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ABSTRACT Mechanical Scanning Sonars (MSS) are popular devices for Unmanned Underwater Vehicles
(UUV), i.e., Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUV), as they
function under low visibility conditions and over extended ranges. They are comparatively low-cost and easy
to integrate. But they require motion-compensation due to the low updates rates caused by the mechanical
scanning and the slow speed of sound. We present here a new form of scan formation for MSS where the
data from single beams is embedded into a pose-graph. The rendering of scans is not as usual based on
only core navigation sensors, but it can improve in the spirit of a synthetic aperture. To this end, online
Simultaneous Localization and Mapping (SLAM) is used to form scans from the single beams. These can
be optimized and improved scans in turn lead to improved registration results in subsequent steps. This
Synthetic Scan Formation (SSF) leads to better mapping results than state-of-the-art SLAM with MSS. The
method is validatedwith several real-world experiments. First, different trajectories with precise ground-truth
in a pool with a gantry set-up are used. Second, results from field trials in a WW-II submarine bunker are
presented. It is shown that there are clear quantitative and qualitative improvements, and that SSF can be
used in real-time for mapping during a mission.

INDEX TERMS Underwater mapping, marine robotics, sonar, synthetic aperture (SA), simultaneous
localization and mapping (SLAM), registration, digital humanities, cultural heritage.

I. INTRODUCTION
Sonar [1] is an essential tool for underwater perception
as it works in low visibility conditions and over extended
ranges. But it also has its challenges due to its inherent
limitations like the slow speed of sound, limited focus, or high
noise levels [2], especially in comparison to light or RF-
signals. The family of sonar sensors consists of multiple
groups of device types that significantly differ in their
functioning principles, complexity, and intended application
scenarios [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xuebo Zhang .

One of the most simple types of sonar is the mechanical
scanning sonar (MSS), also known as scanning sonar (SS)
or mechanical scanning imaging sonar (MSIS). An MSS
consists of a transducer to form a single beam and to measure
the amplitudes of the returns along the time axis, i.e., the
intensity and time-of-flight of each return. As the name
suggests, the transducer and hence the beam is mechanically
rotated, which allows to form a polar image by stepping
through a sequence of angles. MSS have the advantage that
they are low cost and they are easy to integrate due to
their small size and low power-consumption. The significant
disadvantage is the time per scan, namely in the range of
multiple (tens of) seconds depending on factors like the range
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and the field of view. The BlueRobotics Ping360 [4], e.g.,
needs 35 sec for a 360o scan with 50 m range.
The polar images, respectively the ranges or the geometric

features extracted from them, can be combined by registration
and additional Simultaneous Localization and Mapping
(SLAM) into 2D maps. But when an MSS is mounted on an
Unmanned Underwater Vehicle (UUV), there is the need for
motion compensation to avoid distorted scans. The state of
the art is to generate the motion-compensated scans in fixed
time-windows, e.g., whenever the sensor has completed a full
rotation between minimum and maximum angles, using the
vehicle’s navigation [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18].

Note that underwater localization is very challenging as
there is, among others, no access to Global Navigation
Satellite Systems (GNSS) due to the strong attenuation of
RF-signals in water, and that much less reliable alternatives
than for land or aerial robots must be used [19], [20], [21].
Motion compensation based on navigation data is hence
error-prone.

Here, we propose to generate a node in a pose-graph for
each pose where a single scan-line along a beam is generated.
The single scan-lines do not contain enough information to
be used for registration; among others, there is hardly any
overlap between them. Therefore, scan formation, i.e., the
combination of multiple scan-lines into one image is still
needed. But this can at least partially be based on SLAM
in our approach, which leads to better localization estimates,
and hence better input to the front-end, than just navigation
alone. This Synthetic Scan Formation (SSF) hence produces
scans that are not rigid, but which improve in their quality
over time. The idea is in principle also applicable to other
types of sonar like sidescan sonar. The source code of our
method is freely available at https://github.com/constructor-
robotics/scan_formation_underwater_mapping.

