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ABSTRACT The electric network frequency (ENF) represents the transmission frequency of the electrical
grid and fluctuates constantly around 50 Hz or 60 Hz, subject to the region. This constant fluctuation, caused
by the continuous mismatch in power demand and supply, makes the ENF a unique signature, which can be
utilized for several applications. According to studies, the ENF may be intrinsically implanted in audio
recordings captured by digital audio recorders (e.g., microphone-based voice recorder) plugged into the
mains supply or are situated close to sources of power and power transmission cable due to electromagnetic
field interference originated from power source or acoustic hum and mechanical vibrations emitted by
electrically operated devices such as regular household appliances. Recent studies further observed that
video recordings made under an illumination source powered by main power can pick up the ENF signal.
Following this discovery, several research efforts have been invested towards successful and accurate
extraction of the ENF signal, and utilizing the ENF signal retrieved for several applications, including time
stamp verification, audio/video authentication, location of recording estimation, power grid identification,
estimation of camera read-out time, and video record synchronization. To the best of our knowledge, there
has been no comprehensive survey on ENF-based multimedia forensics. Thus, in this paper, we present a
comprehensive survey of studies conducted in this field, identifying several application specifics, current
challenges, and future research directions.

INDEX TERMS Electric network frequency (ENF), ENF detection, ENF estimation, ENF audio and video
forensic, ENF applications.

I. INTRODUCTION
With the majority of the younger generation preferring
images and videos as the major mode of communication,
an increasing amount of multimedia content is generated and
shared via the Internet. Because of the enormous amount of
information contained in multimedia content, such as images,
audio, and video recordings, they have become targets of
malicious attacks to falsify digital content. Advances in digi-
tal forensics have grown at an increasing rate in recent years,
as digital manipulation techniques are continually expanding
and influencing different facets of our socioeconomic and
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political lives. Currently, several advanced methods rely on
generative adversarial networks (GNNs) and autoencoders,
and a large number of datasets are publicly available to
train them. Deepfakes are now widespread and pose a seri-
ous threat to the accuracy of information, affecting many
facets of society including the economy, journalism, and
politics. As new and more complex types of manipula-
tion emerge, these issues can only worsen. As a result,
the government, research community, and various non-profit
organizations have intensified their emphasis on mitigating
and developing cutting-edge technologies to cope with these
phenomena. To encourage research in this area Major IT
corporations, such as Facebook and Google, have created
massive databases of edited videos available online [1]. There
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have also been efforts by funding agencies to encourage
extensive research projects on these topics. For example,
in 2006, DARPA launched the Media Forensic Initiative
(MediFor) [2] to support well-known research organiza-
tions on media integrity worldwide, which produced sig-
nificant results with regard to methodologies and reference
datasets. Subsequently, the Semantic Forensics Initiative
(SemaFor) [3] was launched in 2020, which collaborated
on text, audio, images, and video to develop semantic-level
detectors for fake media to combat state-of-the-art attacks.

Over the past few years, electric network frequency (ENF)
has been utilized as a tool in some applications in multimedia
forensics. Analysis of the ENF is a forensic tool used to
validate multimedia files and spot any attempts at manipu-
lation [4], [5], [6], [7], [8]. The ENF is an electric power grid
supply frequency and varies in time about its nominal value
of 60 Hz in North America, and 50 Hz in Europe, Australia,
and much of the rest of the world because of the inconsis-
tencies caused by power network supply and demand [4],
[9]. The nature of these inconsistencies can be observed to
be random, unique per time, and usually the same across all
locations connected by the same power grid. Consequently,
an ENF signal recorded at any point in time while plugging to
a certain powermainsmay serve as a reference ENF signal for
the entire region serviced by that power grid for that period of
time [4], [10]. The instantaneous values of ENF over time are
considered ENF signals. An ENF signal is embedded in audio
files created with devices connected to the mains power or
located in environments where electromagnetic interference
or acoustic mains hum is present [4], [10].

