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ABSTRACT Brain Epilepsy seizure is a critical disorder, which is an uncontrolled burst of electrical activity
of brain. The early detection of brain seizure can save the life of humans. The electroencephalogram (EEG)
signals may be used to automatically identify brain seizures, which is one of the most prominent solutions
for this issue. However, the conventional methods are failed to classify the brain seizure effectively. So,
this work implemented the Brain Epilepsy Seizure-Detection-Network (BESD-Net) using deep learning,
recurrent learning properties. Initially, the dataset pre-processing is performed, which eliminates the noise,
unwanted data from EEG dataset. Then, the deep learning based customized convolution neural network
(CCNN) is trained on the pre-processed EEG data for precise extraction of disease correlated features. The
machine learning based exhaustive random forest (ERF) feature selection is used to optimize the features
obtained from the CCNN, which are highly correlated with disease dependent properties. In conclusion, the
recurrent neural network (RNN) based bi-directional long short-term memory (BLSTM) is used in order
to detect brain seizures from the chosen ERF features. Training and testing of suggested methodology had
made use of CHB-MIT Scalp EEG Database. The aforementioned model has achieved the values of 98.36%,
97.54%, 97.91%, 98% and 95.08% respectively for precision, sensitivity, F1-Score, accuracy and specificity.
The findings of the simulations demonstrate that the suggested BESD-Net led to superior performance when
compared to the technologies that are already in use.

INDEX TERMS Electroencephalogram, epilepsy, brain seizure detection, convolution neural network,
exhaustive random forest, recurrent neural network, seizure.

I. INTRODUCTION EEG signals that are generated during the epilepsy seizure

Epilepsy is a neurological condition that affects millions of
individuals all over the globe. It is characterized by seizures
that occur repeatedly and unprovoked [1]. It is essential to
detect and classify the seizures quickly and precisely for suc-
cessful medical treatments and for enhancing the quality of
life for people who have epilepsy. The EEG is a non-invasive
approach that may record the electrical impulses that are
produced by the brain during seizures. Figure 1 shows the
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of brain. It has become an invaluable tool for monitoring
and evaluating brain activity in recent years [2]. Analysis
of intricate temporal and spatial patterns of brain activity
is required for both the identification of seizure types and
their categorization when utilizing EEG recordings. Voltage
fluctuations obtained from multiple electrodes that are placed
on the scalp are traced with respect to time. This gives
the EEG recording of the brain. These fluctuations reflect
the electrical activity that is summed up from hundreds of
neurons in the brain [3]. However, because of the presence
of numerous artifacts, noise, and inter-individual variability
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in the raw EEG data, it is difficult to differentiate between
normal brain activity and seizure occurrences. Researchers
have developed sophisticated methods of signal processing
and machine learning to overcome these problems [4]. These
methods extract significant information from EEG data and
identify them as belonging to one of many distinct kinds of
seizures. Signal pre-processing techniques such noise reduc-
tion, artifact removal, and feature extraction are used [5]
for improvement in the EEG data quality and quantity that
can be derived. The terms statistical measurements, spectrum
analysis, time-frequency representations, and higher-order
statistics are examples of characteristics that are often used.
The EEG is especially helpful in the identification of many
forms of brain illnesses, was first developed by Hans Berger.
When neurologists investigate the changes that take place at
the time of epileptic seizures occurrence in brain, the use of
such a technological tool is of great assistance to them [6].
The investigation of these variances has the potential to aid
in the correct discrimination between the healthy capacities
of the brain and the pathological capabilities of the brain.
In order to perform an accurate analysis of epileptic seizures,
it is important to gather long-term EEG data that spans over
a period that lasts for days, weeks, and even months. This
involves a significant amount of time and effort from a per-
son [7], but it is necessary in order to get reliable results.
Seizure prediction refers to a model’s ability to accurately
estimate the likelihood of a patient experiencing an epilep-
tic seizure in the near future. Seizures may be caused by
epilepsy. Predicting seizures is accomplished by recognizing
the preictal state of the patient. Classification of seizures
and phases refers to the process through which a model can
divide seizures and seizure phases into distinct categories.
The development of a robust and efficient brain seizure
detection system using EEG has several potential benefits.
Automated seizure detection can assist healthcare providers
in making accurate and timely diagnoses [8]. It can help
differentiate between seizure and non-seizure activity, as well
as classify different seizure types. This can reduce the time
and uncertainty associated with manual analysis, leading to
faster and more effective treatment decisions. Seizure detec-
tion systems can provide valuable information for treatment
planning [9]. By accurately detecting the onset, duration,
and frequency of seizures, medical professionals can adjust
medication regimens, explore alternative therapies, or recom-
mend surgical interventions. This personalized approach can
optimize treatment outcomes and minimize side effects.
Real-time seizure detection systems can provide
immediate alerts or triggers when a seizure occurs. This
enables caregivers or medical professionals to intervene
promptly, potentially preventing or minimizing the impact of
seizures. Early intervention [10] can help reduce the risk of
injury, improve patient safety, and enhance overall quality
of life. Automated seizure detection can facilitate long-term
monitoring of patients with seizure disorders. By continu-
ously analyzing EEG signals, it becomes possible to track
seizure patterns, evaluate treatment efficacy, and identify
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potential triggers or correlations with other physiological
or environmental factors. This longitudinal data can aid in
refining treatment plans and developing personalized inter-
ventions. Developing accurate and efficient seizure detec-
tion algorithms can contribute to advancements in epilepsy
research. By analyzing large-scale EEG datasets, researchers
can uncover new insights into seizure dynamics, identify
biomarkers, or discover novel patterns, that can improve our
understanding of epilepsy and can provide guidance for future
treatment strategies.

Normal

FIGURE 1. Normal vs seizure related EEG patterns.

