have investigated the landscape
of standards [9], [20], [21], [22], [23]. The result is that
the large number of national and international organizations,
industry consortia and associations as well as the additional
activities in publication of new standards makes it impossible
to provide an exhaustive list of the existing works.

For the following comparison of automation device infor-
mation modeling standards, only standards which address
the use cases from Subsection II-B and which are already
applied in industry, or are discussed in the actual research
activities, respectively, were selected. Furthermore, we con-
sider standards that are protocol-agnostic but allow binding
to different corresponding protocols. The detailed analysis
regards that a standard should provide at least (1) a represen-
tation of static automation device properties, (2) a description
of the automation device capabilities and services, (3) an
automation device information model and (4) a data model.
Furthermore, information about (5) automation device dis-
covery and (9) a description of automation device access
interface should be considered by the standard. The results
of the analysis are shown below:

4This nomenclature does not conform to the Object Management Group’s
(OMG) model hierarchy but matches the nomenclature used in many other
publications. The OMG states, anyway, that “The ‘meta-’ prefix should be
viewed in a relative rather than absolute sense. Similarly, the numbering of
meta-levels is not absolute™ [18].

99192

A. STANDARDS, WHICH PROVIDE ONLY PARTS OF THE
REQUIRED ASPECTS ARE

IEC 62424 [24]: “CAEX”: A data format for exchange of
“process control engineering requests’, i.e., process plant
structure and designated control equipment. It defines an
XML-based, abstract, object-oriented data model for model-
ing attribute types, interface types, role types, object types
(““system unit classes’), and a hierarchy of object instances
(“internal elements’). This data model is the foundation
for the Automation Markup Language (AML/IEC 62714).
However, the CAEX standard by itself is strictly oriented
towards process plant design and does not provide semantics
to represent further information for device integration.

IEC61987-10 [25] “Lists of properties”: A definition of
the structure of a property definitions including (informa-
tive) examples of using the property definitions for asset
data exchange (“‘transaction data’’). The standard describes a
metamodel for creating vocabularies of distinguished proper-
ties of devices. These properties can afterwards be referenced
by device descriptions to uniquely define the semantics of
property values, but the standard does not provide a model
for device descriptions by itself.

ISO 15926-2 [26] “Conceptual data model for com-
puter representation of technical information about process
plants”: A conceptual information metamodel, which aims to
be used as an ontology for integration of digital information
about process plants. However, the primary focus lies on
annotating a physical object, e. g., an automation device, with
data, and not on the representation of that data itself.

IEC 62264-2 [27] “Definition of object models and
attributes of exchanged information between manufacturing
control functions and other enterprise functions”: Includes
an abstract conceptual metamodel for modeling information
about physical assets (including capabilities and properties).
It is not considered further in this paper, because it does not
provide a derived information model for data representation
according to the abstract conceptual model.

I1SO 22745 [28] “Industrial automation systems and inte-
gration — Open technical dictionaries and their application to
master data”: Similar to IEC 61987, this series of standards
describes a metamodel for modeling catalogues (‘“‘dictio-
naries”’) of concepts like property definitions as well as
processes and rules for creating and maintaining these cat-
alogues and interfaces for accessing them. The application of
the defined concepts for digitally representing asset data is
not covered by the standard.

IEC 62453 [29] “Field Device Tool (FDT)”: The standard
allows manufacturers to create a software component called
“Device Type Manager” (DTM) for their field devices. The
application framework of the FDT uses the DTM to config-
ure, parameterize, diagnose and communicate with the field
device, comparable to device drivers in office IT. This allows
plant operators to use a single software tool for managing
field devices from different manufacturers. The focus of FDT
is mainly on the application integration of the DTM, pro-
vided for field devices, and does not provide an information

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

model or descriptive model of the devices being integrated.
All information about field device properties, capabilities
and services is encapsulated in the DTM and provided as a
software component.

1SO 15745 [30] "Open Systems Application Integration
Framework": This standard focuses on the integration aspects
of an industrial automation application system. It has been
developed to provide a framework to define elements and
rules that describe the integration models and application
interoperability profiles based on the process, information
exchange and resource views of an application. The device
description in the standard focuses on the application inte-
gration of automation systems and devices through the
interoperability profiles. Based on this ISO standard, the
Device Description eXtensible Markup Language (DDXML)
is defined, which can be used, e. g., to describe Modbus-based
devices. The communication interface helps to expose device
services and properties to the network. However, since the
description of these services and device capabilities are not
within the scope of the standard, it is not further considered
in this paper.

ISO 10303 [31] “Product data representation and
exchange”, also known as the “Standard for the Exchange
of Product model data” (STEP): Defines an abstract infor-
mation model for the exchange of asset data, typically rep-
resented in the form of the formal language “EXPRESS”.
The information model and formal language are extended by
application-specific schemes (application protocols), defined
in separate parts of the standard. However, the stan-
dard focuses primarily on the representation of geomet-
ric data and information related to the mechanical design
and manufacturing of the asset. Thus, there are currently
no data models (‘“‘application protocols’™) provided for the
description of automation device capabilities and control
interfaces.

B. STANDARDS, WHICH PROVIDE THE REQUIRED
MODELING ASPECTS IN SUFFICIENT DETAIL ARE

W3C Thing Description (W3C TD): In 2020, the World Wide
Web Consortium (W3C) published two new recommenda-
tions for building a so-called “Web of Things” (WoT): one
document describing the abstract WoT Architecture [7] and
the other one presenting a model for “WoT Thing Descrip-
tions” [32]. Because the TD is a model for the representation
of properties and services of a thing, which can be an automa-
tion device, and because the architecture also provides other
functionalities, such as discovery, this standard is included in
the comparison.

IEC 63278-1 [11] “Asset Administration Shell (AAS)”:
This standard aims to define a concept for the digital repre-
sentation of asset information. Because it defines an informa-
tion model including elements to model properties, capabil-
ities and services and an interface description for interaction
and discovery functionalities, this standard is considered in
the comparison.

VOLUME 11, 2023

IEC 62832 [33] “Digital Factory Framework (DFF)”: The
standard provides a concept, which is similar to the one of the
Asset Administration Shell but with a different information
model and focusing on scalar property entries and semantics
definition. Because of this, this standard is also included in
the comparison.

IEC 62714 [34] “Automation Markup Language (Automa-
tionML, AML)”: A data format for exchange of general
engineering information, integrating CAEX’s generic data
model (IEC 62424 [24]), COLLADA (ISO 17506 [35]),
PLCopenXML [36] and additional so-called class libraries.
With the defined data format, it is possible to model prop-
erties of an automation device, including its semantics and
roles, and furthermore, how multiple devices are interlinked
together. Therefore, this standard is considered in the com-
parison.

NAMUR 2658 [37] “Module Type Packages (MTP)”: Vir-
tual description format for modules of a modular automation
system in process automation. Because the standard allows to
model the properties and services of an automation module
including interfaces and module integration, where a module
is a composite of automation devices and, hence, constitutes
an automation device itself, this standard is examined in this
paper.

PA-DIM [38] “Process Automation - Device Informa-
tion Model (PA-DIM)” : Information model for OPC Unified
Architecture to model different types of assets in a stan-
dardized way. The standard defines new object types for
modeling, an automation device including its properties and
services, and, therefore, it is included in this comparison.

IEC 62769 [39] “Field device integration (FDI)”: Concept
consisting of a description of an asset (field device) in terms
of adeclarative language (Electronic Device Description Lan-
guage (EDDL IEC 61804-3) and an interface with OPC UA
information model at the top level within an FDI server.
Together with EDDL, the standard allows to model properties
and services of an asset and, therefore, it is included in the
comparison.

IV. DETAILS OF THE SELECTED STANDARDS

In this section, the standards described in Section III chosen
for the evaluation are described in more detail. First, an intro-
duction into OPC UA which is used by all standards except
AAS is given. Then, a presentation of each standard is given
with the following structure: a short general introduction,
a description of the information model as well as the data
models, and additional information about the standard, e. g.,
about device discovery or the ecosystem.

A. OPC UNIFIED ARCHITECTURE

OPCUA is a communication technology developed by the
OPC Foundation and standardized in the IEC-62541 stan-
dard series [16]. The main goal is the exchange of infor-
mation in industrial automation [40] and it is considered
to be one of the most important basic technologies in

99193

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

the Industrie 4.0 environment [41]. In its core, the stan-
dard defines a service-oriented communication protocol for
machine-to-machine communication for client-server archi-
tectures with a full communication stack and integrated secu-
rity [42]. Additionally, it defines an object-oriented modeling
language which allows to model general and domain specific
information models, called OPC UA Companion Specifica-
tions, which are independent to the real structure of the data
base [40]. For this purpose, OPC UA defines an information
metamodel based on classified typed objects (nodes) and
typed relationships (egdes). The metamodel of OPC UA [43]
consists of eight node classes. Each node always consists
of an identifier (Node ID), which uniquely addresses the
node in the OPC UA server address space, a BrowseName
for the creation of hierarchical paths, a DisplayName for
the use in an user interface, and references to other nodes.
Optionally, among other things, access rights or a description
can be defined. The node classes ObjectType, VariableType,
DataType and ReferenceType are used for the definition of
new types. The node classes Variable, Object and Method
represent concrete nodes of these types. The class View is
a special class and holds only references to a selection of
nodes in the address space to allow easier navigation. For
this work only the classes Variable and Method are of impor-
tance. An object of the class Variable represents a simple or
complex value whereas an object of the class Method repre-
sents a callable function. Based on the well defined service
layer [44], OPC UA clients are able to find servers, build
up secure channels as well as application specific sessions,
to find, read, write or subscribe nodes, invoke a function and
observe the information contained in an OPC UA server.

For finding and automatically retrieving communication
parameters from OPC UA servers at known and unknown
hosts in the network, the OPC UA specification provides
a multistage discovery mechanism, defined in IEC 62541-
12 [45]. The discovery architecture is separated into local dis-
covery servers (LDS), providing information about OPC UA
servers on the same network host, and (optional) global
discovery servers (GDS), which collect information about
OPCUA servers from local discovery servers across a
full plant network, including multiple segments (subnets).
In addition, local discovery servers can be equipped with
“multicast extensions” (LDS-ME) for automated discovery
of other OPC UA enabled network hosts in the same network
subnet without prior knowledge. Both, LDS and GDS only
provide the location of each server’s “Discovery Endpoint™
to clients. Using this endpoint, a client can query the server
itself for its communication parameters, using OPC UA’s
“GetEndpoints’ service.

An OPCUA server typically registers at the LDS at its
own network host, providing a URL of its discovery endpoint,
along with an “applicationUri” and a “‘productUri”, identi-
fying the server, and the identification of a gateway server,
if required. Additionally, the server can provide information
about its capabilities (i. e., supported OPC UA information
models) as a set of flags from a fixed list, e.g., “FDI” =

99194

SecurityScheme

FIGURE 1. Conceptional class model definition of the thing
description [46].

support of the OPC UA FDI information model. If the LDS
includes multicast extensions, the registration record is auto-
matically shared with other LDS in the same subnet, using
the multicast domain name system (mDNS) protocol. Fur-
thermore, if the LDS has been registered with a GDS, the
GDS can collect the record.

Based on this, a client can discover an OPC UA server by
either

o directly connecting to its known discovery endpoint
URL,

« retrieving the discovery endpoint from the server’s LDS
by using its known network hostname,

« retrieving the discovery endpoint from its local LDS,
if the server is at the same host, or the LDS supports
LDS-ME and the server is at the same subnet, or

« retrieving the discovery endpoint from a known GDS.

B. W3C THING DESCRIPTION

The W3C Web of Things (WoT)® initiative specifies a set
of technology building blocks that contribute to enhance
flexibility and interoperability for IoT-based applications.
Thereby, the WoT Thing Description [32] (TD) is the cen-
tral building block that provides a formal semantic-based
asset (IoT-based application) interface description that is
both machine and human processable. A TD can be used to
onboard an asset with its runtime data and services into an [oT
system (e. g., edge or cloud services), but it can also be used
for rapid IoT application development [7]. Although still a
relatively young technology, WoT is being adopted more and
more, especially for cross-domain IoT application scenarios.
A latest list of WoT implementations and tools can be found
at the official WoT web pages.®

1) INFORMATION MODEL
The W3C WoT working group provides an information
metamodel for the TD consisting of well-defined set of
classes [32] and its relations. Fig. 1 shows the top-level
metamodel of TD.

The Thing class provides the core vocabularies for describ-
ing some basic metadata of the asset (e.g., title, ID) and
specifies what kind of interaction affordances are exposed.

5https://www.w3.org/\’VoT/
6https://WWW.W3.org/WoT/developers/

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

WoT introduces three interaction affordances based on prop-
erties, events, and actions:

o Property affordances: Represent states that an asset
exposes. Typically, a property can also be read, written
and observed. Typical examples of properties are sensor
values, configuration parameters, status, or computation
results.

o Action affordances: Represent either state manipulations
or physical processes that can be invoked. Examples for
actions are starting or stopping an engine, batch produc-
tion execution or starting the execution of a continues
process.

o Event affordances: Represent notifications and data
streams that can be subscribed to. Event samples are
alarms, data streams or state changes.

In general, WoT is a protocol-agnostic approach and pro-
vides a common mechanism to define how specific protocols
such as MQTT, HTTP, Modbus or OPC UA can be mapped
to the WoT’s interaction properties-action-event abstraction.
This information is mainly provided by the forms container
within a TD. Based on this information, the client knows how
to activate each WoT interaction abstraction through a corre-
sponding network-facing interface for a specific protocol on
which the asset relies.

2) DATA MODEL

The TD is serialized in a JSON-based representation format.
Thereby, the TD information model is aligned with the syntax
of W3C JSON-LD 1.1 [47] in order to enable additional
semantic annotations and processing from existing (domain)
concepts such as from ECLASS,” OPC UA, or schema.org.

3) ADDITIONAL INFORMATION

All interaction affordances can be specified with the estab-
lished JSON Schema [48] concepts and can be further pre-
cised with XML Schema [49] datatypes. These prominent
schema languages have rich tool support, such as validators
and data model designers which helps to precisely define the
data model used by the asset’s interface. Additional building
blocks in the context of WoT are addressing specific topics
such as WoT Discovery [50], WoT API [51] to develop
WoT-enabled API interfaces, WoT Thing Models [32], and
WoT Privacy and Security [52].

C. ASSET ADMINISTRATION SHELL

In 2015, the concept of the Asset Administration Shell (AAS)
was first introduced in [53] as a means of digitally represent-
ing and exchanging asset information among manufacturers,
suppliers, and customers [54]. An asset is defined as “‘phys-
ical or logical object owned by or under the custodial duties
of an organization, having either a perceived or actual value
to the organization” [17]. The concept and its basic struc-
ture were published as a German standard in DIN SPEC

7https://www.eclass.eu/

VOLUME 11, 2023

Identifabie]
HasDataSpecification|

+ assetnormation: Assetiomaton

defaultThumbnail: Resource [0..1]

identiabye
HasKil
HasSemantics|
Cualfiable
HasDataspecttication
Submodel

+_submodelElement Subr Element [0.7]
T

Referabe]
HasSemantics|
Qualfiaie
"HasDataSpecification|
aabstacts
SubmodelElement

FIGURE 2. Overview of the AAS metamodel (based on [17]).

91345 in 2016 [55]. Based on further functional model-
ing and associated open source reference implementations,
Plattform Industrie 4.0 published 2018 a technology-neutral
information model of the AAS in UML, including various
serialization formats [56]. This is constantly being further
developed and is currently available in version 3.0 [17].
An international working group was initiated in November
2019 to develop an international standardization series, the
first part IEC 63278-1 was published in November 2020 [57].

1) INFORMATION MODEL

The information model of the AAS describes the possible
object types and their relationships. Fig. 2 gives an overview
of the model elements.

The AssetAdministrationShell object serves as the main
representation of the AAS. Each instance of the AsserAd-
ministrationShell object represents exactly one asset and
manages digital models for various aspects of the asset.
Additionally, each AssetAdministrationShell object has an
AssetInformation object that is used to represent the identi-
fying information of an asset, such as its asset identification
(globalAssetld) or whether it is an asset type or instance
(assetKind). To represent digital models with a specific
context, the AssetAdministrationShell has references to Sub-
model objects. The Digital Nameplate, Documentation or
Product Carbon Footprint are examples of such a submodel.®
In order to provide a specific data structure for these models,
the Submodel object can consist of several SubmodelEle-
ment objects. Different subtypes of these elements can be
distinguished and they are uniquely identifiable within the
corresponding submodel (see Fig. 3):

o RelationshipElement: An object that defines a relation-

ship between two other objects.

o AnnotatedRelationshipElement: An object that defines

a relationship between two other objects and allows
additional information using data elements.