The rest of this article is structured as follows. Synthetic
scan formation is formally introduced in Sec.II. A discussion
including a presentation of its relation to Synthetic Aperture
Sonar (SAS) is provided in Sec.III. Information on the
methods used in the implementation is given in Sec.IV; this
includes a presentation of the vehicle and its sensors that are
used in all experiments and field trials. In Sec.V, the settings
for the experiments are described. Results from a first set
of real-world experiments are presented in Sec.VI, where a
gantry set-up in a pool is used for validation with precise
ground-truth data. In Sec.VII, results from two field trials are
presented, which are conducted in different parts of a WW-II
bunker for the production of submarines; they demonstrate
the usefulness of synthetic scan formation in a concrete use-
case, namely the digitization of cultural heritage. Sec.VIII
concludes the article.

II. ADAPTIVE FORMATION OF SYNTHETIC SCANS
To formalize Synthetic Scan Formation (SSF), we use the
following notations. A scan-line slt is a vector I [itof ] of
the amplitudes of the returns of a single ping, i.e., the

FIGURE 1. A Mechanical Scanning Sonar (MSS) has a beam that provides
a 1D image or scan-line slt of backscatter intensities ordered by time of
flight (tof), i.e., range [A]. The MSS mechanically rotates the beam, which
leads to a scan sc(t) in form of a polar image if the sensor pose p(t + i ),
here 0 ≤ i < 7, is fixed during that time [B].

intensities measured by a single beam at time t . The index itof
corresponds to the time-of-flight of each return, i.e., given the
velocity of sound in water, it determines the distance d to the
point where the back-scatter originated.

The sonar may have a minimum sensing distance dmin. The
maximum range dmax , which depends among others on the
power of the ping, is usually a parameter that can be selected.
A MSS mechanically rotates the beam, i.e., the scan-line
sl(γ ) from a minimum angle γmin to a maximum angle γmax
with a step-width 1γ . The three parameters γmin, γmax , 1γ
can typically be set by the user.

A scan sc(t) is simply a collection of k consecutive scan-
lines slt+i recorded at time t+iwith 0 ≤ i < k . Given a sonar
at a fixed location, a scan sc(t) forms a polar image I [γ ][d]
of the sonar’s surroundings.

Fig.1 illustrates this with a very simple example with
γmin = −45o, γmax = +45o, and 1γ = 15o, i.e., the
sensor has 7 scan-lines slt in its field of view through which
it is mechanically stepping at the time-steps t to t + 6. The
symbol ⇌ is used here to denote an association between two
entities. For example, sc(t) ⇌ p(t) symbolizes the pose p(t)
associated with the scan sc(t).

Motion-compensation has to be used to avoid distortions
on a moving platform (Fig.2). To form a scan, the 2D pose
ps(t) = [xs(t), ys(t), φs(t)]T of the sensor at each time-step t
needs to be taken into account, which depends in a fixed and

FIGURE 2. On a moving platform [A], the scan-lines slt+i can not just be
combined into a polar image. But given pose-estimates p(t + i ) [B] for
each slt+i , e.g., from navigation (Alg.1), they can be projected (Alg.2) to
form a scan sc(t) [C].
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Algorithm 1 local Navigation
input : DVL, INS, . . . (core navigation sensors)
const. : size k of the time window
output: pose-estimates p(t), p(t + 1), . . . , p(t + k)

with related uncertainties
C(t),C(t + 1), . . . ,C(t + k)

any navigation filter; here EKF

Algorithm 2 scan Formation
input : scan-lines sl(t), sl(t + 1), . . . , sl(t + k) and

their pose-estimates
p(t), p(t + 1), . . . , p(t + k)

const. : size k of the time window; maximum index
imax of a scan-line; range difference 1d
between two consecutive indexes i and
i+ 1 in a scan-line

output: scan sc(t) and its pose-estimate p(t)

[xo, yo, φo]T = p(t)
for j ∈ {0, . . . , k} do

[x, y, φ]T = p(t + j)
I ′1D[.] = sl(t + j)
for i ∈ {0, . . . , imax} do

xpixel = xo + cos(φo + φ) · (i ·1d)
ypixel = yo + sin(φo + φ) · (i ·1d)
I2D[xpixel][ypixel] = I ′1D[i]

sc(t) = I2D
return sc(t) ⇌ p(t)

known way on the 2D vehicle pose p(t) = [x(t), y(t), φ(t)]T .
For the sake of simplicity, we just refer to the vehicle pose
p(t) in the following.