So, the motivation behind the research on brain seizure
detection using EEG is to improve the diagnosis, treatment,
and quality of life for individuals with seizure disorders.
By leveraging automated algorithms and real-time monitor-
ing, this research has the potential to revolutionize the field
of neurology and have a positive impact on countless lives.
Many approaches have been proposed in the literature for
detecting the seizures. However, the fusion of the necessary
algorithms overcome the limitations of using single algorithm
that eventually results in better performance. The novel con-
tributions of this work are as follows:

1. The BESD-Net (Brain Epilepsy Seizure-Detection-
Network) combines multiple deep learning techniques to
create a comprehensive framework for accurate seizure
detection.
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2. The deep learning CCNN (Customized Convolution
Neural Network) is designed to extract disease-specific fea-
tures from pre-processed EEG data.

3. Machine learning-based ERF (Exhaustive Random For-
est) feature selection is used to identify highly correlated
features related to the disease.

4. The integration of a RNN (Recurrent Neural Network)
based BLSTM (Bi-directional Long Short-term Memory)
network enhances the classification of brain seizures and
non-seizures. The approach that has been developed has the
ability to identify seizures in real time, so that the concerned
clinician will immediately intervene which finally improves
patient safety.

The remaining parts of the paper are structured as follows:
The complete analysis of the literature review can be found
in section II, and the thorough analysis of BESD-Net using
CCNN, ERF, and RNN-BLSTM approaches can be found in
section III. The findings of the simulation are reported in the
last part IV, and the concluding section V discusses potential
future scope.

Il. LITERATURE SURVEY

An intelligent model for the epileptic seizures identifica-
tion and categorization with the help of a deep canon-
ical sparse autoencoder (DCSAE-ESDC) was proposed
by Hilaletal. [11] using EEG data. The DCSAE-ESDC
approach that has been presented incorporates two funda-
mental procedures, namely, the selection of features and
the categorization of data. The DCSAE-ESDC methodology
creates a new feature selection method that is based on the
coyote optimization algorithm (COA). This method is used
to pick feature subsets in the most effective way possible.
In addition, a classifier incorporating DCSAE was devel-
oped with the purpose of recognizing and classifying the
epileptic seizures. This was done so that we could make a
diagnosis. In conclusion, an algorithm known as the krill herd
algorithm (KHA) is used in order to maximize the parameters
of the DSCAE model. Liu et al. [12] developed a method
for the diagnosis of epileptic seizures by combining varia-
tional modal decomposition (VMD) with a deep forest (DF)
model. In order to determine the EEG signal’s distribution
in time and frequency, the EEG recordings are put through
variational modal decomposition. The first three acquired
VMF’s are the ones that are chosen for use in the development
of the time—frequency distribution. This choice was made
since these VMFs provide the most information. After that,
the log-Euclidean covariance matrix (LECM) is constructed
to establish EEG features and to reflect the properties of
the EEG. For EEG signal categorization, the deep forest
model is used successfully. It learns features by using the
forest as a training ground. This model is characterized by the
fact that it is used with the intention of achieving the objec-
tive of classification in its entirety. Escorcia-Gutierrez et al.
[13] devised the ADLBSC-ESD (Automated Deep Learning-
Enabled Brain Signal Classification for Epileptic Seizure
Detection) approach. It was considered since its primary

97992

purpose is to classify the signals emanating from the brain in
order to determine the presence or absence of seizures. The
model that was presented also includes the development of a
method for picking features from EEG data.

Zhang et al. [14] suggested a technique regarding the inte-
gration of the techniques of signal decomposition and statis-
tical analysis. This approach is referred to as the integrated
signal decomposition and statistical analysis (ISDAS) strat-
egy. In the very first step of the process, the method of
variational mode decomposition (VMD) is applied for the
EEG signals in order to deconstruct them and for the intrinsic
mode functions (IMFs) extraction. This is done in preparation
for the subsequent stages of the procedure. An automated cat-
egorization of EEG data was described by Daftari et al. [15],
for the purpose of identifying epileptic episodes. This was
done by using wavelet transformation, machine learning and
deep learning strategies. In order to accomplish this objec-
tive, the use of wavelet transforms will be required. Data
pre-processing, extracting features with the incorporation of
wavelet transformations, and classification through the use of
ML and DL classifiers are the three components that make up
the model. The process of quadratic classification requires all
three of these components to be present. Anuragi et al. [16]
developed a technique for categorizing epileptic seizures by
using ensemble learners and a phase-space representation of
FBSE-EWT based EEG sub-band data. This allowed for the
classification of the data. The empirical wavelet transforms
(EWT), also known as the Fourier Bessel series expansion
empirical wavelet transforms (FBSE-EWT), is used initially
for the partition of the EEG signals into sub bands. These
sub bands are built on top of the FBSE, which acts as their
base. Following this step, the three-dimensional (3D) PSR
is rebuilt using these sub-bands as the fundamental building
blocks of the structure. After that, features based on entropy
such as line-length (LL), log-energy-entropy (LEEnt), and
norm-entropy (NEnt) are derived.

Saminu et al. [17] proposed an approach for the automated
diagnosis of epileptic seizures by using EEG signals as the
primary data source. The primary objective of the authors
of this review is to explore the basics, applications, and
advancement of Al-based approaches that are utilized in CAD
systems for the detection and characterization of epileptic
seizures. It would aid in the actualization and realization of
smart wireless wearable medical devices so that individuals
with epilepsy may monitor their condition prior to the onset of
seizures and assist physicians in the diagnosis and treatment
of those episodes. Qui et al. [18] came up with the idea of
development of ResNet-LSTM network, which is also known
as DARLNet. The residual neural network, also known as
ResNet, and the long short-term memory network, commonly
known as LSTM, are both used in the model that is proposed,
in order to obtain spatial correlations and temporal depen-
dencies. Both of these networks have their own abbreviations.
In addition to that, a difference layer is built so that the further
data on epileptic seizures may be mined in an automated
fashion.
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The possibility of the Hjorth parameter to identify
seizures via the use of EEG data was first postulated by
Kaushik et al. [19]. The EEG signal is decomposed into
its component sub bands at varying intensities using the
tunable-Q wavelet transform (TQWT). In the last step, a com-
parison is made between the method that was presented
and the most recent, cutting-edge methods that have been
published. The CNN and LSTM are the two components
of the model that Jiwani et al. [20] devised for the purpose
of identifying seizures. It integrates CNN and LSTM mod-
els to concentrate on the extraction of temporal and spatial
characteristics. The fundamental advantage of using this
automated system is that it is able to extract spatial as well as
temporal information from EEG data, while simultaneously
maintaining a high degree of accuracy using fewer trainable
parameters. A multilayer perceptron neural network classifier
was presented by Yousefi et al. [21] as a potential method
for the diagnosis of epilepsy. This classifier can identify
distinction between normal illness, epilepsy, and even other
disorders that are taught in educational instances. This is
because of the fact that training on this classifier incorporates
both normal data and epileptic data. Additionally, the utility
of using an electroencephalogram signal was investigated
in two different ways. A concept for an automated seizure
indication system that took use of deep learning approaches
was given by Sivasaravanababu et al. [22]. Analytical meth-
ods such as the tunable Q-factor wavelet transform (TQWT)
and the deep convolutional variational autoencoder (DCVAE)
were utilized in order to perform an analysis of the seizure
characteristics that were gathered from EEG data. This anal-
ysis was carried out in order to determine the nature of the
seizure. In the pre-processing step, they used the adjustable
Q-factor wavelet transform, which is sometimes referred to
as TQWT for short. The authors employed EEG signals that
were acquired from the CHB-MIT Scalp EEG database for
the demonstrated method.