8https ://industrialdigitaltwin.org/en/content-hub/submodels

99195

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

< abstract >>
SubmodelEleme nt

—
_——

]

= >
o]

| RelationshipElement | BDS’W' ‘ Capability

A \

AnnotatedRelationshi pElemen(Range :
Blub Re!erenceElement |‘ H

I

1

<abstract >
Event
Mul(lLanguageroperty || submodelElementCollection
BasicEvent

e

o
X

%'

H

SubmodelElementList

FIGURE 3. Model elements of a submodel object (based on [17]).

e Property: A data item that has a single value.

o MultiLanguageProperty: A data item which has a set of
strings in different languages.

e Range: A data item which describes a range of values
using a minimum and a maximum value.

o Blob: A data item which can store a binary large object.

e File: A data item which has an address to a file using the
path and the file name including the file extension.

o ReferenceElement: A data element which has a logical
reference to another AAS object.

o Capability: An object which has a reference to a capa-
bility description.

o SubmodelElementCollection: An object which is a col-
lection with a fixed set of SubmodelElement objects.

o SubmodelElementList: An object which is a set, ordered
list, bag or ordered set of SubmodelElement objects.

o Operation: An object which has input and output vari-
ables (arguments) and thus describes a function.

o BasicEvent: An object which holds a reference to an
observed object.

o Entity: An object that describes an entity, which is either
another asset managed by an own AAS or a part of this
asset managed by the same AAS, e. g. a screw.

To ensure that the concept can also be applied to machine-
to-machine interaction, the focus is on semantic annotation to
the model elements. Submodel and SubmodelElement objects
are both of type HasSemantics, allow for a reference to a
corresponding concept description. The use of these semantic
descriptions is crucial for ensuring interoperability between
machines. This concept is already considered state-of-the-art
in the field of product description. IEC 61360 [58] defines
an information model for creating such concept descriptions.
Several concept libraries have already been established, such
as IEC61360-CDD? and ECLASS. However, these concept
descriptions are not appropriate for submodel objects, as they
were designed for simple data elements. Therefore, submodel
templates must be created and subsequently instantiated at
runtime.

9https://cdd.iec.ch/

99196

2) DATA MODEL

Various concrete serialization formats, such as JSON (IETF
RFC 8259), XML (W3C XML), AutomationML (IEC 62714
[34]), OPC UA (IEC 62541 [16]), and RDF (W3C RDF) have
been published for implementation purposes. Additionally,
an AASX package file format based on the Open Packaging
Conventions (ISO/IEC 29500-2:2012) has been defined and
mapped to a physical package format (i.e., a ZIP archive
format).

3) ADDITIONAL INFORMATION

The AAS concept includes more than just an information
and data model; it is a complete architecture that comprises
an information model, interaction models, and infrastructure
components, including interface definitions. In [59], both
a generic and an HTTP-specific interface specification are
provided. These interfaces define how to interact with a single
AAS or Submodel, associated repositories, and an AASX-
File Server. Additionally, interfaces and service definitions
for registration and lookup are specified, enabling asset dis-
covery based on the concept of a registry.

D. DIGITAL FACTORY FRAMEWORK
The Digital Factory Framework (DFF) is an IEC international
standard (IEC 62832) for modeling production systems, pub-
lished as a technical specification in 2016 and as an official
standard in 2019. It comprises three parts: an introduction and
overview of models and concepts [33], a detailed presentation
of individual model elements [60], and rules for using these
elements [61], along with mappings to relevant technologies.
The goal of the standard is to model production systems
and its production system assets (PS assets), which “can be
a part, a device, a machine, a software, a control system or
any collection of PS asset” [33]. For this purpose, an infor-
mation model is defined to model PS assets in the domain
of production systems, the relationships between different
PS assets, and the information flow between PS assets. The
standard also specifies rules for the use of each model element
(e.g. for library creation). The presented model is valid for
all types of production (continuous, discrete and batch), for
all branches of industry and for all phases in the life cycle
of production systems. It should be possible to add, delete,
modify or obtain information about a PS asset at any time.
Since much preliminary work in the area of modeling has
already been developed by standardization bodies (e.g., ISO
or [EC), classification consortia (e.g., ECLASS) and data
providers, the standard shows a way to integrate and use this
work and explicitly names these three groups as stakeholders
(see Fig. 4).

1) INFORMATION MODEL

In order to model concrete PS assets, the information
model provides five model elements: DigitalFactory, DFas-
set, DataElement, CollectionOfDataElements (CDEL), and
DFassetLink. Fig. 5 shows the modeling of a real production

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

Standardization bodies |
IEC ‘ i

Standard body x

Standardized dictionary x | ! | Dictionary in IEC CDD

‘ Enterprise

Classification consortia

Consortium y eCl@ss ECCMA
Digital Factory
Gonsortum dictionary y | | [eCi@ss dictionary | ! lsoTD

e
Integrate or reference
‘ | - DF assets

- data elements.
- collection of data elements
- DF assetlinks.

Data suppliers

is
referenced
by

Supplier B

Supplier C

Supplier A | |

‘Supplier dictionary A | ! [Suppier dictionary B

- instantiate DF assets
- value data elements.
- establish DF assets links

‘Supplier ‘Supplier
library A library B

FIGURE 4. Digital factory framework overview [33].

IEC

[Elementidentifier
[RoleBasedEquipmentidentifier [

Header

DigitalFactory

DFasset-

[DataElement id 3

" DataElement Id 4

| DFasset 1 description

DFassetBody

Virtual

"
DFassetLink 1 description
world "

represents represents

PS Asset
or
software)

IEC

Real
world

Production system

FIGURE 5. Representation of a production system [61].

system in the information world using a DigitalFactory object
and a PS asset using a DFasset object. Both object types
consist of a header and a body and can in turn consist of
multiple DFasset objects. The header describes administra-
tive information, such as the purpose of the production system
or identification information. The body models information
about the properties, structure and internal relationships of
the production system or DFasset. This is done using the three
other model elements: DataElement, CDEL and DFassetLink.
DataElement objects can be used to model information about
individual properties, including their values, such as descrip-
tion, name or identifier. These can be combined in lists and
modeled as CDELs. The third element is the DFassetLink
used to model relationships between two or more PS assets.
Using object-oriented modeling, DFassetClass and DFas-
setClassAssociation serve as types for DFasset and DFas-
setLink. The association between type and instance is repre-
sented by a reference. The types can be grouped into libraries
using the Library objects. In addition, the ViewElement has

VOLUME 11, 2023

been introduced to realise the possibility of filtering within a
Library object or a DigitalFactory object.

In order to assign a semantic meaning to the object
instances, elements for the definition of term dictionaries are
specified. This is done analogously to the already standard-
ized feature libraries (IEC 61360). A concept dictionary is
represented in this standard by a ConceptDictionary object.
As shown in Fig. 4, there are different concept dictionaries
for different stakeholders. This has been taken into account
with derived ConceptDictionary objects. Within a concept
dictionary, the conceptual definition of these concepts can
be made using the model elements DFassetClassDefinition,
DataElementType and CDELdefinition.

2) DATA MODEL

The aim is to integrate the information model into exist-
ing exchange formats or communication standards, such as
AutomationML or OPCUA. Corresponding mappings are
therefore included in the appendix to [61].

3) ADDITIONAL INFORMATION

Explicitly excluded areas of application are building con-
struction and any type of product that is processed on the
production system (e.g,. input material, consumables or end
products). The standard also does not include requirements
or specification of a software implementation.

E. AUTOMATION MARKUP LANGUAGE

Automation Markup Language [34] (AutomationML) is a
modeling language for the standardized description of a pro-
duction system to enable easy integration of production plant
assets into an automation system. It is a descriptive language
used for engineering and exchanging data between engineer-
ing tools [62]. Its first evaluation and initiation to be made
a standard was done in 2006 by engineering organisations
(both industry and academics) like Daimler, KUKA, ABB,
Siemens, University of Magdeburg and Karlsruhe Institute of
Technology [63]. Presently, the AutomationML standard is
defined under the IEC 62714 series.

1) INFORMATION MODEL

The AutomationML information model is based on the
Computer Aided Engineering Exchange (CAEX) informa-
tion model [24]. It uses an object-oriented approach to
describe the structure of an asset and allows hierarchical
composition of assets in an asset. An asset description can
cover different engineering aspect like geometry, kinemat-
ics, logics and more [64]. For this purpose, AutomationML
includes domain-specific information models, leveraging
existing standards like COLLAborative Design Activity [35]
(geometry and kinematics information) and PLCopen XML
[36] (behavioral models and program logic based on IEC
61131-3). Fig. 6 shows the aggregation of these standards for
the AutomationML architecture.

99197

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

AutomationML

COLLADA

»
Geometry
Kinematics
PLCopen XML [~]

CAEX IEC 62424
Top level format

Planttopology

information Object Ay

Object A,

Behaviour X
Sequencing [Ena]

Mechatronics

Communication

Furthe;f‘mmals o

t» Furtheraspects of
engineeringinformation
(e.g. documentation)

FIGURE 6. AutomationML structure [65].

InstanceHierarchy
Description of project data

———————— I et amad Instantiation of
ohjects
suc
| |
I Linking of ahjects

Reference to
external data

el

System Unit Library
Definition of reusable components

Interface Class Lilirary
Definition of interfaces

Use of interfaces

FIGURE 7. AutomationML asset topology description architecture [64].

CAEX is composed of four class libraries (see Fig. 7)
called System Unit Class Library, Role Class Library, Inter-
face Class Library and Instance Hierarchy. The asset types
are defined in the System Unit Class Library, whereas the
Role Class Library [66] defines the top-level functionality
of an asset by specifying the semantics and roles of asset
objects. The Interface Class Library defines how asset objects
are interlinked together. In the Instance Hierarchy Class,
instantiation of objects is modeled as “internal elements”,
based on System Unit class definitions, with references to its
corresponding roles and interfaces.

2) DATA MODEL
AutomationML information is serialized in XML format,
in accordance with the standards it is based on.

3) ADDITIONAL INFORMATION

Over the years, there have been different integration activ-
ities between AutomationML and other standards in indus-
trial engineering. The integration of AutomationML and

99198

ECLASS [65] enables semantic definition of properties and
structures of AutomationML objects. The combination of
OPC UA and AutomationML enables communication and the
exchange of data between industrial automation tools [67].

F. MODULE TYPE PACKAGE

With the VDI/VDE/NAMUR 2658 standard, a general con-
cept regarding “Automation engineering of modular systems
in the process industry” [37] is available since 2019 that
was internationally standardized in IEC 63280 [68]. This
multi-part standard aims at facilitating the integration of
intelligent modules (i.e., modules incorporating their own
internal logic controller) into existing or new process plants,
to gain competitive advantages (time-to-market, time-to-
repair, small batches, custom production) [37].

These modules are composed of components and supposed
to contain an internal logic or intelligence implementing the
module functions and executing them when respective service
calls are received. The key concept is the so called Module
Type Package (MTP) which forms a virtual description of a
distinct module type. Once a module type and the associated
MTP are designed and integrated, the MTP is no longer of use
for the specific setup. During the subsequent operation phase
data transfer occurs solely from the module to the Process
Orchestration Layer (POL) and back. Here, OPC UA is the
preferred communication protocol but others can be realized,
too, as long as the concrete protocol mapping is specified in
advance in the MTP. Via these interfaces, the internal state
information of the module is accessible and direct module
control is possible.

1) INFORMATION MODEL
The MTP provides all data required for an informational
module integration into the POL. It contains data concern-
ing communication abilities, module control (services) [69],
notifications, description of the operator display (HMI) [68]
and information for diagnosis.

In addition to the standard contents, some further module
characteristics can be included and hence exposed to the POL,
e. g., information about measuring points or interlocks [70].

Such an extension can be realized due to the modular structure
of the MTP.

2) DATA MODEL

The MTP data is serialized in AutomationML files (see
also IV-E) and provided within a PKZIP package. Access to
all data is provided by the Manifest, an administrative file,
and the central MTP element, which references the modular
descriptions of different aspects. The architecture of the MTP
Manifest is visualized in Fig. 8.

3) ADDITIONAL INFORMATION

Since MTP is used as a description delivered with the physical
module, no discovery is used. Automatic selection of modules
based on a list of required functionality is not part of the

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

mtp.ami
[structure ace.to NE1S:
! 1
gl o | [rceReess] <otes o>
acc. 10 IEC61512 Version Version ‘Versmn ‘ ‘Ve;s\m
refURI
E K 1
1.4 1.4
[Pawe | [PcERequet |
1.4 ‘remm f>'H SUnitdiass ‘
OPC UA-Server]
2 | 1
1P-Addre B »
Type 2 .
id 2 [Pcefunction |
C ‘ SUnitQiass ‘
T
n.i
[verace]
Swsgral
eference via pvid

FIGURE 8. Architecture of the MTP Manifest (adopted from [71]).

NOA Information Model

-
M+0 applications
NOA Parameter
Alarm
Set Advanced Management
Process Control 4.0 Device
| OPCUA o HGE e
Server
Client
N
Semantic IDs [@
\ 7

Legacy protocols and
proprietary data models

FIGURE 9. The different aspects of the NOA Information Model [72].

standard. However, there are various activities that use and
further develop the standard for these purposes.

G. PROCESS AUTOMATION - DEVICE INFORMATION
MODEL

The Processs Automation - Device Information Model (PA-
DIM) is the OPC UA implementation of the NAMUR Open
Architecture (NOA) model [38] as a Companion Specifi-
cation for the description of device information. NOA is
an automation integration concept mainly for the process
industry that aims to facilitate implementation and opera-
tion of monitoring and optimization applications as well as
value-adding services for several use cases with different
types of assets (field devices, equipment and even the entire
plant) [72]. The activities started in 2017 as a Joint Working
Group of the OPC Foundation (OPC) and the FieldComm
Group, Inc. (FCG). In 2022 the ownership has been extended
to NAMUR, ODVA, PNO, VDMA, WCI-ASCI, and ZVEI.

1) INFORMATION MODEL

Since the considered assets can be very different in type
(e.g., a variable speed drive versus a process analyser), the
NOA Information Model is made up of different building
blocks, depending on which type of asset a specific part of
the information model describes. Fig. 9 shows that a device
and use case specific parameter set is defined. Each parameter
additionally is part of a standardized dictionary (e. g., IEC-
CDD entry) so that a “Key-Value-Pair” is realized.

VOLUME 11, 2023

FoldorType
SupportedTypes

PADIMTYpe I 1EC 61987 c
,,,,,,,,,, ot1221

FIGURE 10. PA-DIM OPC UA Information model [38].

The root object of PA-DIM is PADIMType which maps
the field device. This type implements a set of interfaces
(Fig. 10):

o The IVendorNameplateType interface essentially con-
tains properties for identifying the field device, such
as manufacturer, model, serial number, hardware and
software version, a change counter or a globally
unique instance identifier (ProductinstanceUri). For
these parameters, a HasDictionaryEntry reference is
foreseen as a pointer to the IrdiDictionaryEntryType,
which contains the semantic identifier of the parameter
in the form of an IEC-CDD IRDI.

o The ITagNameplateType interface contains the Assetld,
which is an identifier assigned by the user for the device
(e.g., as a link to the ERP system).

o The IAdminitstrationType contains information about
the set language and the last change date.

o The IDeviceHealthType interface contains information
about the device status. The DeviceHealth variable indi-
cates the NE107 [73] status of the device. Detailed
information on any pending error states is made avail-
able via the DeviceHealthAlarms object.

The process values of the device are mapped together
with their relevant parameters or variables via the SignalSet
object, so that multi-variable devices can also be mapped. The
information model only describes which parameters are of
interest. It does not define the sampling frequency with which
a parameter or variable is read out. However, it is obvious
that the underlying core process control system determines
the sampling.