Recent studies have shown that ENF signals can be
extracted from video recordings made under the illumina-
tion of a main-powered light source [11], [12]. Fluorescent
lights and incandestine bulbs used in indoor lighting fluctuate
in light intensity at double the supply frequency, making
it nearly impossible to notice the flickering that occurs in
the illuminated environment. Consequently, videos captured
under indoor illumination settings using a camera may con-
tain ENF signals. Research has also recently demonstrated
that an ENF can be embedded in an image captured with a
rolling shutter camera [13].
The ENF was identified as a relevant resource for mul-

timedia forensic in 2005 when Grigoris [4] first reported
that digital audio recordings captured by devices plugged
into the power mains contain ENF artefacts. This work
was further extended in [5], where experiments were car-
ried out in Romania. Subsequently, several experiments were
conducted in other parts of Europe, such as Poland [6],
Denmark [10], [14], [15], the United Kingdom [16], [17],
[18], the Netherlands [8], and then in North America [9],
[12], [19], and in other parts of the world [20], [21], [22].
The experiments were further carried out with devices con-
nected to alternating current (AC) power and battery-powered
devices [23]. Research in ENF has been broadly towards the
development and improvement of approaches for accurately
extracting the ENF signal from media recordings, as well

as the application of the extracted ENF signal. A schematic
showing the different stages of ENF forensic application
is shown in figure 1. In this paper, we present a compre-
hensive survey of research in this area, identifying current
challenges and providing future directions. The remainder of
this paper is structured as follows: Section II describes the
basic concept and methods employed in creating the ENF
reference database. Section III discusses different approaches
for estimating ENF. Section IV describes the ENF detection
in media recordings. A review of approach approaches for
extracting ENF from audio and video recordings and from a
single image is provided in Section V. Section VI discusses
the factors affecting ENF embedding in audio and video
recordings. Section VII discusses forensic and non-forensic
applications of ENF. Section VIII presents current challenges
and future research directions. Section 9 concludes the paper.

II. BACKGROUND KNOWLEDGE
This section provides a background of the power generation
and control mechanism of the electric power grid to aid in
understanding of the ENF signal. It also discusses methods
for recording the ENF signal at the power distribution level
and from the power mains to build a reference ENF database.

A. OVERVIEW OF ENF
In power grids, ENF is the electricity supply frequency. Coal,
geothermal, wind, solar, and other energy sources can all be
used to generate this electricity. These energies are harvested
and transformed into electricity before being transmitted to
the power grid [24]. A schematic of power generation and
control is shown in figure 2. The generators receive kinetic
energy from the turbines and transform it into electrical
power. The generator rotates as a result of the provided power
(Ps), converting kinetic energy into electrical energy to satisfy
the power demand (Pd ). The angular velocity of the genera-
tor is represented by ω and is inversely proportional to the
system/voltage frequency fs, which represents the ENF [25].

The nominal value of the ENF is 50 Hz in Europe,
Australia, and across many other regions of the world,
and 60 Hz in the majority of Americas. The ENF is at
the nominal value (50 Hz/60 Hz) when the power supply
(Ps) is equal to the power demand (Pd ). However, because
of consumers’ varying demand for power per unit time,
it constantly varies with its nominal value. These variations,
which are within 20 mHz of the nominal value, are due to
the power-frequency control systems that maintain equilib-
rium between electric energy production and consumption
throughout the power grid [26]. The nature of the variations
may be observed to be random and unique over time, and
usually quite the same across all locations connected by
the same power grid [18]. Because of this type of power
generation, the electric signal of the power grid is modeled as
a single sinusoidal waveform with a set frequency, as shown
in the following equation:

v (t) = AoSin (2π ft + ∅) (1)
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FIGURE 1. Schematic of steps in ENF analysis.

FIGURE 2. Schematics of power generation and control [26].

where Ao and ∅ represent respectively the amplitude and
phase while f denotes the ENF of the grid. Therefore, ENF is
defined as the change in instantaneous ENF values over time.

A successful extraction of this unseen signature from a
media recording will enable the determination of the time
and location where it was made and if any manipulation had
occurred.