Algorithm 3 scan Registration
input : two scans sc1() and sc2()
const. : -
output: spatial transformation 1p between the scans,

i.e., p2(t) = p1(t) ⊕1p, with its uncertainty
C1p()

any 2D registration algorithm; here FMS

As discussed in the introduction, the state-of-the-art is to
use the pose-estimates p(t + i) from the core navigation with

Algorithm 4 SLAM Back-End
input : pose-graph G
const. : -
output: optimized pose-graph G′

any graph SLAM optimizer; here iSAM

dead-reckoning (Alg.1) to form a scan sc(t) (Alg.2). More
precisely, a local trajectory estimation from navigation is
used, i.e., a short sequence of estimated rigid transformations
1p(t + i) = [1x(t + i),1y(t + i),1φ(t + i)]T with p(t + i+
1) = p(t + i) ⊕1p(t + i).
This is a reasonable approach as local navigation, i.e.,

motion estimation in rather short time-periods, tends to be
reasonably accurate. The navigation filter also provides initial
uncertainty estimates C(t + i), which can be used to generate
an uncertainty for the scan. So, the result is a rigid scan sc(t)
with an associated pose p(t): sc(t) ⇌ p(t).

For graph-based Simultaneous Localization and Mapping
(SLAM) according to the state of the art, each scan sc(t)
and its pose p(t) is associated with a vertex vi, and an
edge (vi, vi+1) representing the motion estimate between the
(relative) poses is added (Fig.3, [A]). This motion estimate
forms a constraint with an uncertainty that can be taken
from the navigation filter. Registration of scan pairs (Alg.3)
is essential to generate additional constraints, i.e., edges,
including loop-closures. Scans are therefore formed every
h time-steps with h < k to ensure that there is some
overlap between sequential scans. The pose-graph can then
be optimized with any back-end (Alg.4). The different steps
are summarized in Fig.4.

For SSF, we enter each scan-line slt into a node vi together
with its initial pose estimate p(t) and the estimated motions
between them as an edge (vi, vi+1) (Fig.3, [B]). At first
glance, there is no benefit in this as the individual scan-lines
do not contain enough information for registration and a scan
formation still needs to be used. The major advantage is that
the pose associated with each sli can get optimized by online
SLAM, i.e., the quality of scans formed from them improves.

This is illustrated in more detail in Fig.5. The SSF proceeds
in rounds n. The important aspect is that the scan scn1 (t)
in round n1 can differ in appearance from the ‘‘same’’ scan
scn2 (t) in round n2 as the pose-estimates of the scan-lines that
form it can change.

SSF is initialized for n = 0 from local navigation (Fig.5,
[A]), i.e., the initial pose- and uncertainty-estimates p(0)i ,C

(0)
i

are provided from Alg.1 just like in the state of the art. Based
on this, a scan sc(0)i can be formed with Alg.2 for the first
time. Overlapping scan pairs sc(0)i and sc(0)i+h can be registered
(Fig.5, [B]), and the resulting graph is optimized (Fig.5, [C]).

But unlike the state of the art, SSF does not stop here. The
optimized pose-estimates p(1)i can be used for a new formation
of scans (Fig.5, [A]), which aremore focused due to improved
localizations. This in turn leads to improved registration
results (Fig.5, [B]), i.e., further improvements of the (relative)
pose-estimates and their related uncertainties p(1)i ,C

(1)
i ,

which again can be used for optimization (Fig.5, [C]).
This concept can be applied in an offline as well as in

an online fashion. Offline, i.e., when processing recorded
data after a mission, rounds can simply be iterated until
the motion estimates from registration do not (substantially)
change anymore. Online, i.e., during a mission, a new
round can, e.g., be triggered when sufficiently many new
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FIGURE 3. The state of the art is to use complete, rigid scans sc(t) and their estimated pose p(t) [A]. For synthetic scan formation, a single
node vi is linked to an individual scan-line slt and its estimated pose p(t) [B], which can change over time using optimization, which
allows in turn to form new, more focused scans (Fig.5).