2) DATA MODEL

The PA-DIM specification is an OPC UA Companion Speci-
fication of the OPC Foundation which defines the implemen-
tation principles in an OPC UA server based on the OPC UA
Information Model.

3) ADDITIONAL INFORMATION
Some of the main scopes of PA-DIM is to ensure compati-
bility with standards like Field Device Integration (FDI) to

99199

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

enhance the OPC UA information model based on FDI for
applications and concepts steering in the direction of NOA
and Industry 4.0.

H. FIELD DEVICE INTEGRATION AND ELECTRONIC DEVICE
DESCRIPTION LANGUAGE

Field Device Integration (FDI), standardized in IEC 62796
[39], is a hybrid technology which consists of a description
of an asset (field device) in terms of a declarative language
(EDDL)) [74] and an interface with the OPC UA information
model at the top level within an FDI Server (Fig. 11). The
kernel of the FDI Devices Package is the EDDL defined in
IEC 61804-3 [74] through IEC 61804-6 [75]. FDI-compliant
devices (e. g., PROFIBUS or PROFINET devices) are to be
delivered with an FDI device package, i. e., this is mandatory
for the scope of delivery of the automation devices, similar to
the manual, terminal assignment plans or certificates. Part of
the FDI device package is the Electronic Device Description
(EDD). The EDD contains information about device vari-
ables, functions, necessary communication services, logic
and User Interface Descriptions (UID for HMI applications).
Business rules such as if-then, switch-case and validity rules
as well as the logic and constraints of the field device param-
eterization can be expressed. Optionally, one may include
additional control elements in the form of programmed soft-
ware components (e. g., Windows DLLs).

1) INFORMATION MODEL

The EDD is based on the EDDL (IEC 61804-3) and defines
the elements used to describe the asset. There are different
types of elements: identification element, basic construction
elements and special elements. In every EDD file the iden-
tification information is the entry, where the version of the
EDDL, the device type, model codes and revision details are
defined. After that the information about the asset can be
modeled using the different basic construction elements, like
VARIABLE, METHOD or COLLECTION. It is optional to
integrate semantic identifiers linking to dictionaries such as
IEC-CDD or ECLASS.

2) DATA MODEL
The EDD is a textual file and provided within the FDI

Package format following the Open Packaging Convention
as specified by ISO/IEC 29500-2.

3) ADDITIONAL INFORMATION

The underlying communication network of field devices like
HART, PROFINET, FOUNDATION Fieldbus, PROFIBUS,
etc., can be accessed from the FDI Server through the FDI
Communication Server [76], see Fig. 11. The communication
server provides FDI specific standardized OPC UA services
to facilitate the integration of field devices in automation
systems. The semantics can be used by the operation-related
description parts of the FDI Client host to correctly under-
stand information that is provided by the FDI Server.

99200

User Interface
Description

FDI Client

Piatform Ul Services
(Drawing, Input Devices)

OPC UA Client OPC UA °

System
[~ Communication «—{
Hardware

[Swecifed by this Internatonai Standard
] Not specified by tis Inemational Standerd

FIGURE 11. Overview of the FDI technology [39].

V. COMPARISON

In this section, the previously described standards are com-
pared with regard to four categories: (1) Representation
of a property, (2) Representation of services, (3) Informa-
tion modeling for direct automation device access, and (4)
Mechanism for discovery. To ensure clarity and consistency,
a unified terminology with term definitions is introduced
in Subsection V-A, and the included terms are mapped to
the standard-specific terms. The comparison of the stan-
dards is then described, following a structured format for
each subsection. First, a brief description is provided on
what is being compared in the subsection. Subsequently,
in the respective subordinate subsections, which have the
same order as in Section IV, each standard is individu-
ally evaluated based on the corresponding evaluation cri-
teria. The purpose of the comparison section is to assess
the suitability of the information models proposed by the
individual standards for representing automation devices
and simplifying the integration process in an industrial set-
ting. Finally, a discussion of the different standards, along
with their advantages and disadvantages, is presented in
Subsection V-F.

A. TERM DEFINITIONS

The standards examined in this section partially use different
terms for the same or similar concepts of the asset information
models. Furthermore, the standards sometimes assign the
same terms to varying meanings, making a consistent and
unambiguous comparison more difficult.

Thus, a unified terminology is introduced in this section,
providing short explanations of the common purpose or con-
cept for each of the terms. This approach aims to strengthen
the common understanding and reduce potential misunder-
standings.

For the concepts relevant in the context of the comparison,
a direct comparison of the terminology used in the different

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

standards is presented in Table 1. Note that most of the terms
have already been mentioned in the respective introductions
of each single standard.

Additionally, different standards employ various serial-
ization formats to exchange the virtual description. Some
standards even provide a list of possible exchange data for-
mats, from which a suitable representation of the provided
data can be chosen. The available data formats are listed in
Table 1 as well.

Asset
The selected standards define a virtual description
of an entity or object of interest. All possible objects
of interest are typically encompassed with a single
term, such as ‘Asset’, ‘Thing’, ‘Device’ or ‘Mod-
ule’. The term ‘Asset’ has been established as the
most general term for a single object of interest
described with a virtual representation. Such an
asset is always uniquely identifiable and can be a
composition of entities or an atomic entity. It may
include both software and hardware components.
In the context of this paper, according to the exam-
ined use cases, the described objects are typically
automation devices (cf. Section II), including all
kinds of sensors or actuators. However, an entire
plant unit can also be defined as a single asset. Thus,
the terms ‘Asset’ and ‘Automation Device’ are used
interchangeably in this paper.
An asset in this paper is defined as “‘an entity that
is intended to have (or already has) a virtual repre-
sentation (i. e., a description).”

Virtual Description
Such representations can be solely descriptive, pro-
viding information about the automation device,
or they may additionally offer some functionality
such as indirect automation device access and exe-
cutable services.
The standards analyzed in this section differ in how
they handle the type-instance relationship of assets.
Depending on the standard, virtual representations
are created only at the type level, describing all
assets of the same type. In this case, they cannot
contain any instance-specific information. Other
standards incorporate instance-specific virtual rep-
resentations, including type- and instance-specific
information, with an explicit or implicit mechanism
of associating the asset type with individual assets.
A virtual description in this paper is defined as ‘“‘the
virtual representation of an asset or of an asset type,
describing it with digital information.”

Property
In this paper, the term ‘““Property” is associated
with the abstract concept of the (physical or logical)
characteristic itself. In contrast, we denote the data
representation of a property as ‘““‘Property Descrip-
tion” or “Property Representation” (see below).

VOLUME 11, 2023

An important characteristic of properties is
the expected frequency of change. We define
“Dynamic Property” as a property that holds a
value expected to change regularly during the oper-
ation of the automation device, in contrast to a
“Static Property”. Static properties may remain
consistent across all assets of the same type, allow-
ing their representation in a virtual description of
the asset type.

A property in this paper is defined as “‘a particular
characteristic of an asset.”

Static Property

This kind of property stores parameters or con-
stants that remain fixed for a given device or are
only changed during initial setup, maintenance, etc.
Static properties include, e. g. physical characteris-
tics of the described object, configuration parame-
ters, or compliance information.

A static property can be provided by a property
representation in a virtual description because it
does not need to be updated during runtime.

A static property in this paper is defined as ‘“‘a
particular characteristic of the asset that typically
does not change during operation.”

Dynamic Property

Dynamic properties include measurement values or
process states. The value of a dynamic property
is typically dynamically transferred from the asset
itself (“online’’) to obtain an up-to-date value.

A dynamic property in this paper is defined as “a
particular characteristic of the asset that change
regularly during operation.”

Property Description

The virtual description of an asset typically contains
data elements for describing the properties of the
automation device. Unless they include the actual
(numeric) value of the property, we refer to them as
“Property Description™.

A property description is purely descriptive, includ-
ing metadata about the property, references or
addresses for obtaining the actual property value,
but not the value itself. The metadata may include
the property’s semantics, datatype, data representa-
tion, physical unit, etc.

A property description in this paper is defined as
“a data structure intended to provide descriptive
information about a property.”

Property Representation

A property representation is typically a data element
of the virtual description and, unlike a property
description, it holds the digital value of the con-
sidered property. It can also provide static metadata
about the property, similar to a property description.
If a property representation is included in a virtual
description, independent of the automation device,
itis also available when the automation device itself

99201

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

TABLE 1. Overview of standard specific terms and serialization formats (X means: not available).

Concept WoT AAS DFF AML MTP PA-DIM FDI
Asset Thing Asset PSAsset Production Module Resource Fle%d
System Device
Virtual Role Class in
Description TD AAS DFasset AML_File MTP PADIMType EDD
DataElement
Property 9 " DataElement, . OPC UA EDDL
Representation X (“Property CDEL Attribute X Variable VARIABLE
and others)
Property Property- 1 3 . EDDL
Description Affordance X X Attribute DataAssembly X VARIABLE
s . FDI Action
C}Aesrsjit(‘z Ag(f;:i(;rrll_(‘e X2 X Role Class Service® Cl)\/igh[(){‘iA / EDDL
Service e) METHOD
Virtual FDI Action
Representation’s X Operation x4 X X X / EDDL
Service METHOD ¢
JSON,
Serialization JSON / RDF, XML, AML, OPC
Format JSON-LD | OPC UA, UA XML AML OPC UA X
AML

1 Submodel Template “Asset Interface Description” is under development
https://github.com/admin-shell-io/submodel-templates/tree/main/development / Asset %20Interface%20Description/1/0

2 Capability descriptions are possible, however, service descriptions are under development (see Footnote 1)

3 It is mentioned that it should be done with a CDEL, but not explicitly how

4 A concrete element type is needed, but there is no proposal right now

5 Function blocks can be combined to Services in the MTP

6 Platform-dependent User Interface Plugins executables can also be included in the FDT Device Package to be executed by the FDIT
Client (if capable)

is not connected to a communication network. How-
ever, whether a transfer of static values to or from
the automation device is intended depends on the
applied standard or the specific use case.

It is possible to include property representations of
dynamic properties in a virtual description of an
asset if the property value is frequently updated
by the automation device. Alternatively, an active
software component embedded within the virtual
description can fetch the value on demand from
the automation device. In this case, the property
representation serves as a ‘“‘proxy’’ object for the
dynamic property.

When discussing the accessibility via read or write
requests or the observability of a property represen-
tation, the focus is always on its value attribute. !0
A property representation in this paper is defined
as “‘a data structure intended to provide the current
value of a property, along with descriptive informa-
tion about the property.”

Asset’s Service

Asset’s service refers to the services provided by
automation devices that interact with the phys-
ical world to perform specific production tasks.

All the examined standards have a provision to
describe ““‘functions”, ‘“‘services’, ‘‘operations’,
or “actions” associated with an asset.

It is crucial to differentiate between two types of
functions: executable functions of the device itself
(referred to as asset’s service) and functions that
are additional features of the device representation
(known as virtual representation’s service). How-
ever, clients can invoke both types of functionality
through the virtual device representation.'!

An asset’s service in this paper is defined as “a
procedure within the asset that can be invoked to
accomplish a specific task.”

Virtual Representation’s Service

Virtual Representation’s Service refers to an exe-
cutable function defined within the virtual represen-
tation of an asset. This function is executed by an
active software component associated with the vir-
tual description. Unlike the asset’s service, the vir-
tual representation’s service does not involve the
execution of an automation device function itself.
Instead, it interacts with automation device data
such as property values or structural configuration,
which can be obtained either from the asset itself

101 general, a property may have additional attributes besides the value UTn Subsection V-C, the standards’ respective implementations and any
attribute. uncertainties related to their implementation are explored and discussed.

99202 VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

(online) or from the virtual representation, depend-
ing on the standard and the specific implementation
of the function.

The purpose of virtual representation’s services
is often to provide asset management functional-
ity. Examples of such functionality include predic-
tive maintenance computations, product schedul-
ing, or Al-based analytics.

A virtual represenation’s service in this paper is
defined as “‘a procedure within the virtual represen-
tation that can be invoked to accomplish a specific
(asset management) task.”

B. REPRESENTATION OF A PROPERTY

In this section, the focus is on examining the extent to
which the analyzed standards provide suitable data structures
for describing properties and representing properties with
their values. The objective of each standard is to provide
an adequate virtual description, although the definition of
“adequate’ depends on the specific use case.

Table 2 provides an overview of common attributes found
in property descriptions across at least two standards, with
similar forms. The attributes are described in more detail in
Table 3. Any aspects that are exclusively covered by one
standard are discussed in the subsections dedicated to that
particular standard.

It should be noted that some standards may allow for
optional embedding of additional information models within
their virtual descriptions. In such cases, the properties pro-
vided by different standards may include additional attributes.
However, the tables in this section only include attributes
defined in the respective standard documents for all property
descriptions or property representations.

1) THE PROPERTY CLASS IN THE THING DESCRIPTION

In the WoT context, asset properties (‘‘characteristics’™) are
considered relevant as long as they are directly accessible
for other WoT participants, meaning at least one operation
can be performed on that characteristic. These properties are
described as ‘““Property Affordances™ in the TD.

When describing a property according to the TD meta-
model, the available attributes are the same as for any other
“InteractionAffordance,” such as events and actions, except
for the ““observable” attribute, which is specifically defined
for “PropertyAffordances,” and for additional attributes
inherited from a “DataScheme” class.

The data type of a property can be any JSON data type
that can be declared using JSON schema. Depending on the
data type declared for the property value, additional attributes
can be specified. For example, if a property is of type ‘“‘num-
ber” or “‘integer,” optional attributes like “minimum” and
“maximum’” with numerical values can be added to further
specify the property. The TD context extension mechanism
(see Chapter 7 in [32]) allows for the use of additional type

VOLUME 11, 2023

systems from other standards, such as XML schema, to pre-
cisely define properties.

The primary focus of a TD property description is on
communication aspects to inform clients about the possibil-
ities of accessing the current property value. The property
attributes are defined in a way that enables the description
of various protocols, security schemes, and content formats
using common scheme. The “form™ object attribute, which
is the only mandatory attribute of a property, encapsulates
communication information required for direct access to the
property value. It can include attributes for URI template
variables, subprotocols, possible operation types executable
on the property, or security scheme-specific access control
settings. It is even possible to define an array of “‘form”
attributes for a single property to allow for different settings
or operations when accessing it.

A property can also have an attribute named “const”
with a value that can be of any data type included in the
TD information model. The purpose of this attribute is not
explicitly mentioned in the TD specification, but it is not
intended to store a constant property value since the property
value is always and solely accessed via the mandatory “href”
attribute of the “form™ attribute. The “‘href” attribute con-
tains the target IRI of the property value. If a constant property
value needs to be described in a TD, an IRI pointing to the
value must still be provided because there is no provision to
include the actual value in the TD. Therefore, TD supports
property descriptions but not property representations.

Furthermore, the TD information model includes attributes
that allow for complex data types, which not only allow
for subordinate property objects but also for enumerations
listing all valid property values. Object definition can be
further specified by including their names in a map container.
Additionally, the generic WoT approach allows for context
extensions to enrich a TD with additional semantics, such as
protocol bindings or security schemes. External resources and
Thing-related data can be referenced via links when available
as web documents.

In the example property serialization provided, the prefixes
“opc” (indicating the OPC UA specific data type) and “om”
(adding unit information) qualify the results of the context
extensions.

"properties": {
"T1": {

"title": "T1",
"description": "Current Temperature",
"type": "number",
"unit": "om:degree_Celsius",
"readOnly": true,
"observable": true,
"opc:dataType": "Double",
"forms": [

{
"href":"opc.tcp://acplt.org:9409/
DvOpcUaServer/ns=2;s=0:T27/PV",

99203

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

TABLE 2. Common attributes of properties - descriptions to the attributes given in Table 3.