In an attempt to enhance the overall performance of
seizure detection, Gao et al. [23] developed an unbalanced
deep learning model. This was done in an effort to improve
the overall performance. A generative adversarial network
(GAN) is a promising method for augmenting data and for
generating seizure-period EEG data. After that, this data was
put to use in order to construct a more well-rounded training
set. This technique is carried out so that the uneven distribu-
tion of EEG data may be corrected. Kavitha et al. [24] pro-
posed a different framework for determining whether or not
someone is having an epileptic seizure. EEG signals gathered
from the University of Bonn in Germany and Senthil Mul-
tispecialty Hospital in India are used. By using the discrete
wavelet transform (DWT), these signals were segmented into
a total of six frequency sub bands, from which a total of
twelve statistical functions were produced. Kumar et al. [25]
introduced an intelligent system that incorporates the
variational mode decomposition (VMD) technique, the
Hilbert transform (HT) method, and the stacking neural
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network (NN) method. In order to detect epileptic episodes,
the NN approach is used, whereas the VMD and HT methods
are utilized in order to extract important properties from EEG
data. After the EEG signals have been decoded using the
VMD method into its intrinsic mode functions, the EEG data
is next subjected to the HT procedure in order to have features
extracted from them. The method known as stacked-NN is
used for the process of identifying epileptic seizures by using
extracted feature information. Epileptic seizure detection uti-
lizing EEG signals was a concept that was introduced by
Khan et al. [26]. After the raw EEG data have been prepro-
cessed, the time and frequency domain features of the EEG
are extracted from the signals using a variety of machine
learning algorithms, such as Logistic Regression, Decision
Tree, Support Vector Machines, and others, with the intention
of identifying generalized seizures in the corpus of data from
Temple University Hospital (TUH). This was done in order
to determine whether or not the data from TUH contained
any instances of epileptic activity. In an attempt to identify
epileptic seizures, Mohammad and Al-Ahmadi [27] made use
of a multi-focus dataset that was constructed on the basis of
EEG signals and brain MRI. After the features have been
extracted from both streams, feature fusion is used in order
to construct a feature vector. This feature vector is then given
as input into a support vector machine (SVM) for the purpose
of diagnosing epileptic seizures. The most important phases
in this study are the feature extraction utilizing two distinct
streams, namely, EEG by making use of wavelet transforma-
tion together with SVD-Entropy, and MRI by making use of
CNN; after the feature extraction from both streams, feature
fusion is carried out.

A hybrid model was presented by Varli and Yilmaz [28]
that makes use of the time sequence of EEG data in addition
to time-frequency-EEG data transformations. To transform
signals into EEG data, CWT and STFT techniques were
used. The results of the CWT and STFT approaches were
used in different processes to generate two distinct models.
An approach for determining the Largest Lyapunov Exponent
(LLE) was proposed by Brari and Belghith [29], and it was
based on the technique developed by A. Wolf. The LLE is a
useful instrument for doing analysis of chaotic signals. The
method that has been presented enables the examination of
noisy chaotic signals. They were successful in achieving a
less error rate in determination of LLE by utilizing the recom-
mended technique (PLLE), which was evaluated by applying
a chaotic signal that was created from the Logistic Map. This
allowed them to fulfil their goal of achieving a low error rate.
This was accomplished by using wide range of values for
the bifurcation parameter. The modified binary salp swarm
technique was suggested for use in the application of EEG
data categorization for the purpose of identifying epileptic
episodes by Ghazali et al. [30]. The diagnosis of epileptic
seizures might benefit from the use of this approach. The
Discrete Wavelet Transform (DWT), which is a part of the
multilevel technique has been suggested for division of EEG
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FIGURE 2. Proposed BESD-NET block diagram.

signals into sub band frequency levels. After that, for extrac-
tion of time-domain features, it uses a strategy that is based
on a population, known as the Modified Binary Swarm tech-
nique (MBSSA). A Feed-Forward Neural Network (FFNN) is
suggested and it implements the Levenberg-Marquardt (LM)
backpropagation classification model.