FIGURE 4. The state of the art uses rigid scans from motion
compensation with local navigation [A], which get registered to generate
additional constraints [B] and then optimized in a SLAM back-end [C].

scan-lines have been gathered to form an initial new scan with
motion-compensation from navigation.

III. MOTIVATION AND DISCUSSION
The trade-off in SSF is an increased computational effort.
Before a scan can be used for registration, it needs to be newly
rendered with scan-formation when one of the pose-estimates
of its scan-lines has been optimized. But this is also the
strong point of SSF. It operates so to say on a level below
conventional SLAM by optimizing the data that serves as
input for the approaches according to the state of the art [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18]. As demonstrated in the experiments and field trials, this
leads to improved results and the increase in time isminor; the
synthetic scan formation is even usable for real-time mapping
during a mission.

At first glance, SSF bears some relation to non-rigid
registration, respectively non-rigid SLAM. This has, up to
our knowledge, not been investigated for MSS before. More
importantly, our method is very light-weight. It does not
require regularization nor assumptions about the smoothness

or distribution of the underlying data like popular non-rigid
methods [22], [23], [24], [25].

The inspiration for SSF is derived from Synthetic Aperture
Sonar (SAS), which is a widely researched principle for
generating sonar data with an improved spatial resolution.
The core idea of SAS is to obtain a sequence of sonar
measurements by moving the sensor, which are combined
to achieve enhanced representations of the sampled environ-
ment [26], [27], [28], [29]. This principle is derived from
Synthetic Aperture Radar (SAR), which has been a standard
remote sensing technique sincemultiple decades [30]. But the
core concept has also been extended to completely different
sensors and vehicles like thermal vision on aerial drones [31],
[32], [33].

SAS is a very active field of research, see, e.g., [34], [35],
[36], [37], [38], [39], [40], [41], [42], and [43]. But while the
inspiration comes from SAS, there are also some substantial
differences to it in SSF. First and foremost, SAS methods
operate on the signal processing level of the raw data from
the transducer(s). SSF operates so to say one level above,
i.e., it uses the data from scan-lines as 1D images from the
already processed transducer data. The synthetic aperture,
respectively the improved focus of a scan in SSF is derived
from the optimization of the estimated poses of the scan-
lines. Second, SAS tends to require constraints on the sensor
trajectory, typically in form of straight lines, to facilitate the
underlying signal processing [26], [27], [28], [29]. This is
not the case for SSF where the vehicle, or more precisely
the sonar beam, can follow any arbitrary trajectory while the
scan is formed. Third, SSF does not require access to the low
signals to/from the transducer as it operates one level above it.
This is a very important practical aspect as this data is usually
not available in commercial off-the-shelf (COTS) sonars
where this access is proprietary to the device manufacturer.

IV. IMPLEMENTATION: METHODS, VEHICLE,
AND SENSORS
Synthetic scan formation as introduced in Sec.II is agnostic
to the registration method and the SLAM back-end used in it.

VOLUME 11, 2023 96857



T. Hansen, A. Birk: SSF for Underwater Mapping With Low-Cost MSS

FIGURE 5. Synthetic scan formation proceeds in rounds n. Scan formation [A] is initialized with motion compensation from navigation (n = 0), but it
uses an optimized pose estimates p(n) for each scan-line sl (n) when a scan is formed again (n > 0). Within a round, each registration of two scans
scn

i and scn
i+j introduces j + k new constraints [B]. After optimization with SLAM [C], there are new pose-estimates for the scan-lines, which can be

used for scan formation in the next round (n → n + 1).

And it is in principle also applicable to other types of sonar
like sidescan sonar. In this section, the specific methods are
described that are used to implement it for the experiments
and results presented later on.