Property attribute WoT AAS DFF AML MTP PA-DIM FDI
Identification name/ title v v v v v v v
Data type v v v v v v v
Description v v v v v v v
Value X v v v v v X
Communication information v X X /1 V2 v X3
Default value X X X v v x4 v
Unit v X v v v X v
Semantic reference v v v v X5 v X7
Attributes of complex data type v X X X X v /8
Access level v X9 X X X v v
Additional attributes v v X X X X X
Category X v v X X X v
I Reference to CommunicationRoleClassLib
2 Reference to information element
3 Not provided unless mapping to OPC UA
4 Added from the Type Definition if necessary
5 Semantically defined for parent objects
6 Via HasTypeDefinition reference
7 Via seperate SEMANTIC MAP element
8 Data Type can be enumerated
9 Specified elsewhere (in AccessPermissionRule)
"contentType": "application/ If both a value identifier, which optionally points to a seman-
X.opcua-binary", tic definition of the value, and a data value are present, they
"op": [must coincide, meaning they should refer to the same value.
"readproperty", While the data element classes themselves define only a
"observeproperty" few attributes, additional options to describe property details

2) THE DataElement CLASS IN THE AAS

The AAS information model utilizes the abstract DataEle-
ment class to define value-containing elements such as vari-
ables, parameters, or constants, which serve as representa-
tions of properties within an AAS Submodel. The DataEle-
ment class is always at the bottom of the hierarchical model
structure.

Specific subclasses of DataElement are chosen based on
the type of value they should contain. For example, the
Property class is used to describe basic property represen-
tation, such as process values or a design parameters. Other
classes are designed to represent references, property values
in multiple languages, media (MIME [77]) type file contents,
or define a range with minimum and maximum values (see
Subsection IV-C).

The Property data element includes at least a data type
attribute and optionally a data value or a value identifier.

99204

are introduced through class inheritance. Properties can be
further specified through attributes such as description, cat-
egory (e.g., parameter, variable, or constant), idshort, kind
classification (i.e., template or instance), or constraint. The
semantics of the property can be defined by referencing either
an internal data specification (template model element or
object of the ConceptDescription class) or an external one,
such as ECLASS or IEC61360-CDD. The semantic defini-
tion often results in further characterization of the property
with additional attributes, which can be defined once in the
template for all property instances or assigned individually to
each instance.

In the example property JSON serialization, the semanticld
refers to a ConceptDescription that, in turn, references the
data specification template for the property, DataSpecifica-
tion[EC61360, via a global IRI. This template allows for
the addition of auxiliary attributes in the ConceptDescrip-
tion object, such as unit (e.g., degree_Celsius), dataType
(e.g., REAL_MEASURE) or preferredName (e.g., [{"lan-
guage": “EN”, “text": "Current Temperature TU20 (tank
B2) T27"}, {"language": "DE”, "text": "Aktuelle Temperatur
TU20 (Tank B2) T27"}]).

By leaving the value attribute unset, a Property element can
also serve as a property description. However, this use case is

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

TABLE 3. Common attributes of properties: descriptions.

Property attribute

Description

Identification name/ title

Label/title/name that makes a property identifiable in the namespace with multilanguage
support for WoT, MTP; sometimes additional (unique) id or display name provided

Data type

Data type of the property value, depending on the serialization format; these always
support simple types such as boolean, number, string; some standards allow also complex
types such as object or array

Description

Human-readable explanation or comment of the property (with multilanguage support for
WoT, AAS, MTP, FDI)

Value

(Current) value of the property (only for property representations, multilanguage support
for AAS)

Communication information

Attribute(s) containing sufficient information to gain property access (online and only if
access is allowed)

Default value

Default setting for the value attribute

Unit

Unit associated with the property included as an attribute

Semantic reference

Reference to type definitions/ semantic tag

Attributes of complex data type

Enable nested properties

Access level

Determines at least if a property is writable or readable (sometimes also observable; or
other permissions can be given, e.g., delete a property)

Additional attributes

Properties can also be extended with additional attributes through semantic context
extensions

Category

Indicates whether the property value is static (i.e., parameter, constant) or dynamic

(variable)

not specifically addressed in the specification document [17],
and there are no standardized attributes for describing access
to the actual value when it is available elsewhere. Currently,
efforts are underway'? to develop a submodel template called
“Asset Interface Description’, which will allow the descrip-
tion of access to asset properties in the future.

"submodelElements": [{
"value": "25",
"semanticId": {

"keys": [
{

"ConceptDescription",
true,
"http://acplt.org/cd/

temperature",

"idType": "IRI"

"type n .
"local":
"value":

1
}I
"constraints": [],
"idShort": "T1",
"category": "VARIABLE",
"modelType": {
"name": "Property"
by
"valueType": {
"dataObjectType": {

12https ://industrialdigitaltwin.org/en/content-hub/submodels

VOLUME 11, 2023

"name": "integer"

by
"kind":
H]

"Instance"

3) THE DataElement CLASS in the DFF

In the DFF information model, the DataElement is used to
“represent a characteristic of a PS asset or a role” [33].
It consists an identifier, a reference to a data element type,
and a value. The identifier is locally unique within its par-
ent object, which can be either the body part of a DFasset
object or a CDEL. The referenced DataElementType pro-
vides meta-information about the data element, including
its category, data type (in string representation), definition
of permissible values, and allowable physical unit. DFF
does not define its own data types (apart from the string
representation), so the specific data types are described in
semantic descriptions. The DataElementType object con-
tains a reference to a ConceptDictionaryEntry object, where
the semantics of the data element are detailed. The value
of the DataElement object represents the actual value and
must comply with the data type specified in the referenced
DataElementType and the corresponding semantic descrip-
tion (ConceptDictionaryEntry). Additionally, a DataElement
object can include a physical unit, a timestamp indicating
when the value was set, and information about the value
quality (Good, Bad, Uncertain). If a physical unit is pro-
vided, it should be one of the units listed in the referenced

99205

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

DataElementType object. The DFassetLink can be used to
model relationships between PSassets.

Similar to the AAS information model, the DFF DataEle-
ment does not provide attributes to store information about
accessing values from external data sources. While the spec-
ification suggests representing an interface description with
a CDEL, it does not offer specific instructions on how to
achieve this. Therefore, a DataElement serves solely as a
property representation and not as a comprehensive property
description.

At the time of writing, there were no examples of serial-
izing a DataElement provided in the specification. The spec-
ification only presents mappings to OPC UA and Automa-
tionML.

4) THE InternalElement ATTRIBUTE OF THE
InstanceHierarchy CLASS IN AutomationML

AutomationML, based on the CAEX (IEC 62424) stan-
dard, utilizes the InstanceHierarchy class as the top level for
modeling automation components’ properties in a hierarchi-
cal structure of objects known as InternalElements. These
InternalElements consist of Attribute elements, which are
employed to represent object properties.

Attributes in AutomationML can encompass various ele-
ments such as AftributeDataType, unit, description, and
value. The AttributeDataType supports XML schema data
types, providing flexibility in representing different types of
data. This allows AutomationML to support both property
descriptions and property representations. Additionally, the
Attribute element can include a nested attribute called Ref-
Semantic, which stores the value of the property ECLASS
ID. This reference to the ECLASS ID helps to define the
semantics of the property.

InternalElements in AutomationML can also make use of
interfaces from the Interface class library to establish connec-
tions between component instances. These interfaces include
port connector, communication capabilities, COLLADAIn-
terface, and PLCopenXMLInterface. The functionality and
semantic meaning of an InternalElement can be imported
from the role class library by utilizing the RefRoleClassPath
attribute, which references one or more roles from the library.
AutomationML provides a comprehensive library of machine
roles within the automation environment. However, users also
have the flexibility to define their own custom role class that
best suits their specific model.

A typical example of the InternalElement used to represent
an asset property is given below.

<InternalElement Name="MyRobot_axis"
ID="c154d16f-1ffa-4126-b5d3f0e02c5d">
<Attribute Name="Number_ of_ Axis"
AttributeDataType="xs:integer">
<Description>
quantitative indication of
the number robot axis.

99206

</Description>
<Value>3</Value>
<RefSemantic
CorrespondingAttributePath=
"ECLASS:0173-1#02-AAK5254#003" />
</Attribute>
</InternalElement>

5) THE DataAssembly CLASS IN MTP

In the NAMUR standard, a Manifest is required, which is
an AutomationML file that describes the contents of the
respective Module Type Package (MTP). Besides referencing
MTP elements such as operator display description or service
description, the Manifest directly includes descriptions of the
module communication and the relevant module components,
such as sensors and actors, referred to as instances. The
instances are gathered in a list, where each instance with
communication capabilities is represented by an object of
the abstract DataAssembly class or a subclass thereof. An
instance is provided with a name attribute, a reference to the
corresponding class that determines its syntax and semantics,
and an identifier that allows it to be referenced by other MTP
elements. The instance also comprises Attribute elements,
each serving as a potential interface variable that links to a
data item of a data source through its value attribute. If the
attribute does not link to a data source variable, the value
attribute contains a static parameter value. Thus, the Attribute
elements serves as data structures for both property descrip-
tions and property representations.

For instances that are objects of a subclass of DaraAssem-
bly, all mandatory and optional properties (i.e., Attribute
elements) are described in [70] and defined as standardized
interfaces in the AutomationML SystemUnitClassLibrary
MTPDataObjectSUCLib. These interfaces include variables
for minimum and maximum values, control inputs and out-
puts, as well as variables used for interlocks and other safety
mechanisms. The interface variables do not contain direct
communication information but are connected to an External-
Interface object through a reference. The Externallnterface
object specifies the necessary details related to read/write
access and identification, such as the NodelD in the case of an
OPC UA server, where the server endpoint URL is specified
in the parent element.

<Attribute Name="T1" Unit=""
AttributeDataType="xs:IDREF">

<Description>

Current Temperature
</Description>
<DefaultValue />
<Value>refIDT1</Value>
<RefSemantic

CorrespondingAttributePath=

"Connectable" />

<RefSemantic

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

CorrespondingAttributePath=
"Standard" />
</Attribute>

6) THE VARIABLE IN THE PA-DIM

According to the OPC UA Address Space Model, the OPC
Unified Architecture uses Variable nodes to represent object
components that can hold any kind of values. The Variable
nodes can be further categorized into two subtypes: Proper-
ties and DataVariables.

Properties are the bottom elements of any hierarchy and
represent simple values. DataVariables, on the other hand,
can be composed of complex data and may reference other
Variables through HasProperty or HasComponent references.
The range of possible attributes may vary between the sub-
types. Additionally, there are several inherited attributes from
the Base NodeClass, many of which address security aspects
and can be used for access control purposes. The OPC UA
specification allows for detailed access control at the attribute
level, including Read, Write, Query, and Subscription Ser-
vices. However, configurations at the attribute level may have
interdependencies and should be carefully managed. In many
applications, it is primarily the value attribute that changes
frequently during runtime.

The PA-DIM OPC UA Companion Specification defines
optional and mandatory property representations to be imple-
mented as Variable nodes. These property representations
typically represent static properties. However, OPC UA
allows Variable nodes to describe properties regardless of
their nature. When representing a physical process automa-
tion device virtually, Variable nodes, along with addition
Method and Object nodes, are used. Property instances can
represent process variables, parameter settings, device states,
or general device information about the manufacturer or
series. The semantic definition of these device characteristics
are linked via HasDictionaryEntry references to a Dictio-
naryEntryType object node [38].

Access to a property can be achieved by using the nodeld
or the browse path, as long as it complies with any access
restrictions that may be in place.

7) FDI PROPERTIES OR EDDL VARIABLEs

The FDI standard allows for the provision of automa-
tion device virtual descriptions written in the platform and
technology independent EDDL. These descriptions can be
mapped to the FDI OPC UA information model of the FDI
server. To ensure a clear mapping from EDDL to OPCUA,
mapping rules are defined that specify the types for all
EDDL elements [78]. The additional data required for cre-
ating instances can be obtained through scanning or may be
available offline.

To find the FDI equivalent of property descriptions or
representations, the EDDL standard [74] must be consulted
because the FDI Device Package contains property informa-
tion exclusively in EDDL. In EDDL, simple device properties

VOLUME 11, 2023

are described using VARIABLEs. Complex properties con-
tain VARIABLES logically grouped in RECORDs or VALUE
ARRAYs, depending on whether the members share the same
data type or describe a common characteristic. These VARI-
ABLES, RECORDs, and VALUE ARRAYs s are also referred to
as Parameters of the described automation devices, regardless
of whether they contain static or dynamic values.

One unique feature of EDDL or FDI standards are the
post- and pre-actions VARIABLE attributes. These attributes
contain references to actions (EDDL METHODS) that are
triggered when a designated interaction with the property
occurs. For example, these actions can be triggered before
or after performing read requests or editing a value. Other
EDDL attributes used for describing properties include the
private attribute, which makes a property non-browsable, and
the validity attribute, which allows for conditional or tempo-
ral deactivation of a property.

The communication endpoint information is not available
until the EDDL device data has been mapped to the FDI infor-
mation model. The communication information included in
an EDDL document only applies to the internal communica-
tion between the FDI Server and the automation device. The
supported attributes for this communication generally depend
on the protocol being used, but most EDDL-compatible
protocols support the majority of property attributes (e.g.,
Fieldbus, PROFIBUS/PN, HART).

When writing an FDI property value, it is unlikely that
the property value of the automation device and the property
value stored in the OPC UA information model change simul-
taneously. The exact procedure depends on the type of value
(determined by the VARIABLE’s CLASS attribute), whether
it is static (parameter/constant) or dynamic (variable). In the
case of static values, the property value is first modified
in the OPC UA information model and is only transferred
to the automation device when a method defined for that
purpose is called. For dynamic values, the property value is
directly written to the automation device and is not copied to
the OPC UA information model until a read request for that
property is received. This behavior can be further controlled
by the pre- and post-actions defined in the EDDL device
description.

The description below shows a snippet of a PROFIBUS
device variable description in EDD and the information about
where to access it in the automation device.

VARIABLE temperatureValue
{LABEL "Temperature";
TYPE FLOAT; }
VARIABLE temperatureValueStatus
{TYPE ENUMERATED
{GOOD = 80;
BAD = 85;1}}
ARRAY OF VARIABLE processValue
{ELEMENTS
{temperatureValue;
temperatureValueStatus; }}

99207

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

COMMAND read_processValue
{SLOT 1;
INDEX 26;
OPERATION READ;
RESPONSE_CODES DPV1_rsp_codes;
TRANSACTION
{REQUEST{}
REPLY
{temperatureValue,
temperatureValueStatus}}}

C. REPRESENTATION OF SERVICES

In this section, it is considered to which extend the functional-
ities of an asset, i. e., the services it provides, can be described
in its virtual representation. Furthermore, the virtual repre-
sentation itself might be supplemented by additional services,
with some standards even including function implementa-
tions as a part of their exchangeable virtual representation
(esp. FDI and up to a certain point also MTP). This section
gives an overview of the possibilities that each standard
provides for modeling or embedding services in the virtual
description.

1) THE ACTIONS CLASS IN THE THING DESCRIPTION

In the WoT framework, services are a subclass of Interac-
tionAffordances called ActionAffordances. Such ActionAffor-
dances have additional attributes to specify those charac-
teristics of the service that are immediately relevant for its
invocation. Among these are, e.g., input and output data
schemes, an attribute which indicates whether the service
involves a change of an internal resource state, or the attribute
idempotent which provides information on whether the output
of the function stays constant throughout multiple calls. It is
worth noting that the focus of the WoT TD service descrip-
tions is not only on providing general description elements
to fully characterize a device but also on invoking the actual
device functionality. A TD service description shall suffice
to enable clients to call the listed service. The actual service
implementation is done outside of the TD where either the
handlers for each action can be defined in the WoT Servient as
part of the behavior implementation or, if an existing device
comprising a server needs to be integrated in the WoT, the
handlers are already implemented in the device hardware or
software. Since TD aims to interconnect with the thing the
purpose is on Asset’s services. Therefore, virtual representa-
tion’s services are not supported so far.

2) THE OPERATION ELEMENT IN THE AAS

The AAS specification includes services as SubmodelEle-
ments, referring to them as Operations. These elements
possess description-related attributes that augment those
common to all SubmodelElements (already discussed in the
property section, e.,g., semantics determination and iden-
tification) with attributes for input and output parameters.
Notably, these operation variables must also be SubmodelEle-
ments. In addition, the AAS can incorporate Capabilities,

99208

which are also SubmodelElements. Such Capabilities aim to
describe functionalities an asset can perform, for instance,
to assist in automation device selection processes [79].

For both Operations and Capabilities, the specifications
do not provide means for accessing the actual services (of
the AAS or the automation device), nor do they stipulate
where any specific Operations are implemented. The Sub-
model Interface in [59] defines API operations to invoke
Operations as services of the AAS (InvokeOperationSync;
InvokeOperationsAsync). These Operations are presumed to
possess a state and a result according to the interface defini-
tions. However, further details about the AAS Operations are
not provided in the referenced document. As previously men-
tioned in Section V-B2, there is an ongoing effort to develop
a submodel template termed “Asset Interface Description”
that will facilitate the description of accessing asset services
in the future.