lll. PROPOSED METHODOLOGY

The BESD-Net approach has the potential for real-time
seizure detection, which is a crucial and challenging aspect
of seizure management. By leveraging the efficiency and
computational capabilities of deep learning models, the pro-
posed framework can process EEG data in real-time, enabling
timely intervention and improving patient safety. Figure 2
shows the proposed BESD-Net block diagram. The pro-
posed approach integrates multiple deep learning techniques,
including CCNN, ERF feature selection, and BLSTM net-
work, to form a comprehensive and synergistic framework
for seizure detection. By combining these techniques, the
model can leverage the strengths of each component, lead-
ing to a more accurate and robust seizure detection system.
Initially, the dataset preprocessing is performed to normalize
the dataset with uniform nature. Further, the noises presented
in EEG dataset are removed by analyzing the character-
istics. The preprocessing is further explained in detail in
the next part of this section. CNN architecture is used as
it effectively learns different feature representations from
the input data by grouping different convolution and pool-
ing layers. The utilization of a tailored CCNN specifically
for extracting disease-specific features from pre-processed
EEG data is a novel contribution. The model can learn and
capture intricate patterns and characteristics associated with
seizures, potentially leading to improved accuracy. Then a
machine learning-based exhaustive random forest feature
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selection is applied on the extracted CCNN features. The
ERF offers a comprehensive approach to select optimal
features that are highly correlated with disease-dependent
properties. This technique helps to identify the most rele-
vant and informative features, enhancing the efficiency and
effectiveness of the subsequent classification process. The
use of RNN-BLSTM architecture for seizure classification
is well-suited for sequential data analysis, as they can cap-
ture dependencies in both forward and backward directions
and also the discriminative power of the classifier can be
enhanced.

A. PREPROCESSING

The EEG is an example of a nonlinear and nonstationary sig-
nal that can be better analyzed and handled using variational
modal decomposition (VMD). It decomposes the original
signal, f(¢), in an adaptive manner into non-recursive modes
represented by u; where k is an integer value. In order to
take into consideration, the fact that the EEG signal is both
dynamic and nonstationary, the data from every channel is
categorized into epochs of four seconds using a moving win-
dow that does not overlap. This is done so that the results may
be more accurately interpreted. This window has the potential
to distinguish EEG data and record epilepsy activity effec-
tively, all while preserving the stationary nature of the signals.
The pre-processing stage of our work mostly consists of two
steps. The first thing that must be done is VMD [12], which
will help locate the primary low-frequency zone where the
seizures are occurring. Variational mode functions, or VMF
for short, are assigned to each mode and its corresponding
equation is written as follows:

up = Ay cos (¢r) (D
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In this case, the envelope of the VMFs is denoted by Ag,
and the phase is denoted by k. Each VMF is centered on
the central frequency, which can be determined by taking the
envelope of the VMFs derivative and computing the result.
The central frequency is the frequency at where the envelopes
of the VMFs intersect, which is denoted by the symbol, k.
When VMD is dealing with variational issues, it first applies
the Hilbert transform to each mode, uy, in order to produce

the unilateral spectrum (8 (1) + #) * uy (1), and then it adds

e ™ to each mode, uy, in order to change the center fre-
quency, wg. This process is repeated until the problem has
been solved. Finally, we have arrived at a limited variational
issue as a result of the application of the Gaussian smoothing
operation, as shown by Equation (2).

2

2 ]

min } [Zk 0 [(3 ) + #) Uj (t)] e Mt

{urc b {w

s.t. 2:21 up = f (1) )

f(t) represents the original signal, the aggregation of all
modes. The confined variational problem is changed into
an unconstrained variational problem when an improved
Lagrangian (L) is constructed by combining the limited vari-
ational problem with the data fidelity constraint factor, « and
the Lagrangian multiplier, A (¢).

L ({uk, {we}, 1)
=« Zk ) [(6 ) + %) * U (r)} e X

o= wol+(orm-3, ueo)
)

An algorithm known as the alternate direction technique
of multipliers is used in order to bring about the necessary
changes to the sequence, which is used to handle different
issues that occur during the decomposition process. In this
algorithm, the following constitutes an update to the mode,
ui, with center frequency, k.

f (@) = 2 iy (@ + A@)/2)

2

7t () = 4
e @ 1+ 20 (0 — wy)? @
2
O foooa) itZH (a))‘ dw
w = (5

2
fooo LAtZ'H (a))‘ dw
The time—frequency information of the EEG signal is
obtained by original signal decomposition f(¢) into modal
functions uy.

B. CCNN FEATURE EXTRACTION

In order to acquire the features from pre-processed EEG data,
the CCNN architecture had to be developed from the ground
up by adjusting the values of number of hyperparameters
that were included inside the design. The hyperparameters,

VOLUME 11, 2023

Layer-Set-1
Convl MaxPooling
Kernel | Stride ReLU | Pooling | Stride
Size size
3Ix3 1 2x2 1
5
Layer-Set-2
Conv2 MaxPooling
Kermel | Stride | ReLU | Pooling | Stride
Size size
3x3 | 2x2 1
Layer-Set-3
Densel Dense2 Softmax
Size Stride Size Stride
1x256 | - 1x2 -

| Extracted EEG features

FIGURE 3. CCNN feature extraction architecture.

included are count of convolutional layers and fully con-
nected layers, as well as the number of filters, stride, pooling
locations, and the number of units contained inside the fully
connected layers. In addition, the number of filters varied
depending on the size of the pooling sites. Because there is no
formal framework for the determination of optimal parame-
ters for a particular dataset, it was necessary to manually go
through a process of trial and error in order to choose the
hyperparameters. Figure 3 provides a visual representation
of the entire computational architecture of the proposed cus-
tomized CCNN system. The design includes a Softmax layer
on top of convolutional layers, activation layers, max-pooling
layers, and fully connected layers [2], [22]. Two convolution
layers are employed with application of 3 x 3 kernel, and
ReLU (Rectified Linear Unit) activation function and Max-
pooling with desired pooling size. Then two fully connected
layers are enclosed at the end of architecture with the final
layer using softmax function. These layers primary func-
tion is to improve the performance of the model, extracting
valuable features, lowering the dimensionality of the input
and adding nonlinearity. The spatial invariance property was
improved by using the convolutional layers in blocks, which
helped in the detection of essential characteristics in the input
EEG data. This was accomplished by using the layers to
create blocks. To train, the architecture of a CCNN relies
on either the spatial or sequential properties of the input.
The capacity for the network to learn is severely hindered
when the data that it receives as input is very limited. In the
research that has been done on this topic, there are reports
of potential solutions to this issue. On the other hand, the
study that was offered made use of an Adam optimizer as
an adaptive learning-rate strategy to deal with sparse input
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data. Although RMSprop, Adadelta, and Adam are all com-
parable algorithms, the idea for choosing “Adam” was that
it performs well at the end of the optimization process when
the gradients get sparser. This was the reasoning behind the
adoption of “Adam.”