B. ENF REFERENCE DATA
The ENF signals retrieved from multimedia files may be
vital in a variety of practical real-world forensic applications.

However, for us to rely on the outcome of its application,
we must verify that the extracted signal is actually the ENF
signal. Therefore, the ENF criterion was based on the ENF
reference data. Usually, power reference signals are obtained
using special equipment and are substantially more potent
than ENF traces extracted from multimedia. Consequently,
they can serve as a reference for the extracted ENF signal
frommultimedia recordings [4], [27]. Therefore, the ENF sig-
nals of multimedia and power grids recorded simultaneously
are anticipated to be similar at the same time instants.

Several techniques for acquiring power reference data have
been suggested in the literature. The authors in [28] and [29]
presented a detailed discussion of the implementation of the
wide-area frequency monitoring network (FNET)/GridEye
system, a situational awareness tool for an electrical grid that
captures high-precision Global Positioning System (GPS)
time-stamped data at the distribution level in real time. The
FNET has been implemented and utilized to capture the
power reference signal from the three North American inter-
connections [30]: Texas power grid, Eastern power grid,
Western power grid.

Figure 3 shows the different components of the FNET/
GridEye framework. The frequency disturbance recorder
(FDRs) and the associated information management soft-
ware (IMS) are the main elements of the FNET system.
FDRs are system sensors deployed at the distribution level
to measure regional GPS-synchronized instantaneous ENF
values using phasor approaches [31]. FDRs transmit the
measured data via the Internet to the data center, which
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FIGURE 3. Building blocks of the FNET/GridEye system [28].

is managed by the IMS for various applications. More
discussion on the FNET/GridEye system can be found in
[32], [33], and [34].

The authors in [21] and [35] provided a detailed discussion
and analysis of the wide area management system (WAMS)
deployed in the Egyptian grid for wide-area synchronized
measurements. Contrary to the definition that the ENF signal
is similar in all areas of the same grid, the authors opined
that the instantaneous ENF value recorded from a single point
is not constant throughout the grid when there are system
disturbances such as transformer or local network failure
and disconnection of unsynchronized local sections of the
grid [14]. The authors proposed a robust method that relies
on creating an ENF reference database from many FDRs
spread across multiple grid points instead of one point. Their
choice of the number of sensors to deploy was based on their
sensitivity to frequency, as well as the frequency sensor’s
estimation accuracy. They also suggested a harmony search
technique that uses GIS data and wide-area frequency mea-
surements to determine geographically coherent frequency
regions for various disturbance situations and allocated the
sensors to different regions based on their geographical fre-
quency coherence. Their experimental results revealed that
the proposed approach enables the building of a robust ENF
reference database and, in turn, improves the accuracy of the
matching process.

The authors in [36] considered the methods discussed
above expensive, involving a substantial amount of work from
design to setup, and lack efficiency to adequately monitor
the collection equipment dispersed across the world. They
therefore proposed a method to build worldwide ENF map
by extracting ENF signal from online streaming multime-
dia files gathered from sources like ‘‘Ustream,’’ ‘‘Youtube,’’
and ‘‘Earthcam,’’ rather than installing expensive specialized
hardware. Their approach employed various signal process-
ing methods to discuss and address several issues, such as

accounting for packet loss, aligning various ENF signals from
several multimedia broadcasts, and interpolating geographic
ENF signals to take consider areas that are not serviced by
streaming services. The evaluation of the recovered ENF
signal using the proposedmethod compared to those obtained
using the FDR from FNET/GridEye demonstrates that the
proposed method performs better in steady acquisition and
control of the ENF signals than the conventional approach.

Other systems have been implemented to locally build
an ENF reference database. Although the systems dis-
cussed above provide enormous advantages in terms of
power-frequency monitoring and coverage, researchers can
locally obtain ENF references without requiring access to
them. A low-cost hardware circuit can be implemented and
plugged into an electric wall outlet to capture a power signal
or detect ENF fluctuations. In such systems, transformers,
such as those utilized in the power supplies of several DC-
powered equipment, are usually employed to convert the wall
outlet voltage level to a level that can be captured by an
analog-to-digital converter (ADC). An example of a generic
circuit that can be implemented to record the power reference
is depicted in figure 4. The circuit also included an aliasing
filter and a fuse to the circuit as a safety measure, subject to
the sampling rate of the ADC [37].