3) FUNCTIONS IN DFF

As previously noted in Subsection V-B3, DFF data types
are dictated by semantic descriptions. This necessitates a
concrete element type for the representation of a service.
However, no proposal has been put forth as to how this might
be realized, thus precluding a more detailed analysis at this
stage.

4) THE ROLE CLASS IN CAEX OF AutomationML

Though the description of the functionality of automation
devices in a plant in AutomationML is abstract, the Role
class library helps with describing device services. It pro-
vides a semantic definition of a component’s role and its
functionality in an automation system. The CAEX provides
various kinds of role class libraries which are referenced in
the SupportedRoleClass attribute of the InternalElement in
Instance Hierarchy class.

For example, the role class library for discrete manufac-
turing industry (AutomationMLDMIRoleclassLib), as defined
in [80], includes the role classes ‘Robot’ and “Transport’ that
can be used to model the services of robots and any transport-
enabled device. Instances of these roles are referenced with
respect to their parent role class, called AutomationMLD-
MIRoleClassLib/DiscManufacturingEquipment, by using
RefBaseClassPath in the SupportedRoleClass attributes.

Combining the skill(s) (process role class) of a machine
(resource role class) to realize a production output (prod-
uct role class) allows to describe processes in Automa-
tionMLBaseRoleClassLib, according to the Product-Process-
Resources (PPR) concept. These three roles (product role
class, process role class and resource role class) are linked
by the PPRConnector from the interface class library.

A process in AutomationML can be any service (e.g.,
drilling) offered and expected to be performed by a machine.
This action is attached to a role class, optionally with some
set of attributes and interfaces attached to it.

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

The modeling of user defined role classes in Automa-
tionML is also possible, but limited by the capability of
importer tools to correctly interpret the information.

5) THE SERVICE CLASS IN THE MTP

All the services that an MTP module provides and that are
modeled in the respective MTP have an equally designed ser-
vice state machine. The Services are often macro functions,
consisting of ServiceProcedures that can be part of more than
one service. These procedures are the only available function
blocks used to implement a service. Several feedback vari-
ables are provided to keep track of the procedure executions
of a service as well as their health status. The current service
states are retrieved as return values.

For modeling services, MTP uses basically the same means
as for enabling the modeling of properties. Firstly, a library
must be provided which contains numerous classes, e. g., for
the representation of configuration parameters, report values
or incoming and outgoing process values. Each service and
its procedures are mainly characterized by its variables and
parameters, enabling service parametrization, service con-
trol and service-operator interactions. Besides, classes exist
for modeling service dependencies (examples are mutually
exclusive services, interacting services or service sequences).
Secondly, the link mechanism is applied to connect service
variables with instance variables and finally with data source
items that are able to communicate with the module (e. g.,
OPC UA nodes) [69].

The MTP itself is merely a descriptive data structure with-
out executable elements and thus not capable to provide
services on its own (virtual representation services).

6) THE METHOD NodeClass IN PA-DIM

The three different kinds of services that PA-DIM provides
(i.e., FactoryReset, ZeroPointAdjustment and AutoAdjustPo-
sitioner) are represented by Method Nodes in OPC UA. These
three executable functions are generic automation device
services, which each process automation device of PA-DIM
type needs to implement. The Method NodeClass is, as any
other node class, also derived from the Base NodeClass, the
attributes of which are consequently inherited. Moreover,
an OPCUA function is specified by its input arguments
and return values (“‘output arguments’, included as function
properties) and might contain references to events triggered
by the function [43]. Additionally, PA-DIM states that each
function shall be executable and at least callable by one
user [38]. The actual function invocation is done via a stan-
dard OPC UA service, the call service, whose most relevant
arguments comprise the identifier of the function to call and
its input parameters [44]. In general, OPC UA methods have
no state that is visible to the client, i.e., when called the
methods run until completion.

7) FDI ACTIONS OR EDDL METHODs
In the FDI Device Package, executable services are rep-
resented by METHOD implementations in EDDL. These

VOLUME 11, 2023

METHODs can be used for both, triggering services of the
asset (Asset Services) and defining additional functionality,
e. g., methods performing calculations of characteristic val-
ues (virtual representation services).

METHODs can make use of a large set of functions
from the EDDL ““built-in library”, e. g., for communication
with the device. The same way that EDD VARIABLEs are
mapped to OPCUA Variables, EDD METHODs are mapped
to OPCUA Objects of ActionType, an OPC UA ObjectType
which has particularly been defined for FDI [81]. In con-
trast to the OPC UA Methods as they are, e. g., used in the
PA-DIM, the Action objects are not stateless. Instead, their
execution state is always defined based on a state machine
for each action (with possible states: Start, Created, Run-
ning, TimeDelay, WaitingForFeedback, Aborting, TimeDe-
layA, WaitingForFeedbackA, Aborted and Completed [82]).
Such an Action object can be called via the OPC UA method
InvokeAction that is, for instance, triggered when a user
presses the respective button provided in an EditContext or
an invocation might result from a property read action (e. g.,
as a post- or pre-read action).!3 The FDI Server then returns
a transient variable that indicates the current execution state
for the Action. The transient variable can be subscribed by the
FDI Client. By making use of this variable, the FDI Server is
able to notify the FDI Client in the case of changes and in par-
ticular if user interaction is mandatory before proceeding with
the service execution. Possible requests for user interactions
could involve, e. g., acknowledgments or value inputs [82].!*
The internal service logic may use EDD VARIABLES (with
online and/or offline values) and can be implemented by all
means that the EDDL provides. A service is described by a list
of attributes that are similar to those used for the properties,
e. g., determining a label, a description or a class [74], [83].

This abstract about FDI services tries to give a rough idea
of some of the most relevant basics, but the FDI standard
is rather complex and includes plenty of further specific
features. They are described in the IEC 62769 (FDI) and
IEC 61804 (EDDL) series and hence, for any details and
example descriptions, the reader is referred to these series.

D. INFORMATION MODELING FOR A DIRECT
AUTOMATION DEVICE ACCESS

Although all standards unanimously suggest a client-server
architecture for accessing a virtual description of an automa-
tion device, the standards show considerable differences in
the realization of the communication architecture.

On the one hand, there are standardized datasets, serialized
in an appropriate data format, in order to provide asset capa-
bilities together with information about the respective asset
access points to the user as a network client. In that case,
the client is allowed to directly access or control the asset

13The InvokeAction method is only one of numerous OPC UA Methods
that the FDI provides [78].

14The client-user interaction is an important part of the FDI specification
and even before starting a certain service, the user needs to navigate to a
automation device, navigate through a menu and select a functional group.

99209

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

within the limits of the provided and accessible properties
and services. Some standards establish the communication
without an additional description data element, e. g., using the
OPC UA Information Model and providing all device data via
OPC UA nodes. The client only needs to access the OPC UA
server in order to obtain automation device data, or to call the
methods offered by the server.

On the other hand, there are standards that only provide
information about an automation device but do not serve as
a means to gain direct device access. The virtual description
rather serves as aresource itself. Consequently, a client-server
communication can be established between such a virtual
description and a client, accessing the virtual description via
a standardized interface.

An overview of the different client-server connections,
required data integrations and architecture elements of the
standards is illustrated in Fig. 12.1

For a generic approach to directly access the asset, it must
be defined which services and properties are available and
how these are accessed. Therefore, the exchangeable data set
must either directly contain this information. Table 4 shows
where these information can be found in the different stan-
dards and how they are presented. This exemplary description
is given for properties describing simple measurement values
or state variables.

1) JSON PROPERTIES FOR DIRECT ACCESS IN TD

The TD defines a standardized dataset for describing the
accessible device properties and services. It is represented
in the form of web forms in the context of the respective
property with values for operation type (e. g., readproperty
or writeproperty), target IRI and content type. Depending on
the protocol and server, there might be further specifications
necessary, which are defined in protocol bindings. The client
integrates the TD, reads out the required information and then
establishes communication with the indicated server and gets
direct access to the provided information.

2) AAS SERVES AS A RESOURCE ITSELF IN AAS

The question of whether the AAS should provide direct asset
access or grant control access to clients is currently under
discussion and has not yet been conclusively resolved. All
asset information is stored in the AAS, and the defined HTTP
API allows retrieval of this data. However, there is currently
no standardized method for storing asset access information
within the AAS.

A task force is currently working on defining a submodel
template, termed ““‘Asset Interface Description”, which aims
to provide the necessary information for gaining access to the
asset (see also Section V-B2). Initial considerations suggest
that the web forms of the WoT Thing Description should
serve as a basis, with this information subsequently being

15The depicted architectures are not claimed to be complete, as other
architectures may be realized for the standards as well. The depicted ones,
however, are considered to reflect the central ideas for an architecture pro-
posed by the particular standards.

99210

integrated into the submodel. Therefore, in the future, a client
could connect to the AAS, extracting information about direct
asset access from the corresponding submodel.

3) DELs FOR DIRECT ACCESS IN DFF

Similar to the AAS, the DFF specification does not define
how a client should directly access the asset. Within DFF, it is
only possible to provide information regarding the interfaces
of a PS asset to other PS assets. This information, according
to [61], ““should be represented by CDELSs in order to support
the description and evaluation of connections between PS
assets”’. The usage of DFassetLinks along with their DFas-
setLinkEndPoint could be a viable option. Based on this,
various rules can be applied to check whether two PS assets
are compatible.

For providing information about direct asset access, the
only option is currently to define non-standardized properties
(DEL) that contain the necessary information. Since DFF is
serialized in OPC UA, this information can be read by an
OPC UA client, thereby establishing direct asset access. How-
ever, it is important to note that this approach is proprietary
and not standardized.

4) OPCUA INFORMATION MODEL FOR DIRECT ACCESS IN
AutomationML
AutomationML, being a data exchange format, only answers
the question of “what” can be done by means of descrip-
tion and not “how”’, which is achieved by implementation.
Presently, AML and OPC UA are working together to provide
a companion specification [84]'° based on the AML informa-
tion model that would reflect production plant elements and
their properties on an OPC UA server at the operational level.
The implementation of the AML information model map-
ping to OPC UA model will allow to instantiate an OPC UA
server that reflects the production plant. This instantiation can
provide direct access to the devices of the plant by browsing
through the OPC UA nodes.

5) XML ELEMENTS FOR DIRECT ACCESS IN MTP

Similar to the TD, MTP defines a standardized dataset (called
“MTP”), describing the connection to an OPC UA server.
It uses XML elements identified by Reference IDs, linked
(via ID-Link) to communication endpoints. Each XML ele-
ment describes the information needed for direct asset access.
Therefore, the communication endpoint with all necessary
values for ID, Name, Access (read/write/both), Namespace
and server endpoint (URI schema + IP address + port) is
contained. During the integration of the MTP file into the
POL, the OPC UA server endpoint must be manually added.
After that, the POL (as an OPC UA client) can connect to the
corresponding server and get the provided information using
the OPC UA information model.

16https://github.com/AutomationML/AML-UA-XSLT

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

W3C Web of Things Asset Administration Shell Digital Factory Framework AutomationML
(WoT) (AAS) (DFF) (AML)
Client/ . .
Application/ e >\WoT Client ‘ Client Client | & > Client
User ' S / > < N) i
(Communication T Communication ;/f B
1) Integration Integration Integration 1) Integration
i N ‘]
; (HTTP) Server OPC UA Server i
Description WoT 2) Communication Asset Administration K 2) Communication
Data Elements Thing Description Shell DFasset -~ AML file
HTTP/OPC UA/... Server
Thing Asset PSAsset Device
Asset
VDI/VDE/NAMUR 2658 — Process Automation Device Information Field Device Integration
Module Type Package (MTP) Model (PA-DIM) (FDI)
Client/ (OPCUA) |
Application/ . i .
PP User { Client Client FDI Client
1) Integration 2) Integration
Description " !
Data Elements Mgil::lsag;pe 2) Communication Communication FDI Package 3) Communlcatl?n
1) Integration
(OPC UA) Server OPC UA Server OPC UA Sewér
Asset Module Device FDI Serveri
P

FIGURE 12. Overview of system architectures supported by the compared standards.

6) OPCUA INFORMATION MODEL FOR DEVICE ACCESS IN
PA-DIM

Being an OPC UA companion specification, PA-DIM pro-
vides the device information already in the namespace of
OPCUA by using its information model and direct asset
access. Once the client obtains the endpoint of the OPC UA
server, it builds up a connection and can get all the infor-
mation directly using the standard methods of OPC UA. The
information is displayed as OPC UA variables identified by
a name, such that the requested NodelD can be obtained
through browsing.

7) EDDL VARIABLES FOR DIRECT ACCESS IN FDI

FDI uses EDDL variables identified by name and the
OPCUA mechanism. Therefore, all EDDL variables are
mapped to OPC UA variables. The requested NodeIDs can be
obtained through browsing (for public variables) the OPC UA
server or obtaining the User Interface Plugin information
from the FDI server via UID type node reading (for private
variables). After that, the client can get the asset information
using the standard methods of OPC UA.

VOLUME 11, 2023

E. MECHANISMS FOR DISCOVERY

Due to the increasing amount of information about assets,
it is important to manage this data and enable search mech-
anisms to find specific data content that may be related to
one or more specific assets. In the following subsections the
different approaches of the standards are described. Only the
Web of Things and the Asset Administration Shell standards
define a concrete discovery mechanism which are briefly
introduced. All other standards do not explicitly mention how
discovery should work. However, since they all are either
based on or use the OPCUA protocol, they can use the
discovery mechanisms of OPCUA for discovery of known
and unknown servers on the network and retrieving their
communication parameters via Local Discovery Servers and
Global Discovery Servers (cf. Subsection IV-A)

1) W3C WoT DISCOVERY

The W3C Web of Things has a technology building block for
discovery that is specified in the discovery document [50].
There are different discovery approaches provided how to
discover specific Things or TD, respectively:

99211

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

TABLE 4. Overview of data provided by the standards for realizing a direct control access to a device property.

Standard Where How
Web forms found in the context of
the respective property with values
™ JSON properties (properties) identi- | for operation type (e.g., readprop-
fied by name erty /writeproperty), target IRI (URI
schema -+ IP address + port -+
NodelD), content Type, ...!
Original AAS metamodel has no vari-
JSON properties (submodelElements) able f(.)r %)ecifying.a server endpoint of
AAS identified by referable name (i.e., id- fldgﬁvme, For a single AA.S property,
Short) idShort-Path can be .retrleved from
standard API operation GetAllSub-
modelElements
DFF No standardized information provided® | No standardized information provided®
AML Not subject of the AML specification? | Not subject of the AML specification?
XML elements describing the com-
XML elements (Attributes) identified mumcatloln en?pOIInBs K}ch alAlA nec-
MTP by Reference IDs, linked (via ID-Link) essary vaues Jor L, Wame, ACCess
to communication endpoints (read/'wrlte/both), Namespace, server
endpoint (URI schema + TP address +
port)®:6
PA-DIM 8{1;(; E},Ar?;gzbles (UA Variable) iden- NodelD obtained through browsing
NodelD obtained through browsing
. . (for public variables) or variable access
DI EfIi)eI(;Lb;arﬁ?rt;l:srr(lzggngE)LgsP)CldérX thro.ugh Use.r Interface Plugins info.r—
variables ’ mation obtained from FDI Server via
- UID type node reading (for private
variables)

! Depending on protocol and server there might be further specifications necessary.
2 There exist example solutions to realize some kind of communication (e. g., write/read direct access,
publish/subscribe mechanism, intermediary implementations) between device (data source) and

AAS but nothing standardized so far.

3 Workarounds using non standardized properties and OPC UA to access them are conceivable.
4 Mapping of (InternalElements) to OPC UA variables is work in progress and these could be accessed

via OPC UA standard browsing service.