The first layer receives input as EEG data which is prepro-
cessed and then it reduces the size of the EEG data by passing
it through several convolutional and max pooling layers. The
fully connected layer receives the final feature vector, after its
journey through the convolutional layers with filter applica-
tion, max-pooling operation and ReLU activation functions.
This vector is then used as an input into the softmax layer for
predicting the output class.

1) CONVOLUTIONAL LAYER

The primary responsibility of the convolutional layer is to pull
out the useful features by locating resident networks among
the data samples that are sent down from the layer below it,
which is presented in Equation (6).

Cou = D (ko + Wixx) + B (6)

The convolutional operation was carried out between the
pre-processed EEG input data (I ), and the weight-based
kernel (wgy), which in turn resulted in the output feature
map C,y. The W, B of the convolutional layer operation
are referred to as filter weights and filter bias respectively.
In the convolutional layer, the feature vector is created by
convolving the filter across the EEG data pixels and then
adding the pixels together. This is done to get the feature
vector. It is important to note that the resulting feature maps
are not consistent across the various convolutional kernels.
The ultimate feature vector that was created is then sent
into the activation layer, which is known as Rectified Linear
Unit (ReL.U).

2) ReLU ACTIVATION LAYER

Through the execution of an elementwise operation as pre-
sented in Equation (7), the ReLU brings all the nonnegative
values that were received from the convolutional layer to a
value of zero. By injecting nonlinearity, this layer ensures
that the feature maps that were produced by the convolutional
layer are usable. It is usual practice to utilize the activation
layer, also known as the RelLU, because of its superior com-
puting speed compared to that of other activation functions,
such as the sigmoid and the tanh.

o (I) = max (0, Cour) N

3) MAX-POOLING LAYER

At this stage, the value of each kernel that is considered to
be the greatest possible value is passed on to the succeeding
layer. The following is a list of the major duties that are
carried out in the various max-pooling layers: (1) taking
smaller samples of the data that was sent down from the layer
before it, in order to reduce the overall dimensionality of the
data; and (2) reducing the total number of parameters in the
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model, which results in reduction in the amount of computing
time required and an improvement in the generalizability of
the model.

4) FULLY CONNECTED LAYER

It is possible to think of the fully connected layer as an
old-fashioned neural network that is responsible for logi-
cal reasoning. Using a complete convolution operation, the
completely linked layer in the proposed system is respon-
sible for converting the three-dimensional matrix into a
one-dimensional vector after receiving it from the levels that
came before it. This matrix was collected from the layers
that came before it. The following is an expression of the
mathematical procedure that underlies the completely linked
layer.

Vo1 = W xV,x V% Vg (8)

In this case, V; and V,, stand for the input and output vector
sizes, respectively, whereas Z denotes the output of the layer
that is completely connected.

5) SOFTMAX LAYER

SoftMax layer is positioned as the last layer in CCNN con-
struction, and its purpose is to compute the normalized class
probabilities, P(yi = nixi; W) for each period n', where there
is a total of n classes. Equation (9) is utilized to do this
calculation.

Yo=1hw
( P =2 w
Yy =n'lxh W) = )

yi = n|xi; w

erTx[

1 eW2Txi

= — ) )
21 M xi :
eWnTxi

Here, m refers to the total number of data samples, and
i might range anywhere from 1 to m. The symbol W stands
for the weights, while the input that goes into the classifier
is indicated by the notation Wi ¥ The input for Equation
(9) is a vector containing arbitrary real-valued scores, while
the Equation’s output is a vector containing values that range
from O to 1.

C. ERF FEATURE SELECTION

Figure 4 shows the ERF feature selection flow chart, which
provides optimal performance with low complexity as com-
pared to other methods. If we take a closer look at one
individual tree in the forest, we can define the ith partition
of samples (M;) and features (V;) using the notation , P; €
RMixNi - p,is chosen randomly from the data that were orig-
inally collected (X € RM*Ni) via the process of producing
random samples with replacement. At each node, the features
that are part of the subset N; are evaluated to see whether
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FIGURE 4. ERF Feature selection flow chart.

or not they are suitable candidates for splitting the available
samples, M;. The Gini Index, often known as the GI, is used in
order to locate the optimal dividing feature and cut-off point.
If the sample’s values are lower than the cut-off point for the
specified feature, then it will be sent to the left node (v ), but
if they are higher, then they will be routed to the right node
(v,). Following a series of splitting operations, the samples
have been transferred from the root node (vg) to the terminal
nodes, also known as terminal leaves, which are responsible
for providing the sample predictions. The ensemble predic-
tion (Y e RMixN provided by a forest is derived as a
mixture of the outcomes of the individual trees; traditionally,
the majority vote method is used for classification problems,
while the average is used for regression issues. The feature
selection-based classification problem is defined as follows:

A A

Y = mode,— ... NyeesYn (10)

The feature selection-based regression problem is defined as
follows:

N“‘(’fS 3

. 1
Y, ¥, (11)

l' =
Nirees n=1
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Here, Nyees is the complete count of all trees that were
considered for inclusion in the ERF. When trying to optimize
an EREF, it is crucial to pay special attention to two param-
eters: the number of features that will be evaluated as split
candidates (also referred to as the size of the N; subset), and
the number of trees that will be deployed in the ensemble.
Both of these factors are essential in order to achieve optimal
performance. Both factors are vital in determining how well
an ERF will perform, while doing the classification. The
former is often adjusted so that it equals sqrt(n), and while
performing regression, it is typically adjusted so that it equals
N/3. Where N refers to the total number of characteristics
that X has. Because increasing the number of trees does
not always lead to a gain in performance, the latter is often
set to be comparable to a few hundred trees and instead
merely slow down the processing time. Consequently, this
setting is usually considered to be appropriate. K-fold cross-
validation is one of the additional criteria that is used in the
process of determining the values that should be used for
these parameters.