The pose-graph is embedded into a factor graph [44]
optimized with iSAM2 [45] from the GTsam library [46].
Loop-closures are simply proximity based. In the front-end,
Fourier-SOFT in 2D (FS2D) is used for registration. It is a
spectral registrationmethod that is well suited for low-quality,
noisy sonar scans [47]. For all experiments and fields trials in
this article, a grid-size of N = 128 is used in FS2D.
The registration needs to be accompanied by an uncertainty

estimation. FS2D operates in the frequency domain where the
different signal processing methods used in there generate
in theory Dirac pulses for each degree of freedom (dof).
In reality with imperfect data, a peak detection is needed to
determine the registration results. Here, the 0-th dimensional
persistent homology for 2D images [48] is used to this end.
In the spirit of [49], a Principal Components Analysis (PCA)
in a circle around each peak is used to determine a co-variance
matrix.

The core navigation is based on the standard state-of-the-
art approach for underwater dead-reckoning [19], [20], [21].
An Extended Kalman Filter (EKF) estimates the current pose
of the robot xekf = [x, y, z, ψ, θ, φ]⊤ using the input from
a Doppler Velocity Log (DVL) and an Inertial Measurement
Unit (IMU).

As mentioned before, MSS are low-cost sonars, which
allow a wide variety of use-cases. The same holds for the
rest of the hardware used in the experiments and field trials
presented later on.

The vehicle is a BlueROV2 from BlueRobotics in the
heavy configuration with a payload skid [50] (Fig.7b). The

MSS is a Ping360 sonar from the same company [4], which
is even within this class of devices one of the most affordable,
if not the least costly device. As DVL, a Waterlinked A50 is
used [51]. The IMU is a Xsens MTi-300 [52].

In the standard remote operation mode, the vehicle is
connected with a tether to a control station in form of a
laptop or embedded PC, to which the data is transmitted
for processing. Our group has also developed multiple
compute bottles based on different Intel NUCs for PC-like
computation power on the vehicle itself, which can be used
for on-board processing or autonomy if needed.

V. SETTINGS FOR THE EXPERIMENTS
Throughout all experiments and trials, we use the same
settings for the three methods that are used for a compar-
ison, namely mapping with dead-reckoning, state-of-the-art
SLAM, and synthetic scan formation.

For the Ping360 sonar, the full 360o field of view is
used, i.e., γmin = 0o and γmax = 360o. As described
below, the three different test environments differ in size.
Therefore, different settings for the maximum range dmax and
for the stepping angle1γ are used. Both parameters not only
influence the content of a scan, but also the time it takes to
acquire the raw data. Therefore, they differ depending on the
environment they are used in. The according values are shown
in Tab.1.

The state-of-the-art approach to SLAM with MSS data
can be formulated in our framework in a straight-forward
way without any performance disadvantages. As described
in Sec.II, each scan is formed once from k scan-lines using
motion-compensation with navigation after the acquisition.

The core aspect of SSF is that synthetic scans can be
re-generated from already recorded scan-lines if there is a
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TABLE 1. Sonar parameters for the three test environments, i.e., (A) pool,
(B) bunker basement, (C) large submarine basin. The number k of
scan-lines per scan follows from 1γ ; it is provided for the sake of
simplicity.

TABLE 2. Accuracy of the core navigation with dead reckoning (dr), the
state-of-the-art SLAM (sota), and Synthetic Scan Formation (SSF) for
the different trajectories in the pool. The errors are computed via the
Euclidean distances of the estimated locations to the accurate ground for
each pose.

better pose-estimation for one or multiple scan-lines. It hence
benefits from loop-closures, which tend to improve the poses
and hence the quality of the synthetic scans.

In addition to the so to say global, proximity-based
loop-closures, we attempt here also local loop-closures
every 1/4 of a scan, i.e., every 90o. Note that this is a
rather simple strategy to facilitate SSF as introduced in
Sec.II. It nonetheless already leads to improved maps and
small computational overhead as presented in detail in the
following sections.