5 The server endpoint must be manually added during the MTP integration process into the POL.

6 This applies to OPC UA servers.

« Direct: Describes a mechanism to directly obtain the
location of the TD definition as a URL. This can be
provided by Bluetooth beacons, QR codes or as a simple
link in a document (e. g., manual).

o Well-Known: The well-known approach expects the
usage of a predefined URL pattern such as /well-
known/wot-thing-description that can be used to request
and expect the TD.

o DNS-based: Things can be discovered via a DNS-based
Service Discovery (DNS-SD) approach which can be
combined with mDNS. The mDNS response message
will provide a link to the location of thing’s TD.

« Directory: A directory service that manages TDs based
on a prescribed API. Search engines like SPARQL or
JSON Path can be used to discover specific Things or
TDs.

o Decentralized Identifier: W3C Decentralized Identi-
fier (DID) [85] approach is applied to resolve a DID
document, containing a link to the location of the asso-
ciated TD.

2) ASSET ADMINISTRATION SHELL DISCOVERY
For discovery of AAS’, the concept of a registry is used.
Therefore, an application offers interfaces to register and

99212

unregister an AAS and also interfaces to publish and discover
AAS based on given information. It is possible to use the same
process with submodels, as well. The interfaces are defined
in an abstract manner and mapped to the HTTP protocol [59].
For registration, a descriptor of the AAS or submodel is
submitted to the registry for storage. This descriptor encap-
sulates the necessary information to access the interface of
the AAS or submodel, including details about the endpoint,
the global identifier, and optionally, additional information
such as description or version number. The range of possible
information is defined in the service description. Using the
identifier, the stored descriptor can be retrieved. Unregistra-
tion implies the deletion of the stored descriptor entry.
Additionally, repositories can be discovered using specific
queries to locate the appropriate AAS or information. A for-
mal discovery language, similar to SPARQL, has not been
defined yet. In the latest version, the publishing of an asset
link has been made possible. This feature enables an applica-
tion to locate an AAS based on a provided asset identifier.

3) DIGITAL FACTORY FRAMEWORK DISCOVERY
The DFF specification does not provide any information
regarding discovery. However, since OPC UA is used as the

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

data model, its discovery mechanism could potentially be
utilized.

4) AutomationML DISCOVERY

AutomationML as a data exchange format for the engi-
neering and commission phase of a production plant does
not have any defined discovery mechanism. The ongoing
work on the integration with OPCUA [84] will prospec-
tively make OPC UA’s discovery mechanism available for
AutomationML-based applications.

5) DISCOVERY OF MTP MODULES AND PA-DIM-ENABLED
DEVICES

MTP and PA-DIM standards do not explicitly specify a dis-
covery mechanism to discover available modules or automa-
tion devices on the network. Still, both standards depend
on the OPC UA protocol for communication and thus allow
leveraging OPC UA discovery mechanism. In addition, the
MTP standard delegates network communication bootstrap-
ping to well-established internet standards such as DHCP
(Dynamic Host Configuration Protocol) and DNS (Domain
Name System), allowing to address known MTP modules in
the plant network [86].

6) FDI SERVER DISCOVERY

FDI (IEC 62796) and its underlying standards do not specify
amechanism for discovery of a specific FDI server. However,
the FDI server is based on the OPC UA protocol, allowing to
use it’s discovery mechanisms. Using the “FDI” capability
flag, FDI servers can explicitly inform about their support
for the FDI information model to be distinguished from other
OPC UA servers during discovery.

F. DISCUSSION

After comparing the individual standards in detail and
describing the results in the previous sections, a discussion
of the standards with respect to the four use cases defined in
Subsection II-B is given in the following. The four use cases
are:

« automation device bootstrapping, esp. for automation
device discovery

« representation of static device properties (with defined
semantics) (property representation and description)

« description of device capabilities and services (asset’s
service and virtual description’s service)

« description of automation device communication inter-
faces, including services and properties

A brief description is given of how well each standard is
suited to serve the considered use cases in our opinion.
In addition to a textual evaluation, the following metric is
used:

VOLUME 11, 2023

-- No suitability
- Poor suitability, lacks in many points
o Suitable, but there are still open points

+ Good suitability, but there could be minor improvements

in some points
++ Full suitability
The results are summarized in Table 5.

1) WoT TD

The W3C WoT standardization activity formalizes several
discovery options (e.g., central- and decentral-based) and
therefore, is suitable for the first use case.

Device properties are realized by the property affordance
approach in TD definitions. Such property definitions can
be optional enriched with additional semantics to precise the
context of the property. However, property affordances are
not intended to represent actual property value and are used
to describe the way how to get to the actual value.

Automation device capabilities are reflected by the WoT
TD document, while virtual representation services are not
supported up to now. Based on the context extension approach
in TDs, the behavior of the automation device can be
described. However, services are not callable, because the TD
is just a file format.

The last use case is fully supported through the prop-
erty, action and events affordances, which include informa-
tion, such as address information (e. g., nodeID or Modbus
address), content type (e. g., binary or JSON) and other com-
munication metadata of an underlying protocol.

2) AAS

The standard only provides a limited interface specification
with few discovery options for automating device bootstrap-
ping and discovery. One explanation could be the absence
of an information model (or submodel) for the automa-
tion device address. As a result, there is no automated
self-registration mechanism available for an automation
device with an AAS, and there is also no defined workflow
for how such registration should be performed. Furthermore,
the registry concept is incomplete, as it does not include a
mechanism for discovering the registry server itself, nor does
it provide for hierarchical discovery.

Since the primary focus of the AAS is to represent automa-
tion device related property information, the standard is
well-suited for the second use case. It provides support for
a variety of data structures, such as Property, Blob, or Range,
and includes attributes that represent semantics.

The standard defines a model element called Capability
for describing the capabilities of automation devices. This
model element has no attributes and is solely used to reference
a semantic definition of the capability. While the usage of
this element is not described in the standard, a reference
to another publication [87] is provided. However, as this is
just a white paper, it is unclear whether it is intended as a
supplement to the standard or just for discussion purposes.
If it is intended as a supplement, it should be integrated into

99213

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

TABLE 5. Summary of the suitability of the compared standards considering the use cases from Subsection 1I-B.

[WoT | AAS [DFF | AML | MTP | PA-DIM?[FDI |

automation device bootstrapping
automation device static and dynamic properties

communication interface for properties and asset services

automation device capabilities and virtual representation services

++ o - - - - -
0 ++ 0 + - + +
0 + - + - + ++

++ -! - 0 ++ ++ ++

I Ts under development in a working group of the TDTA
2 Only usable for OPC UA

the standard. To define the services of automation devices
and virtual description services, the standard includes a model
element called operation, which enables the description of a
particular functionality.

The fourth use case is not yet supported due to the absence
of an information model (submodel template) for this type
of information. A working group from the IDTA is currently
addressing this issue (also see Section V-B2). According to
the API definition in [59], it should be possible to invoke an
operation even when there is no option to specify the endpoint
location.

3) DFF

The standard does not provide any information about boot-
strapping or discovery. However, since OPC UA is used as a
data format, it is possible to utilize its discovery mechanisms.
This approach, however, only supports OPC UA use cases
for finding OPC UA servers based on profiles, rather than
representations of specific automation devices.

Analogous to AAS, the primary focus of this specifica-
tion is the representation of automation device properties.
The standard provides a data model for modeling assets
(automation devices), which consists of model elements for
asset properties (data elements) and relationship elements
(references). These properties can be structured using so-
called CDELSs, which are collections of such data elements.
Unlike in AAS, there are no different kinds of data elements;
therefore, the entire model semantics are defined in the ref-
erenced data element type, which is specified in a concept
dictionary. On one hand, the complete interoperability of
this standard relies on well-maintained concept dictionaries.
On the other hand, it remains open for future data element
types without requiring changes to the standard. However,
it is unclear how interoperability can be achieved with data
elements from different concept dictionaries, as there is no
authoritative organization as in the case of AAS.

The same problem that occurs for automation device prop-
erties also applies to the description of automation device
capabilities and services. As there are no special data ele-
ments for this information, interoperability is dependent on
the concept dictionaries and the establishment of tools.

CDELs could be used for describing automation device
communication interfaces. Once again, CDELs are defined
generically, with their semantics specified in the referenced
CDEL definition element within a concept dictionary. As of

99214

now, the authors are not aware of any concept dictionary that
includes such a CDEL definition.

4) AutomationML

As of today, AutomationML as a standard does not sup-
port any bootstrapping and discovery mechanism. The future
combination with OPC UA, might bring a change, but that
would only allow the discovery of the OPC UA server and
not the automation device itself. The combination focuses on
bringing AutomationML data from the engineering phase to
the operational phase of a production system.

For the second use case, AutomationML provides a well
structured data model within the CAEX standard to describe
the production system properties, including references to
COLLADA or PLCopen XML data. For now, it uses the
ECLASS dictionary to provide semantics for these properties
which allows properties interpretation to be uniform within
different tools using a particular AML file.

Description of automation device capability and services
within a production system can be realized in PLCopen XML
file which is part of the AML file. In PLCopen XML, the
behaviour of the automation device in a production system is
described as an SFC and linked to other automation devices
with virtual 1Os.

On the fourth use case, the description of automation
device communication is done at the level of Communica-
tionInterfaceClass Library which is part of interface classes
that describes the relations between elements within CAEX
and COLLADA. Just like EDD and TD, AutomationML is
basically a descriptive file and does not have any mechanism
to deploy it as a server instance. The mapping of its elements
to the OPCUA information model and the instantiation of
AML2Nodeset as OPC UA server instance is still work in
progress.

5) MTP
MTP does not provide a mechanism for automated discov-
ery and bootstrapping of process modules (i. e., automation
devices). Instead, the MTP standard delegates to standard
internet protocols for bootstrapping (DHCP) and address
resolving (DNS) of known modules. In addition, one may
use the discovery mechanisms provided by OPC UA, which
is used as MTP’s primary communication protocol, which do
not allow the discovery of the automation device itself.
Since MTP primarily focusses on modeling the runtime
interface, it does not provide extensive modeling solutions for

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

properties with their value. MTP DataAssembly objects allow
to represent properties and can provide basic meta informa-
tion like data type and unit of measurement. In addition, MTP
can only provide information about each module type, not
about a single module.

MTP allows to provide information about the services pro-
vided by the described module type, specifically, it specifies
how the described services and procedures can be activated,
parameterized and controlled at operation time. However,
services and procedures cannot be tagged with additional
metadata, making MTP unsuitable for describing asset’s
capabilities or virtual representation services.

Describing the communication interface of an automation
device is the MTP standard’s primary focus and strength. The
interface behaviour of MTP modules is mainly predefined by
the MTP standard, whereas all device-specific aspects such as
available dynamic properties, services or service parameters,
can be defined in the MTP package file. Although the design
of MTP is tailored to the process industry, it should be flexible
enough to use it’s communication interface model for a wider
range of automation domains.

6) PA-DIM

OPC UA provides a comprehensive set of discovery services
to detect server endpoints. Once detected and successfully
connected to the server endpoint, the OPC UA browse service
can be used to even detect non-standardized elements. How-
ever, it is not possible to find a specific automation device
based on its automation device id, its properties or any other
criteria. The PA-DIM Companion Specification defines stan-
dardized types and elements, which can be considered similar
for all automation devices modeled according to this spec-
ification. Hence, bootstrapping and especially replacement
of automation devices that implement interfaces according
to the same PA-DIM specification can be considered less
complex.

Properties in the PA-DIM are modeled as variables, always
comprising a distinct type and a dictionary reference deter-
mining their semantics. Because PA-DIM defines only a few
mandatory properties but rather various optional properties,
automation devices that vary greatly in complexity can be
described reasonably well.

Automation device capabilities and services that are rep-
resented by methods are inherently executable.!” Purely
descriptive capabilities which are not intended for dynamic
changes can only be modeled as static properties. As with
properties, the semantics of a method is defined by a reference
to a dictionary entry.

The OPC UA standard makes all specified automation
device information accessible via its interface. To sum up,
OPC UA and PA-DIM combine automation device descrip-
tion and access for process automation devices in a well
elaborated way exept for the drawbacks in the bootstrapping
functionality.

17They are callable in principle if permissions are granted.

VOLUME 11, 2023

7) FDI

Automation device information can be packaged as an FDI
device package file and delivered to the FDI engine by
manually importing it into a configurable tool. FDI can
only leverage OPC UA discovery mechanisms for setting up
communication with the FDI server. A discovery of other
automation device information is not possible.

The description of automation device properties is con-
tained in an EDD file that is part of the FDI device pack-
age. The EDD provides different elements like Variable,
RECORD, ARRAY e.t.c to describe automation device prop-
erties but does not provide any semantics on these properties.
A mapper in the FDI engine maps the EDD properties to the
OPC UA data model. At the OPC UA level, an integration of
ECLASS dictionary allows the EDD properties being mapped
to OPC UA to be semantically defined and identified.

The services of an automation device are described with
EDDL METHODs and mapped to the FDI OPC UA object
called ActionType. The definition of how the service can be
invoked are provided as OPC UA Method nodes using state
machines for each action. These nodes are components of the
ActionServiceType object.

The description of automation device communication
interfaces and properties is primarily the main focus of EDD.
The language makes it possible to define different kinds of
interfaces based on IEC 61158 fieldbus protocols and some
other Ethernet protocols. The mapping to the OPC UA infor-
mation model hides the communication information of the
automation device at the top level, however, the FDI engine
provides functionalities to route the information between the
FDI server and the automation device.

8) SEMANTIC ANNOTATIONS

Most of the standards allow for semantic annotation virtual
descriptions’ data elements by means of a reference to a
semantic description. For the use of this semantic tagging
there are still some practical issues, arising from the coexis-
tence of different dictionaries with semantic definitions using
different identifier naming schemes. Therefore, solutions are
needed for combining semantic descriptions from different
dictionaries. One possibility is tagging the identifier of each
semantic definition. Yet, it is required to determine whether
two identifiers described in different dictionaries refer to
the same semantic concept. So far, none of the presented
standards addresses this issue.

VI. COMBINATION

A. INTRODUCTION

In today’s industrial automation, the goal of interoperability
has led to ever-increasing collaboration between standardiza-
tion bodies. Such collaborations allow for the use of multiple
existing technologies and standards to create a solution to
automation problems by ensuring interoperability and over-
coming the limitations of one model or standard through
integration with another. In this section, a classification of

99215

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

generic integration strategies is presented (Subsection VI-B),
subsequently exemplified by a concrete implementation con-
cept in Subsections VI-C.

B. GENERIC INTEGRATION STRATEGIES

The description of automation device properties and services
is achieved by a structured and well-defined information
model as shown previously in this paper. These information
models are designed to enable the integration of static and
dynamic information of automation devices into automa-
tion systems. A combination of such information models
could help to make some automation solutions more broadly
applicable and suitable for all target use cases. The general
strategies of model integration or combination are:

1) Model composition
2) Model transformation
3) Combination of model composition and transformation

To evaluate each of these strategies, the following metrics
will be used throughout this section: (a) software required
to retrieve information of the model being integrated, (b)
potential information loss, (c) need for an additional standard
and (d) possibility to append or attach information to specific
elements of the integrated model.

1) MODEL COMPOSITION

Composition of information models involves the integration
of one model into an instance of another model without
altering the structure of both models. This method can be
achieved in two ways as described in Fig. 13. The first
way is to define the resource location of the integrated
model (model A in Fig. 13) in the main model (model B
in Fig. 13). The second way is to integrate the data of one
model in its entirety into the main model as BLOB or a
supported file. In most cases, this is made feasible via a
model structure that supports hierarchical or modular models
by design.

This method of integration is sometimes favorable in an
application that uses model B as its base model but that also
needs additional information from another model to maxi-
mize its functionality.

a: REQUIRED SOFTWARE

The integration procedure only requires software for parsing,
interpreting and manipulating model B, since the data and
structure of model A are left unchanged.

Accessing and using information from the integrated
model (model A) requires a parser and a dedicated interpreter
for model B as well as a parser and interpreter for model A.

First, the parser lexically and syntactically analyses the
elements of model B and decomposes them into smaller
elements. After parsing the model, the output is fed to the
interpreter for model B. This resolves the semantics of ele-
ments defined in the metamodel of model B, including the
data or reference for model A. To access the contained infor-

99216

Model B

URL reference of

Reference to model A

Model A

Contains

BLOB file of model A

1

FIGURE 13. Model composition.

mation, a suitable parser and interpreter for model A are
required.

b: INFORMATION LOSS

Model integration by composition does not result in any
information loss because each model has its own dedicated
interpreter at implementation level.