The significance of each characteristic is determined by
ERF, which is used to determine the characteristics that are
most important to a certain problem, as well as to provide a
technique for selecting the features to employ. The signifi-
cance of characteristic x; is given as:

Zves G (X;,v) (12)

Here, S is the set of nodes where X; is used to split the
samples, and G(x;, v) is so-called the RF gain of x;. Therefore,
gain is determined by the measurements (impure) that are
computed after the samples have been divided at each node.
There were a few different impurity criteria that were used
to partition the data and, as a result, to assess the relevance
of the feature. For the purpose of improving the selection
of attributes when they are correlated, measures such as
permutation significance or alternative implementations of
ERF such as Boruta or subsample without replacement were
created. This is due to the fact that regularization serves as the
cornerstone of ERF. The Gl is a straightforward statistic that
can be computed in a short amount of time. It reduces the
risk of incorrect classification by using the formula, GI =
1— Z?;l (pl-)z, where 7, is the total number of classes and p;
is the chance of belonging to class i. Following is an equation
that may be used to get the value of the function G.

G (xj, v) =Gl (xj, v) — wrGI (xj, VR) —wr Gl (xj, vy (13)

Importance; =
tree

Here, wg and w; represent the percentages of the total
samples that can be found in each node. In regression, the
split principles are often the measurements taken from the
Residual Sum Squares (RSS): RSS = Zf\il (yi — )9,-)2. Gis
acquired by doing the following:

G (xj, v) = RSS(RSSy + RSSg) (14)

The RSS in the right node is denoted by Sg, while the RSS
in the left node is denoted by RSS;. The ERF generates
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FIGURE 5. Architecture of LSTM in the proposed method.

feature subsets of high quality, and it results in a decrease in
the number of features used for classification and regression
tasks. Given that F' is the subset of features that has been
picked (which was previously empty), and x; is the value of
each feature, the gain of the ERF is computed as:

fjeF

Gerr (4:7) z{ ifj¢F

Here, G is the selected features, F is the subset of features that
were selected to split the samples in the node that came before
it, and the range [0, 1] is a penalty factor for the features that
were not selected in the nodes that came before them. It is
essential to bear in mind that the advantage of a feature will
be diminished if it is selected, so the feature should have a
high priority value in order to be selected. On the other hand,
if a feature has already been selected, the gain of that feature
will be the same as the gain of the ERF that is set as the
default. The features whose Gggr values are equal to zero
are not included in the group that is selected. The features
that are chosen by ERF are the ones that do not include any
redundant information. This is because the irrelevant features
have a very low important value.

G(xj,v)

AG(xj, v) (15)

D. RNN-BLSTM CLASSIFICATION

The extracted features from ERF are inputted into the
RNN-BLSTM layer for classification. RNNs have the con-
cept of memory that helps them store the states or information
of previous inputs to generate the next output of the sequence.
LSTM networks are a variant of RNN that handles vanishing
and exploding gradient problem of RNN by introducing new
gates, such as input and forget gates, which account for a
better control over the gradient flow [7]. In addition, this
sort of network is better than other types when it comes
to maintaining long-range connections since it comprehends
how values at the beginning and end of a series are connected.
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Figure 5 shows the architecture of LSTM cell. It has three
different types of gates, which are as follows: The forget gate
is responsible for controlling the amount of data that should
move to another memory cell from its previous one. The input
gate of the memory cell, also known as the update input is
responsible for deciding whether the cell will be updated or
not. In addition to this, it controls the amount of information
that a potential new memory cell may transmit to the one that
is now being used. The output gate decides the transmission
of most recent cell output using sigmoid activation function
and the final state is obtained using tanh function. The value
that is stored in the subsequent concealed state is decided by
the output gate.

This work used bidirectional LSTM (BLSTM), a spe-
cial RNN that models each sequence in both the forward
and backward directions, whereas in normal LSTM the data
flows in forward direction only. BLSTM effectively deals
with long-term dependencies of time series data, since each
token encoding contains context information from the past
and the future. Figure 6 shows the proposed architecture
of RNN-BLSTM. The BLSTM network has been shown to
be trustworthy and efficient, for sequences having extensive
dependencies. This network has input flow in both directions
to preserve the future and the past information. This has
been demonstrated by several studies. Because the gathered
EEG signals are organized in a time-sequence based form,
the current state is greatly impacted by the settings that the
subject was exposed to in the past. When it comes to solving
this issue, the BLSTM model is the most effective instrument
that anybody has at their disposal. Along with the BLSTM
layer, two dropout layers were deployed between the BLSTM
layers to combat the issue of overfitting. These dropout layers
were placed between each BLSTM layer. Using these dropout
layers, RNN-BLSTM can circumvent the issue of overfitting.
The main aim of involving dropout layer is to reduce the error
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of generalization, which is being sought in combination with
the rise in the number of layers that are included inside neural
networks. The full connected layer follows the BLSTM layer,
which uses a Softmax function that detects the presence of
epileptic seizure.

IV. RESULTS AND DISCUSION

This part presents a comprehensive analysis of the findings,
which are implemented using python software simulation.
The Epileptic Seizure related dataset is used to test the per-
formance of the proposed BESD-Net based on deep learning
techniques.

A. DATASET

The CHB-MIT Scalp EEG Database is a collection of data
that is often used in the investigation of epilepsy as well as the
diagnosis of brain seizures. The Children’s Hospital Boston
(CHB) and the Massachusetts Institute of Technology (MIT)
collaborated in its creation at various points along the process.
The recordings were made on the scalps of children who were
diagnosed with epilepsy and for extended periods of time.
The most important aspects and features of the CHB-MIT
Scalp EEG Database:

« Patients: Recordings from 23 juvenile epilepsy patients
with the condition are included in the collection. Each
patient’s data is identified by a unique code, such as
chbO01, chb02, etc.

o Recording Duration: The recordings span varying dura-
tions for each patient, typically ranging from several
hours to a few days. Some patients have multiple record-
ings over different periods.

« Seizure Annotations: Each recording is annotated con-
sidering periods of seizure onset and seizure offset,
as fine as additional seizure-related information, such as
seizure type and clinical observations. These annotations
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are crucial for training and evaluating seizure detection
algorithms.