VI. POOL EXPERIMENTS WITH GROUND TRUTH
Ground truth data is a major challenge for underwater
robotics in general, especially when it comes to localization
as, e.g., GNSS are not accessible. Here, we use real-world
experiments in a pool with a gantry mechanism where
our vehicle’s sensors are mounted on. The gantry serves
as the propulsion for our ‘‘vehicle’’ with its sensors, i.e.,
the MSS, DVL, and IMU. The Computerized Numerical
Control (CNC) of the gantry provides accurate motions
and highly precise localization, thus allowing a quantitative
analysis. The down-side is that the tank is only 2m wide and
4m long.

We use three different motion patterns in the experiments,
namely a circle, a combination of S-curves, and a rectangular
pattern. They form increased levels of difficulty, especially
the rectangular patter with its abrupt changes at corners. The
results for core navigation with dead reckoning, state-of-the-
art SLAM, and SLAM with our scan formation are shown in
Fig.6 and Tab.2.

Themaps generated with core navigation, i.e., an EKFwith
DVL and IMU data, are always of low quality (Fig. 6a, 6b
&6g). This is also reflected in the errors, i.e., the Euclidean
distances of the estimated locations to the ground truth
(Tab.2).

SLAM with registration of the sonar data always substan-
tially improves the results. In the case of the very simple

TABLE 3. The computation times for processing one scan with
dead-reckoning (dr), state-of-the-art SLAM (sota), and Synthetic Scan
Formation (SSF), and the times for the raw sonar-data acquisition for a
scan in (A) the pool, (B) the bunker basement, and (C) the large
submarine basin.

trajectory of a circle, both the state-of-the-art SLAM and
SSF perform similarly (Fig. 6b&6c) with high accuracy
(Tab.2). When the trajectories get a bit more complex, i.e.,
the S-curves and the rectangles, a higher accuracy of SSF can
be clearly measured (Tab.2). For the maps, respectively the
estimated trajectories, only small performance gains in minor
details are visible due to the small size of the tank. This is
very different for much larger environments in the fields trials
presented in the next section.

VII. FIELD TRIALS
The field trials presented in this section are related to
the use-case of the digitization of cultural heritage, for
which robotic mapping technologies are meanwhile widely
used [53], [54], though there are still many challenges when
used underwater [55]. Concretely, we are interested in the
digitization of the World-War-II submarine bunker Valentin
(Fig.7a) with air-, ground-, and underwater robots [56]
including 3D models from photogrammetry and Lidar
data [57].

The bunker, which is now a memorial, was built
from 1943 to 1945 with massive use of forced laborers with
the intention to produce Type-XXI submarines there. While
being the largest armament project of the German navy, the
bunker could not be completed before the end of World
War II. Up to 8,000 forced laborers worked on the bunker
construction site every day, and many of them lost their
lives [56].

Here, we present results from underwater mapping of two
parts of the bunker. The first is the flooded basement of the
bunker (Fig.7b&7c), for which open questions with respect
to its use exist [58]. The second is a large basin from where
the finished submarines could leave the bunker into theWeser
river to move on to the sea (Fig.7d). Maps generated with the
different methods are shown in Fig.’s 8& 10.

Like in the pool-experiments, the core-navigation has
significant drifts and it is not use-able for mapping
in both cases (Fig.’s 8a& 10a), which demonstrates the
need for registration of the sonar scans. More impor-
tantly, synthetic scan formation leads to clearly visible,
qualitative improvements compared to the state-of-the-art
SLAM.

For the basement, SSF (Fig.8c) captures more details
than state-of-the-art SLAM (Fig.8b), e.g., an internal wall
structure (Fig.9). It also produces proper representations of
two connections to other parts of the bunker at both ends
of the explored environment (Fig.9). Both aspects are very
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FIGURE 6. Maps generated with core navigation with dead reckoning (dr), state-of-the-art SLAM (sota), and Synthetic Scan Formation (SSF). The
ground truth is shown in red for each of the three trajectories in form of a circle, a combination of multiple S-curves, and an exploration pattern
consisting of rectangles. The estimated trajectories are shown in green for each method.
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FIGURE 7. (a) An aerial view on the WW-II bunker Valentin where the field trials are conducted as part of work on the digitization of cultural heritage.
(b) The entrance to the flooded basement. (c) Part of a wall in the flooded basement. (d) A large basin that was intended to deploy the assembled
submarines into the Weser river from where they could head to the sea.