¢: REQUIRED STANDARDIZATION

Because the models are processed independently, there is no
connection between the models other than creating a place-
holder for the content of integrated models in the main model.
Thus, this approach does not require any specification of an
additional standard, but it might come with a need for some
implementation documentation for developers to understand
how the models can be used together.

d: POSSIBILITY OF APPENDING OR ATTACHING SPECIFIC
INFORMATION FROM MODEL A THROUGH MODEL B

Both general information about model A and additional infor-
mation about specific elements from model A can be added
to model B. While for the first case the standard elements
of model B can be used, for the second case a concept
for addressing and referencing elements in the structure of
model A is needed. This means that for model B, the element
containing the information to be appended or attached must
contain an additional element containing a reference to the
corresponding element of model A.

2) TRANSFORMATION

Model transformation uses a mapping approach to integrate
elements of the source model A into the target model B
(see Fig. 14). This is done by analyzing the structure of the
considered model and the semantics of its elements.

In industrial automation, most information model designs
are based on an object-oriented concept, which helps to map
similar classes of objects with elements that are alike. The
transformation method uses a set of rules called mapping or
transformation rules to map elements from source to target
models.

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

Source model A Target model B

Element A : string
Element B : int

Element C : string

) Element D : int
Transformation
Tool ’

Element N: datatype Element N: datatype

FIGURE 14. Model transformation.

Opposed to the case of composition, the data originating
from the source model is represented in the target model
structure after integration.

a: REQUIRED SOFTWARE

Integrating the data of a source model A into target model
B requires a parser and an interpreter for model A as well
as a software tool built specifically for mapping the model
elements. Fig. 15 displays an overview of the transformation
process.

The software tool (transformation tool) iterates through
all elements of the source model A and assigns the con-
tained data to corresponding elements of the target model
B. This process is based on a set of so-called model-
ing rules. These rules specify the elements to be mapped
to each other and sometimes define a set of conditions
for a feasible mapping. Once the mapping is complete,
the result is serialized to the data representation of target
model B.

The transformation can be executed in offline or online
mode. The major difference between these two transfor-
mation modes lies in their execution frequency: the model
transformation is only executed once or when explicitly trig-
gered in the offline mode, while for the online mode, the
transformation is carried out on-the-fly at every read or write
request.

While the transformation tool is on the data provider level
accessing and using information from the integrated model
(model A) for an user just requires a parser and a dedicated
interpreter for model B.

b: INFORMATION LOSS

The meta-models of most standards are structured differently.
These differences in model structure can significantly reduce
mapping accuracy, resulting in information loss during model
transformation. The larger the structure of the source model
compared to the target model, the more loss of information
can apply.

In the best case, a transformation method operates bidirec-
tionally, which allows for backward and forward transforma-
tions between source and target model without any loss of
information. This case is restricted to situations in which the
structure and semantic definition of elements in both models
match to a sufficient degree.

VOLUME 11, 2023

Semantic
interpreter

Source - Model A
Model A Parser

Transformation
Tool

Target model infrastructure

Target
Model B

Model B

Model B
submodule

Target submodule
of model B

Offline model /

FIGURE 15. Overview of model transformation integration.

Server instance

Online model

Online
Parameters

¢: REQUIRED STANDARDIZATION

Unlike the composition method, solutions based on the
transformation method always require standardization of
the model integration, in addition to the standardization of
the source and target model. This additional standard must
describe the exact representation of the integrated model
elements in the main model, i.e., the transformation rules,
allowing the correct interpretation of the integrated model
data. Typically, this standard is featured in one or both of the
technology standard series.

d: POSSIBILITY OF APPENDING OR ATTACHING SPECIFIC
INFORMATION FROM MODEL A THROUGH MODEL B

With the transformation method, the elements and objects
of the source model are completely mapped onto the target
model, whereby the elements of the source model adopt the
structure of the target model. Therefore, additional informa-
tion can easily be appended or attached to data from a source
model A by using native modeling elements of model B for
its representation.

3) COMBINED COMPOSITION AND TRANSFORMATION
METHOD

As a full one-to-one transformation of models is often not
feasible, a combination of the composition and the transfor-
mation method can be favorable for some applications. This
combination can either involve a transformation of some part
of the source model to the target model and a composition
of the remainder into the target model; or the entire source
model is transformed to the target model with an additional
placeholder for or reference to the source model being created
in the target model (see Fig. 16).

99217

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

Target model B

) Element C: string
Transformation o
- » ElementD :int
00 Element N: datatype

Reference to R URL reference of
le ——1 model A
i Contains BLOB file of model A

FIGURE 16. Combination of model Composition and model
Transformation.

Source model A

Element A : string
Element B : int

Element N: datatype

A prototypical use case of the latter combination type
would be a solution that uses a complex model to deploy
distinct services within one environment. One service could
use the transformed model while the other service might
use the composed model. This, however, may increase the
implementation complexity.

a: REQUIRED SOFTWARE
The software required for this method is identical to the total
software used for the two methods already discussed.

b: INFORMATION LOSS
The information loss with this method of integration mainly
affects the model transformation part of the source model.

If the source model structure is more robust than the target
model, the model transformation is used for parts of the
source model that could be reverse engineered or bidirection-
ally transformed to minimize information loss. The model
composition approach can be applied to parts of the source
model that are more complex in their representation than the
target model.

¢: REQUIRED STANDARDIZATION

Due to its implementation complexity, a combined solution
requires a standard that explicitly explains which parts of the
source model need to be transformed, which parts need to be
composed and how the integration could be achieved.

d: POSSIBILITY OF APPENDING OR ATTACHING SPECIFIC
INFORMATION TO ELEMENTS OF MODEL A THROUGH
MODEL B

For the different model parts, whether composed or trans-
formed, the corresponding techniques apply (refer to VI-B1
and VI-B2).

C. EXAMPLE COMBINATION OF TD AND AAS
In this section, the concept of integrating a WoT TD (see
Subsection IV-B) into an AAS submodel (see Subsection I'V-
C) is briefly sketched; the full example can be found in
[88]. The proposed submodel template aims at describing the
asset interface of the AAS and serves as an example for an
information model transformation.

The TD metamodel (Fig. 1) is composed of finite sets of
classes, each represented by a set of attributes. Every attribute
could be a variable of a simple type, i.e., string, float or

99218

Submodel

Thing F T

SubmodelElement
Collection

OboCts frerrreenrrerieeaseeennaes list, array, map frrreieecennnenns

string, float, integer,

Qualifiers
boolean

\:Nam.......................;.........(ype ﬂ

Value

Value

FIGURE 17. Mapping between TD and AAS metamodel.

Step 1

=
-E8
- E— =
+ 5 owarter 1, -
|En “ThingDescription” [IRI, www,examplﬂ')
+ |20 Al submodels™ -
Em i iption” [IRI, I id:
|2 “conceptDescriptions™
() "supplementary files”

Step 3

7111.0112 9524]

71110112 0664]

ERERE

FIGURE 18. Screenshot of the AASX package explorer depicting on how
to import a thing description document.

integer, an object or a data container such as a map, or a list.
For the AAS, the complexity of objects or data containers can
result in a large file. Thus, simpler mapping rules between
the source and target metamodels are proposed in [88] and
displayed in Fig. 17.

All the attributes of simple type are mapped to the corre-
sponding submodel element qualifiers of the AAS metamodel
(Fig. 2), where the attribute names become the qualifier
types and the values become the qualifier values. All the
complex types including lists, classes and objects are mapped
to submodel element collections. The thing class of the TD is
mapped to the AAS submodel.

Every element (vocabulary) of the TD metamodel is
defined with an RDF schema that is mapped to the semantic
identifier of the corresponding AAS element. Furthermore,
there are a few exceptions from these basic mapping rules,
namely those for title, description, versionInfo and id [88].

The presented approach can be realized as an implemen-
tation for the AASX package explorer.'® Fig. 18 shows an

18https:// github.com/admin-shell-io/aasx-package-explorer

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

example of how the content of a TD can be mapped to an AAS
submodel representation. This content enables AAS applica-
tions to retrieve metadata for accessing asset properties or
services at runtime on the basis of a standardized approach.

VIi. CONCLUSION AND OUTLOOK

In this paper, different standards for the automated inte-
gration of automation devices into an automation system
are compared. After giving a literature review six standards
where selected and analyzed: W3C Thing Description (TD),
Asset Administration Shell (AAS), Digital Factory Frame-
work (DFF), AutomationML (AML), Module Type Package
(MTP), Process Automation - Device Information Model
(PA-DIM) and Field Device Integration (FDI). These stan-
dards are compared with respect to four categories: (1) Rep-
resentation of a property, (2) Representation of services, (3)
Information modeling for a direct automation device access
and (4) Mechanism for discovery. Based on this comparison,
the advantages and disadvantages of each standard are sum-
marized. The result is that there is no universal standard that
addresses the four categories equally well, however, a com-
bination of some standards would make sense. Therefore,
different generic integration strategies are presented as well
as an example combination of TD and AAS.

The paper shows the importance of such comparison to
help manufacturers, suppliers, integrators and operators of
automation components as well as current researchers and
standardization bodies to evaluate the suitability of single
standards or combination of standards. In future work, further
aspects of asset information model standards are to be inves-
tigated, including (1) means of representating statefulness
in the automation device interface (i.e. required order of
service invocation), (2) definition of additional aspects of
the ecosystem and architecture and (3) “explorability” of
the used information and data model including versioning,
protocol profiles, etc. to reduce required knowledge of the
client.

REFERENCES

[1] M. Mohamed, “Challenges and benefits of industry 4.0: An overview,”
Int. J. Supply Oper. Manage., vol. 5, no. 3, pp. 256-265, 2018.

[2] L.D. Xu, E. L. Xu, and L. Li, “Industry 4.0: State of the art and future
trends,” Int. J. Prod. Res., vol. 56, no. 8, pp. 2941-2962, Apr. 2018.

[31 W. MacDougall, Industrie 4.0: Smart Manufacturing for the Future.
Berlin, Germany: Germany Trade & Invest, 2014.

[4] D. Lou, J. Holler, D. Patel, U. Graf, and M. Gillmore, The Industrial
Internet of Things Networking Framework, document 7, Industry IoT Con-
sortium (IIC), 2021.

[5]1 IEEE Standard for an Architectural Framework for the Internet of Things
(IoT), IEEE Standard 2413-2019, 2019.

[6] European Telecommunications Standards
Standard ETSI TS 103 267, 2020.

[7] K. Kajimoto, M. Lagally, T. Kawaguchi, R. Matsukura, and K. Toumura.
(2022). Web of Things (WoT) Architecture 1.1. W3C working
draft. [Online]. Available: https://www.w3.org/TR/2020/WD-wot-
architecturel 1

[8] C. Wagner, J. Grothoff, U. Epple, R. Drath, S. Malakuti, S. Griiner,
M. Hoffmeister, and P. Zimermann, “The role of the industry 4.0 asset
administration shell and the digital twin during the life cycle of a plant,”
in Proc. 22nd IEEE Int. Conf. Emerg. Technol. Factory Autom. (ETFA),
Sep. 2017, pp. 1-8.

Institute (ETSI),

VOLUME 11, 2023

[9]

[10]

(11]

[12]

(13]

(14]

[15]
(16]
(17]
(18]

(19]

[20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

E. Oztemel and S. Gursev, “Literature review of industry 4.0 and related
technologies,” J. Intell. Manuf., vol. 31, no. 1, pp. 127-182, Jan. 2020.

E. Y. Nakagawa, P. O. Antonino, F. Schnicke, R. Capilla, T. Kuhn, and
P. Liggesmeyer, “Industry 4.0 reference architectures: State of the art and
future trends,” Comput. Ind. Eng., vol. 156, Jun. 2021, Art. no. 107241.
Asset Administration Shell for Industrial Applications—Part 1: Asset
Administration Shell Structure (CDV), Standard IEC 63278-1ED 1,
Geneva, Switzerland, 2022.

M. Singh, E. Fuenmayor, E. Hinchy, Y. Qiao, N. Murray, and D. Devine,
“Digital twin: Origin to future,” Appl. Syst. Innov., vol. 4, no. 2, p. 36,
May 2021.

S. Boschert and R. Rosen, “Digital twin-the simulation aspect,” in Mecha-
tronic Futures. Cham, Switzerland: Springer, 2016, pp. 59-74.

R. Sacks, I. Brilakis, E. Pikas, H. S. Xie, and M. Girolami, ‘“‘Construction
with digital twin information systems,” Data-Centric Eng., vol. 1, p. el4,
Jan. 2020.

T. B. Steel, Jr., “ANSI/X3/SPARC study group on data base management
systems interim report,” ACM SIGMOD FDT, vol. 7, no. 2, 1975.

OPC Unified Architecture—Part 1: Overview and Concepts,
Standard IEC 62541-1, Geneva, Switzerland, 2016.

Specification of the Asset Administration Shell—Part 1—Metamodel,
Industrial Digital Twin Association, Frankfurt, Germany, 2023.

Common Warehouse Metamodel (CWM) Specification, Object Manage-
ment Group, Inc., Needham, MA, USA, 2003.

DIN Deutsches Institut fiir Normung e.v. Collection: Standards Con-
cerning Industry 4.0. Accessed: May 3, 2022. [Online]. Available:
https://www.din.de/en/innovation-and-research/industry-4-0/standards

1. Grangel-Gonzilez, P. Baptista, L. Halilaj, S. Lohmann, M.-E. Vidal,
C. Mader, and S. Auer, “The industry 4.0 standards landscape from a
semantic integration perspective,” in Proc. 22nd IEEE Int. Conf. Emerg.
Technol. Factory Autom. (ETFA), Sep. 2017, pp. 1-8.

A. J. Trappey, C. V. Trappey, U. H. Govindarajan, A. C. Chuang, and
J. J. Sun, “A review of essential standards and patent landscapes for the
Internet of Things: A key enabler for industry 4.0,” Adv. Eng. Informat.,
vol. 33, pp. 208-229, Jan. 2017.

Y. Lu, H. Huang, C. Liu, and X. Xu, “Standards for smart manufacturing:
A review,” in Proc. IEEE 15th Int. Conf. Autom. Sci. Eng. (CASE),
Aug. 2019, pp. 73-78.

Y. Lu, K. C. Morris, and S. Frechette, ““Standards landscape and directions
for smart manufacturing systems,” in Proc. IEEE Int. Conf. Autom. Sci.
Eng. (CASE), Aug. 2015, pp. 998-1005.

Representation of Process Control Engineering—Requests in P&I Dia-
grams and Data Exchange Between P&ID Tools and PCE-CAE Tools,
Standard IEC 62424, Geneva, Switzerland, 2016.

Industrial-Process Measurement and Control—Data Structures and Ele-
ments in Process Equipment Catalogues—Part 10: List of Proper-
ties (LOPs) for Industrial-Process Measurement and Control for Elec-
tronic Data Exchange—Fundamentals, Standard IEC 61987-10, Geneva,
Switzerland, 2009.

Industrial Automation Systems and Integration—Integration of Life-Cycle
Data for Process Plants Including Oil and Gas Production Facilities—
Part 2: Data Model, 1SO Standard 15926-2:2003, Geneva, Switzerland,
2003.

Enterprise-Control System Integration—Part 2: Objects and Attributes for
Enterprise-Control System Integration, Standard IEC 62264-2, Geneva,
Switzerland, 2015.

Industrial Automation Systems and Integration—Open Technical Dictio-
naries and Their Application to Master Data—Part 1: Overview and Fun-
damental Principles, Standard ISO 22745-1, Geneva, Switzerland, 2010.
Field Device Tool (FDT) Interface Specification—Part 1: Overview and
Guidance, Standard IEC 62453-1, Geneva, Switzerland, 2016.

Industrial Automation Systems and Integration—Open Systems Appli-
cation Integration Framework—Part 1: Generic Reference Description,
Standard ISO 15745-1, Geneva, Switzerland, 2003.

Industrial Automation Systems and Integration—Product Data Represen-
tation and Exchange—Part 1: Overview and Fundamental Principles,
Standard ISO 10303-1, Geneva, Switzerland, 2021.