« Non-Seizure Annotations: Alongside the seizure data,
the dataset also includes segments of interictal (non-
seizure) EEG signals. These segments are useful for
training algorithms to distinguish between seizure and
non-seizure patterns.

« EEG Channels and Sampling Rate: The EEG recordings
in the dataset are obtained from multiple scalp elec-
trodes, typically ranging from 19 to 26 channels. The
sampler rate of the EEG signals is 256 Hz.

o Data Format: The information is offered in what is
known as the European Data Format (EDF), which is a
standardized file format for the storage of multichannel
biological signals. Each patient’s data is organized into
individual EDF files.

It has been determined that the CHB-MIT Scalp EEG
Database is widely utilized for developing and evaluating
seizure detection algorithms, studying seizure patterns, and
exploring various signal processing and machine learning
techniques for epilepsy research.

B. ABLATION STUDY

Ablation study, in the context of machine learning and data
analysis, refers to a systematic process of evaluating the con-
tribution or impact of individual components or features of a
model or system. It involves selectively removing or disabling
certain components or features to assess their effect on the
overall performance or behavior of the system. The term
““ablation” in this context is borrowed from medical science,
where it refers to the removal or destruction of a body part or
tissue, often performed in a controlled experimental setting
to study its function or impact on the organism. In the field
of machine learning, an ablation study is typically conducted
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to understand the importance or effectiveness of different
model components, feature sets, or algorithms. By selec-
tively disabling or removing specific elements, researchers
can observe how the system’s performance changes and gain
insights into the contribution of each component. Ablation
studies can help researchers identify critical components that
significantly affect the system’s performance and determine
which parts can be improved or eliminated. They also provide
a deeper understanding of the inner workings and dependen-
cies within the system, aiding in the development of more
efficient and effective models or algorithms. Studies of abla-
tions are used often in different fields such as natural language
processing, computer vision and bioinformatics, to analyze
the impact of different factors and drive improvements in
model design and architecture.

Table 1 shows the ablation study of proposed BESD-Net.
Here, the proposed BESD-Net resulted in improved perfor-
mance as compared to only CCNN, only RNN-LSTM, and
BESD-Net without ERF feature selection properties. Figure 7
shows the graphical representation of ablation study of pro-
posed BESD-Net. The Proposed BESD-Net outperforms
the Only CCNN method with a percentage improvement
of approximately 4.31% in precision, 3.63% in sensitivity,
4.95% in F1-Score, 4.26% in accuracy. However, there is no
improvement in specificity when compared to Only CCNN.
Compared to the Only RNN-LSTM approach, the Proposed
BESD-Net shows remarkable advancements, achieving a
substantial percentage improvement of 272.58% in precision,
95.08% in sensitivity, 183.74% in F1-Score, and 86.33%
in accuracy. The Proposed BESD-Net significantly outper-
forms Only RNN-LSTM in all metrics. When compared to
BESD-Net without ERF, the Proposed BESD-Net demon-
strates a modest percentage improvement of approximately
2.44% in precision, 2.85% in sensitivity, 2.79% in F1-Score,
2.70% in accuracy, and 6.13% in specificity. The Proposed
BESD-Net achieves slightly higher values in all these metrics,
showcasing its enhanced performance.

TABLE 1. Ablation study of proposed BESD-Net.

Model Only Only | BESD- | Proposed
CCNN | RNN- Net BESD-
LSTM | without Net
ERF
Precision 94.37 | 26.33 96.04 98.36
Sensitivity 94.3 50 94.85 97.54
F1-Score 93.99 | 34.49 95.24 97.91
Accuracy 94 52.66 95.33 98
Specificity 100 62.5 89.705 95.08
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FIGURE 7. Ablation study of proposed BESD-Net.

TABLE 2. Feature extraction performance of proposed CCNN.

Model DCSAE | ITLBO | FBSE- | Proposed
[11] [13] EWT CCNN
[16]
Precision 90.92 87.13 92.17 94.37
Sensitivity | 87.64 88.43 89.75 943
F1-Score 92.08 85.92 91.32 93.99
Accuracy 89.39 92.85 88.66 94
Specificity | 92.96 90.21 86.74 100
105
100
95
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85
80 I
75
Q e A
S §\ o9 oo@ '0"\\&
E & W
m DCSAE [11] m ITLBO [13]

FBSE-EWT [16] ™ Proposed CCNN

FIGURE 8. Feature extraction performance of proposed CCNN.

C. SIMULATION RESULTS

Table 2 shows the feature extraction presentation of pro-
posed CCNN with existing DCSAE [11], ITLBO [13],
and FBSE-EWT [16] methods. Figure 8 shows the graph-
ical representation of feature extraction performance of
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TABLE 3. Feature extraction with classification performance of proposed
BESD-Net.

Model ResNet | TQWT | DCVAE | Proposed
[17] [19] [22] BESD-
Net
without
ERF
Precision 92.18 89.23 91.62 96.04
Sensitivity | 91.84 88.96 92.11 94.85
F1-Score 91.99 90.12 90.95 95.24
Accuracy | 93.72 89.91 92.44 95.33
Specificity | 88.65 87.92 88.04 89.705

TABLE 4. Performance comparison of proposed BESD-Net with existing
methods.

Model GAN | SVM- | MBSSA | Proposed
[23] CNN [30] BESD-Net
[27]
Precision | 88.26 | 90.12 89.73 98.36
Sensitivity | 91.05 | 88.96 90.34 97.54
F1-Score | 89.57 | 92.01 88.86 97.91
Accuracy | 92.34 | 8991 91.12 98
Specificity | 91.84 | 87.92 90.65 95.08

proposed CCNN. Here, the traditional techniques were not
successful in learning the precise characteristics from the
EEG data. Further, the proposed CCNN method achieves a
3.4% improvement in precision, 0.9% improvement in sen-
sitivity, 1.1% improvement in F1-score, 4.61% improvement
in accuracy, and 7.36% improvement in specificity compared
to DCSAE [11]. The proposed CCNN method outperforms
ITLBO [13] with a 7.17% higher precision, 5.87% higher sen-
sitivity, 0.07% higher F1-score, 1.15% increase in accuracy,
and 9.79% higher specificity. Compared to FBSE-EWT [16],
the proposed CCNN method demonstrates a 2.2% improve-
ment in precision, 5.55% improvement in sensitivity, 2.67%
improvement in Fl-score, 5.34% improvement in accuracy,
and 13.26% improvement in specificity.