FIGURE 8. Three maps of the flooded basement (Fig.7b&7c), which are generated by (a) core navigation with dead reckoning (dr), (b) SLAM with
state-of-the-art scan formation (sota), and (c) can Formation (SSF). Our method leads to straighter walls, clearly visible exit structures at both
ends of the main room, and it captures smaller parts like the L-shaped, broken wall shown in Fig.7c.

FIGURE 9. Zoomed details from the maps of the basement with
sota-SLAM and our method (Fig.8. Top: An L-shaped wall (Fig.7c) and a
pillar-structure below it. Bottom: An exit leading into a very wide corridor.
Note that the shorter concrete wall is seen from two sides, i.e., our
method captures its thickness.

useful for the exploration of the basement as the visibility
there is very poor and there are debris as well as partially

destroyed constructions. Our method also leads to straighter
and more pronounced representations of the main walls
(Fig.8), which also indicates some benefits for the overall
map on a global scale.

The improvement for the overall map is even more
pronounced in the case of the large basin (Fig.7d). SSF
compensates the drift in the core navigation very well
(Fig.10c) and it leads to much straighter walls than the state-
of-the-art SLAM (Fig.10b). Note that the straight, but broad
area in the left lower part of the maps originates from a part
of the basin that got destroyed and that hence consists of a
kind of beach of rubble (Fig.7d).

Tab.3 shows the average computation times for processing
one sonar scan with dead-reckoning (dr), state-of-the-art
SLAM (sota), and Synthetic Scan formation (SSF) including
loop-closures and re-rendering. Furthermore, the times it
takes to record the data for one scan with the sonar are given,
which depend on the maximum range setting of the sonar
together with the sampling rate of the angle (Tab.1). The three
time-values for the sonar correspond to the experiments in (A)
the pool, (B) the basement, and (C) the large basin.

Our method adds about 50% computation overhead
compared to the state-of-the-art SLAM while leading to
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FIGURE 10. Three maps of the large, rectangular basin in the bunker
(Fig.7d), which are generated again by (a) dead reckoning, (b) sota SLAM,
and (c) Synthetic Scan Formation.

improved results as discussed above. More importantly,
the processing of a scan is significantly shorter than its
data-acquisition with the sonar. Hence, SSF is very well
suited for real-time processing.

VIII. CONCLUSION
Synthetic Scan Formation (SSF) was introduced. It operates
on a level above conventional Synthetic Aperture Sonar

(SAS) and below state of the art Simultaneous Localization
and Mapping (SLAM) with sonar, i.e., it does not require
raw data from the transducer(s) for signal processing, but
it improves the focus of scans that serve as input to the
registration and the optimization backend.

The core idea is to use pose-estimates for each single beam
or scan-line, i.e., the array of amplitude measurements from
a single ping ordered by time-of-flight and hence distance,
to form the synthetic scans. Instead of just employing the core
navigation data to combine multiple scan-lines into each scan
once, SSF uses online SLAM to update the pose-estimates of
the scan-lines and new, improved scans can be (re-)rendered.
Improved scans lead to improved registration results in the
subsequent SLAM processing and they hence lead to an
overall improved map quality.

Synthetic Scan Formation is validated in several real-
world experiments. Quantitative results are presented from
experiments in a pool with precise ground-truth through
motions with a gantry set-up. Using different trajectories, it is
shown that our methods increases the accuracy. Furthermore,
qualitative results from field trials within a project for the
digitization of cultural heritage are presented. Two different
areas from the memorial bunker Valentin, a WW-II bunker
for the production of submarines, are explored and mapped.
SSF leads to visible improvements while it is still use-able for
real-time processing during the mission.
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