S. Kébisch, M. McCool, T. Kamiya, and V. Charpenay. (2022). Web of
Things (wot) Thing Description 1.1. W3C Working Draft, W3C. [Online].
Available: https://www.w3.org/TR/wot-thing-description11/
Industrial-Process Measurement, Control and Automation—Digital Fac-
tory Framework—Part 1: General Principles, Standard IEC 62832-1,
Geneva, Switzerland, 2020.

99219

IEEE Access

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Engineering Data Exchange Format for Use in Industrial Automation Sys-
tems Engineering—Automation Markup Language—Part 1: Architecture
and General Requirements, Standard IEC 62714-1, Geneva, Switzerland,
2018.

Industrial Automation System and Integration—COLLADA™ Digital
Asset Schema Specification for 3D Visualization of Industrial Data,
Standard ISO 17506, Geneva, Switzerland, 2022.

Programmable Controllers—Part 10: PLC Open XML Exchange Format,
Standard IEC 61131-10, Geneva, Switzerland, 2019.

Automation Engineering of Modular Systems in the Process Indus-
try: General Concept and Interfaces, Standard VDI/VDE/NAMUR 2658,
2019.

PA-DIM—Process Automation Device Information Model: OPC UA for
Process Automation Devices, FieldComm Group, Austin, TX, USA,
2020.

Field Device Integration (FDI)—Part 1: Overview, Standard IEC 62769-1,
Geneva, Switzerland, 2021.

W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture.
Cham, Switzerland: Springer, 2009.

M. Schleipen, S.-S. Gilani, T. Bischoff, and J. Pfrommer, “OPC UA &
industrie 4.0—Enabling technology with high diversity and variability,”
Proc. CIRP, vol. 57, pp. 315-320, Jan. 2016.

orPC Unified Architecture—Part 2:
Standard IEC 62541-2, Geneva, Switzerland, 2018.
OPC Unified Architecture—Address Space Model, Standard IEC 62541-3,
Geneva, Switzerland, 2020.

OPC Unified Architecture—Part 4: Services, Standard IEC 62541-4,
Geneva, Switzerland, 2015.

OPC Unified Architecture—Part 12: Discovery and Global Services,
Standard IEC 62541-12, Geneva, Switzerland, 2018.

T. Miny, “Concept for semantic interoperability between information
models,” Ph.d. thesis, Chair Inf. Automat. Syst. Process Mater. Technol.,
RWTH Aachen Univ., Aachen, Germany, 2022.

P.-A. Champin, G. Kellogg, and D. Longley. (Jul. 2020). JSON-LD 1.1.
W3C Recommendation, W3C. [Online]. Available: https://www.w3.org/
TR/2020/REC-json-1d11-20200716/

A. Wright, H. Andrews, and B. Hutton, “A JSON media type
for describing the structure and meaning of JSON documents,”
document Internet Draft Draft-ZYP-JSON-Schema-01, 2020.

P. V. Biron and A. Malhotra, XML Schema Part 2:
Datatypes Second Edition, World Wide Web Consortium,
Standard Recommendation REC-xmlschema-2-20041028, Oct. 2004.

A. Cimmino, M. McCool, F. Tavakolizadeh, and K. Toumura. (2023).
Web of Things (WoT) Discovery. W3C Candidate Recommendation, W3C.
[Online]. Available: https://www.w3.org/TR/wot-discovery/

C. Aguzzi, D. Peintner, and Z. Kis. (2022). Web of Things (WoT) Script-
ing API. W3C Note, W3C. [Online]. Available: https://www.w3.org/TR/
2020/NOTE-wot-scripting-api

M. McCool and E. Reshetova. (2022). Web of Things (WoT) Secu-
rity and Privacy Guidelines. [Online]. Available: https://www.w3.
org/TR/2019/NOTE-wot-security

Implementation Strategy Industrie 4.0 Report on the Results of the Indus-
trie 4.0 Platform, BITKOM e.V.,, VDMA e.V. and ZVEI e.V., Berlin,
Germany, 2016.

B. Boss, S. Bader, A. Orzelski, M. Hoffmeister, M. T. Hompel,
B. Vogel-Heuser, and T. Bauernhansl, ‘“Verwaltungsschale,” in Handbuch
Industrie 4.0: Produktion, Automatisierung und Logistik. Berlin, Germany:
Springer, 2019.

Reference Architecture Model Industrie 4.0
Standard DIN SPEC 91345, Berlin, Germany, 2016.
Details Asset Admin. Shell—Part 1—The Exchange Informationen
Between Partners Value Chain Industrie 4.0 (Version 1.0), Bundesminis-
terium fiir Wirtschaft und Energie, Berlin, Germany, 2018.

Asset Administration Shell for Industrial Applications—Part 1: Adminis-
tration Shell Structure, Standard IEC 63278-1, Geneva, Switzerland, 2020.
Standard Data Elements Types With Associated Classification Scheme
for Electric Items—Part 1: Definitions—Principles and Methods,
Standard IEC 61360-1, Geneva, Switzerland, 2017.

Details of the Asset Administration Shell—Part 2—Interoperability at
Runtime—Exchanging Information via Application Programming Inter-
faces, Bundesministerium fiir Wirtschaft und Energie, Berlin, Germany,
2021.

Security Model,

(RAMI4.0),

99220

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

(71]

(72
(73]

[74]

[75]

[76]
(77
(78]
[79]
(80]
(81]
(82]
(83]
(84]

(85]

(86]

(87]

Industrial-Process Measurement, Control and Automation—Digital
Factory Framework—Part 2: Model Elements, Standard IEC 62832-2,
Geneva, Switzerland, 2020.

Industrial-Process Measurement, Control and Automation—Digital Fac-
tory Framework—Part 3: Application of Digital Factory for Life Cycle
Management of Production Systems, Standard IEC 62832-3, Geneva,
Switzerland, 2020.

M. Babcinschi, B. Freire, P. Neto, L. A. Ferreira, B. L. Sefiaris, and
F. Vidal, “AutomationML for data exchange in the robotic process of metal
additive manufacturing,” in Proc. 24th IEEE Int. Conf. Emerg. Technol.
Factory Autom. (ETFA), Sep. 2019, pp. 65-70.

L. Hundt, R. Drath, A. Liider, and J. Peschke, ‘“Seamless automation
engineering with AutomationML®),” in Proc. IEEE Int. Technol. Manage.
Conf. (ICE), Jun. 2008, pp. 1-8.

A. Liider and N. Schmidt, ‘“Automationml in a nutshell,” in Handbuch
Industrie. Cham, Switzerland: Springer, 2017, pp. 213-258.

O. Graeser, L. Hundt, M. John, G. Lobermeier, and A. Liider, “Automa-
tionML and ECL@SS integration,” AutomationML e.V., Magdeburg,
Germany, Whitepaper V2.0.0, Nov. 2021.

Engineering Data Exchange Format for Use in Industrial Automation
Systems Engineering—Automation Markup Language—Part 2: Role Class
Libraries, Standard IEC 62714-2, Geneva, Switzerland, 2015.

R. HenBen and M. Schleipen, “Interoperability between OPC UA and
AutomationML,” Proc. CIRP, vol. 25, pp. 297-304, Mar. 2014.

New Work Item Proposal (NP). Automation Engineering of Modular
Systems in the Process Industry—General Concept and Interfaces, Inter-
national Electrotechnical Commission, Geneva, Switzerland, 2019.
Automation Engineering of Modular Systems in the Process Industry:
Modelling of Module Services: VDI/VDE/NAMUR 2658 Part 4, Verein
Deutscher Ingenieure, Alexisbad, Germany, 2020.

Automation Engineering of Modular Systems in the Process Indus-
try: Library for Data Objects: VDI/VDE/NAMUR 2658 Part 3, Verein
Deutscher Ingenieure, Alexisbad, Germany, 2020.

J. Bernshausen, A. Haller, T. Holm, M. Hoernicke, M. Obst, and J. Ladiges,
“Namur modul type package—definition,” atp Magazin, vol. 58, nos. 1-2,
pp. 72-81, 2016.

NAMUR Open Architecture—NOA Concept, Standard NAMUR NE 175,
2020.

Self-Monitoring and Diagnosis
Standard NAMUR NE 107, 2017.
Function Blocks (FB) for Process Control and Electronic Device
Description Language (EDDL)—Part 2: Specification of FB Concept,
Standard IEC 61804-2, Geneva, Switzerland, 2018.

Devices and Integration in Enterprise Systems—Function Blocks (FB) for
Process Control and Electronic Device Description Language (EDDL)—
Part 6: Meeting the Requirements for Integrating Fieldbus Devices in
Engineering Tools for Field Devices, Standard IEC 61804-3, Geneva,
Switzerland, 2012.

Field Device Integration (FDI)—Part 7: Communication Devices,
Standard IEC 62769-7, Geneva, Switzerland, 2020.

N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types, document RFC2046, 1996.
Field Device Integration (FDI)—Part 5: Information
Standard IEC 62769-5, Geneva, Switzerland, 2021.

Describing Capabilities of Industrie 4.0 Components, Plattform Industrie,
Berlin, Germany, 2020.

Whitepaper AutomationML Part 2—Role Class Libraries, AutomationML
Consotium, Magdeburg, Germany, 2016.

UA for Field Device Integration (FDI)—Part 5: Host System Information
Model, Standard OPC 30080-5, OPC Foundation, 2020.

Field Device Integration (FDI)—Part 3: Server, Standard IEC 62769-3,
Geneva, Switzerland, 2021.

Field Device Integration (FDI)—Part 1:
Standard IEC 62769-2, Geneva, Switzerland, CH, 2021.
OPC Unified Architecture Information Model for AutomationML, Automa-
tionML e.V Office, Magdeburg, Germany, 2016.

D. Longley, C. Allen, M. Sporny, M. Sabadello, and D. Reed. (May 2021).
Decentralized Identifiers (DIDs) VI1.0. Candidate Recommendation,
W3C. [Online]. Available: https://www.w3.0org/TR/2021/CRD-did-core-
20210529/

Automation Engineering of Modular Systems in the Process Indus-
try: Runtime and Communication Aspects: VDI/VDE/NAMUR 2658
Part 5 (Draft), Verein Deutscher Ingenieure e.V., Alexisbad, Germany,
2022.

Describing Capabilities of Industrie 4.0 Components,
Industrie 4.0, Berlin, Germany, 2020.

of Field Devices,

Model,

FDI Client,

Plattform

VOLUME 11, 2023

T. Miny et al.: Overview and Comparison of Asset Information Model Standards

IEEE Access

[88] C. Diedrich, H. K. Pakala, K. Oladipupo, and S. Kibisch, “Integration
of asset administration shell and Web of Things,” in Kommunikation

und Bildverarbeitung in der Automation. Berlin, Germany: Springer,
Nov. 2021.

TORBEN MINY (Member, IEEE) received the
B.Eng. degree in mechanical engineering from
the RFH-University of Applied Science, Cologne,
Germany, in 2014, and the M.S. and Ph.D. degrees
in automation from RWTH Aachen University,
Aachen, Germany, in 2016 and 2022, respectively.

Since 2022, he has been a Senior Researcher
with the Chair of Information and Automation
Systems for the Process and Material Technology,
RWTH Aachen University. His area of expertise
lies in the automated exchange of information through model transformations
in the domain of Industrie 4.0. In this context, he deals with the topic of asset
administration shell and discovery.

Dr. Miny is an active member of various working groups in national
standardization associations in Germany and in international, such as ZVEI,
VDI/VDE, NAMUR, Plattform Industrie 4.0, DKE, DIN, OPC Foundation,
and IDTA.

MICHAEL THIES (Member, IEEE) received the
B.Sc. degree from the Bachelor’s Program “Tech-
nical Informatics,” Gottfried Wilhelm Leibniz
University of Hannover, in 2016, and the M.Sc.
degree from the Master’s Program ‘“Automa-
tion Engineering,” RWTH Aachen University,
in 2019.

He was a Research Assistant with the Chair
of Information and Automation Systems for the
Process and Material Technology, RWTH Aachen
University, from 2019 to 2022. Since June 2022, he has been a software
engineer on software solutions for public transport services. His research
activities focused on the acquisition, integration, and representation of indus-
trial data.

LINA LUKIC (Member, IEEE) received the B.Sc.
degree in mechanical engineering (focus on pro-
cess engineering) and the M.Sc. degree in automa-
tion engineering from RWTH Aachen University,
in 2018 and 2021, respectively.

Since 2022, she has been a System Soft-
ware Developer of weighing terminals with Sys-
Tec Systemtechnik und Industrieautomation. Her
| work focuses on embedded devices communica-

tion based on MQTT and OPC UA.

Ms. Lukic is a member of the joint VDMA and OPC Foundation Working
Group DMA OPC UA Weighing Technology Initiative.

SEBASTIAN KABISCH (Member, IEEE) received
the Diploma (Dipl.-Inf. Univ.) degree in computer
science from the University of Passau, Germany,
in 2008, and the Ph.D. (Dr. rer. nat) degree from
the University of Passau.

Since 2013, he has been with Siemens Tech-
nology, Munich, Germany, where he is currently
a Senior Key Expert. As a Guest Lecturer, he reg-
ularly gives lectures with the University of Passau,

< on the topic of web of things. His work focuses
on the eff1c1ent realization and usage of standardized internet and web
technologies for the Industrial Internet of Things domain.

VOLUME 11, 2023

Dr. Kibisch is an Active Member of various standardization and devel-
oper associations, e.g., the Co-Chair of the W3C Web of Things (WoT)
Standardization Group, the Co-Editor of the W3C WoT Thing Descrip-
tion Specification, and a Leader of the IDTA Asset Interface Description
Sub-Model Working Group for the Asset Administration Shell. He is also one
of the initiators and authors of the open source projects, such as OpenV2G,
Eclipse node-wot, and Eclipse ediTDor.

KAZEEM OLADIPUPO (Member, IEEE) received
the bachelor’s degree in electronic and computer
engineering from Lagos State University, Lagos,
Nigeria, in 2014, and the M.Sc. degree in electri-
cal engineering and information technology from
the Otto Von Guericke University Magdeburg,
Magdeburg, Germany, in 2021, where he is cur-
rently pursuing the Ph.D. degree.

He was a Research Assistant with the Chair
of Institute of Integrated Automation, Otto Von
Guericke University Magdeburg, from 2021 to 2022. The Focus of his
research surrounds the convergence of operational technology and informa-
tion technology.

Ms. Oladipupo is an active member of working groups, that develops
sub-model templates for asset administration shell in Industrial Digital Twin
Association (IDTA).

CHRISTIAN DIEDRICH (Member, IEEE) received
the Diploma degree in electrical engineering with
the option of automation and the Ph.D. degree
in semi-formal specification of fieldbus interfaces
and fieldbus profiles from the Otto Von Guericke
University Magdeburg, Germany, in 1985 and
1994, respectively, under Prof. Dr.-Ing. habil. Peter
Neumann.

He was with many German and European
research and development projects (main topics
are industrial communication, engineering of automation systems, formal
description methods, and information and semantic modeling). Since 2005,
he has been the Deputy Head of ifak e.V. Magdeburg. He assumed full profes-
sorship of integrated automation, in 2006, and holds the Chair of Integrated
Automation, Otto von Guericke University Magdeburg, where he is also the
Head of the Institute of Control Technology. He is currently collaborating
with research institutions and companies on industry 4.0 projects.

Dr. Diedrich is an Active Member of various standardization bodies, such
as IEC, DKE, VDI/VDE, ZVEI, and NAMUR.

TOBIAS KLEINERT (Member, IEEE) received the
degree in mechanical engineering from RWTH
Aachen University, in 1999, and the Ph.D. degree
from the Chair of Automation and Computer Con-
trol, Ruhr-Universitt Bochum, in 2005, under Prof.
Jan Lunze.

Subsequently, he was with BASF SE, worked
in advanced process control, process control sys-
tems engineering and lifecycle support, regulated
automation solutions, manufacturing execution
solutions, and smart manufacturing. In 2020, he assumed full professorship
of information and automation systems in industrial materials production and
processes with RWTH Aachen. He collaborates with research institutions
and industry. His research and teaching include concept and method devel-
opment, system solution design, and general concept formation for stan-
dardization in smart manufacturing. His current research activities include
automated process data processing, component-based process control, and
virtualization for safe and secure automation systems.

Dr. Kleinert is engaged in standardization bodies, such as Plattform Indus-
trie 4.0, DKE, VDI/VDE, ZVEI, and NAMUR.

99221