Table 3 shows the feature extraction with classification
performance of proposed BESD-Net. Here, the proposed
BESD-Net resulted in superior performance as compared
to ResNet [17], TQWT [19], and DCVAE [22]. Figure 10
shows the graphical representation of feature extraction with
classification performance of proposed BESD-Net. The pro-
posed BESD-Net without ERF achieved an improvement
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FIGURE 10. Performance comparison of proposed BESD-Net with existing
methods.

of 3.86% in precision, 3.42% in sensitivity, 3.25% in
F1-score, 1.61% in accuracy, and 1.02% in specificity com-
pared to ResNet [17]. The proposed BESD-Net without ERF
outperformed TQWT [19] with improvements of 6.81% in
precision, 6.48% in sensitivity, 5.20% in F1-score, 5.58% in
accuracy and 1.82% in specificity. The proposed BESD-Net
without ERF achieved improvements of 4.53% in precision,
1.59% in sensitivity, 4.34% in F1-score, 2.89% in accuracy,
and 1.03% in specificity compared to DCVAE [22].

Table 4 compares the performance of proposed BESD-Net
with existing methods. Here, the conventional methods
failed to analyze the brain seizure, where the proposed
BESD-Net method accurately classifies as compared to
existing GAN [23], SVM-CNN [27], and MBSSA [30].
Figure 10 shows the graphical representation of performance
comparison of proposed BESD-Net with existing methods.
The proposed BESD-Net achieved significant improvements
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FIGURE 11. Confusion matrix performance of ablation study. (a) CCNN, (b) RNN-LSTM, (c) BESD-Net without ERF, (d) BESD-Net.

of 10.10% in precision, 2.09% in sensitivity, 8.35% in
Fl-score, 5.66% in accuracy, and 3.24% in specificity com-
pared to GAN [23]. The proposed BESD-Net outperformed
SVM-CNN [27] with improvements of 8.24% in precision,
0.16% in sensitivity, 9.90% in F1-score, 8.09% in accuracy
and 7.16% in specificity. The proposed BESD-Net achieved
impressive improvements of 8.63% in precision, 9.05% in
F1-score, 6.88% in accuracy, and 4.43% in specificity com-
pared to MBSSA [30].

D. CONFUSION MATRIX PERFORMANCE OF ABLATION
STUDY

Figure 11 represents the confusion matrix performance of
an ablation study conducted on different models. Table 5
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shows the confusion matrix TP, TN, FP, and FN values of
ablation study. The ablation study aims to evaluate the impact
of removing specific components or functionalities from the
models on their overall performance. A table that helps to
visualize the performance of a classification model is called
a confusion matrix. This table displays the counts of true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) predictions. The examples that belong
to a predicted class are represented across the rows of
the matrix, whereas the instances that belong to an actual
class are represented across the columns. The numbers of
TP, TN, FP, and FN represent the number of cases for
each class that were properly predicted as well as wrongly
predicted.
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FIGURE 12. Accuracy and loss graph of ablation study.

TABLE 5. Confusion matrix values of ablation study.

Method TP | FP | FN | TN
CCNN 44 | 209 | 240 | 17
RNN-LSTM 31 | 214 | 215 | 50

BESD-Net without ERF | 21 | 223 | 222 | 44

BESD-Net 21 1226 | 257 | 6

Figure 12 represents the accuracy and loss graph for an
ablation study conducted over 14 epochs. The graph illus-
trates the changes in accuracy and loss values over the course
of training or evaluation. A performance indicator known as
accuracy counts how many occurrences have been appropri-
ately labeled as their respective categories. Typically, it is
expressed as a percentage of the total. The accuracy values
are shown on the y-axis of the graph, while the number of
epochs is represented along the x-axis of the graph. The
inaccuracy or mismatch that occurs between the expected
outputs of the model and the actual labels is denoted by the
term ‘“‘loss.” A loss function, such as mean squared error
(MSE) or cross-entropy loss, is often used in order to do
the calculation. When the loss value is smaller, the predic-
tions made by the model are more in line with the actual
labels. On the graph, the loss values are depicted along the
y-axis, while the number of epochs is represented along the
X-axis.

One whole iteration of training the model by applying it to
the entirety of the training dataset is referred to as an epoch.
During each epoch, the model makes predictions, calculates
the loss, and adjusts its parameters through the optimization
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algorithm (e.g., gradient descent) to improve its performance.
The x-axis in the graph represents the number of epochs,
indicating the progression of training or evaluation over time.
Here, the proposed BESD-Net has improved accuracy and
reduced loss over other methods.

V. CONCLUSION

This paper proposes a hybrid method utilizing the signal
processing methodologies and a fusion of deep learning tech-
niques. A CCNN based on deep learning was employed to
extract disease-specific features from the preprocessed EEG
dataset. Then, an ERF feature selection technique, based on
machine learning, was applied to identify optimal features
highly correlated with disease-dependent properties from the
CCNN features. Finally, a RNN utilizing BLSTM was uti-
lized for enhanced classification of brain seizures based on
the selected ERF features. The conclusions drawn from the
simulation showed that the suggested BESD-Net achieved
improved performance compared to existing methods. It has
achieved a superior classification accuracy of 95%. The
BESD-Net architecture will be further refined in the future as
part of the project’s scope. This will include the incorporation
of advanced deep learning methods and the investigation of
the possibilities of transfer learning to improve the general-
ization capabilities of the model. In addition, increasing the
dataset to include a greater variety of patient profiles and
taking into consideration the possibility of real-time imple-
mentation are two ways in which the suggested method’s
practicability and usefulness in clinical settings may be
improved.
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