FIGURE 4. A sample generic diagram of sensor hardware [37].

The sensor hardware may be implemented using a variety
of different designs.

The authors in [5] implemented an electronic circuit
to record the power reference signals. The circuit relies
on a transformer capable of producing a 100mV peak-to-
peak voltage connected to a personal computer’s soundcard.
A software system called DCLive Forensics was used to
record and analyze the audio signal. The device was used to
obtain the ENF reference signal from the Romania electric
network and other locations in the European electric net-
work. In the implementation in [38], a step-down circuit was
connected a digital audio recorder to obtain the raw power
signal in Maryland, part of the US Eastern grid. In this case,
an ENF estimation method is employed to further process the
obtained signal to retrieve the ENF reference signal.

The authors in [39] implemented a step-down circuitry,
together with a Schmitt trigger on a BeagleBone Black board,
which applies the Schmitt trigger to spontaneously retrieve
the ENF signal from the raw ENF data without requiring an
ENF extraction method, as in the implementation in [38]. The
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device was used to independently record ENF reference data
in Dresden, Germany. Other implementations can be found
in [40], [41], and [42]. Depending on the available resources,
there are various approaches to obtain the ENF reference.
These measurements often yield an ENF signal with a high
signal-to-noise ratio (SNR), which can be utilized in ENF
investigations as reference data.

III. APPROACHES TO ESTIMATING ENF SIGNAL
This section discusses the procedures employed in the liter-
ature to extract ENF traces implanted in media recordings.
In these approaches, preprocessing of the media signal may
be necessary prior to measuring the varying instantaneous
ENF sequences over time to significantly speed up the esti-
mation process and conserve memory for the estimation
algorithm. In general, there are three main categories of
approaches used for estimating the ENF which: (a) time-
domain approach, (b) non-parametric approach and (c) para-
metric approach.

A. TIME-DOMAIN APPROACH
The time-domain approach consists of the measurement of
zero crossings and comparison of the results to the refer-
ence ENF values [5]. The time-domain zero-crossing method
is relatively simple and does not require segmentation of
the recording into successive frames for independent pro-
cessing [43]. It relies on deriving ENF variations from the
zero crosses of a genuine power reference or media record-
ing. [44]. The authors in [45] reported that with the zero-
crossing strategy, the ENF-containing signal was pre-filtered
around the nominal range to isolate the ENF component
from the other contents of the recording. Subsequently, the
temporal differences between successive zero values were
derived and utilized to realize instantaneous ENF estimation
after the zero crossings of the surviving ENF signal were
computed.

B. NON-PARAMETRIC APPROACH TO
FREQUENCY-DOMAIN ENF ESTIMATION
ENF estimation based on non-parametric methods does not
make explicit model assumptions about the data. The major-
ity of these methods rely on the Fourier analysis of the
signal. The time recursive adaptive approach (TR-IAA) and
spectrogram- or periodogram-based methods that employ the
short-time Fourier transform (STFT) comprise the major-
ity of non-parametric frequency-domain methods [46], [47].
The STFT is typically employed for time-varying spectrum
signals, such as ENF signals. The signal is first segmented
into overlapping frames, and each frame is then subjected
to Fourier analysis to ascertain the available frequencies.
Therefore, a spectrogram provides a visual representation
(2-D representation) of the time-frequency information pro-
vided by the STFT. Time-frequency information is usually
conveyed using a heat map, with time and frequency as the
axes [48]. Because the ENF signal fluctuates very slowly,
it is logical to assume that the instantaneous frequency is

relatively consistent throughout the frame period for analy-
sis [43].

1) MAXIMUM ENERGY APPROACH
Considering the ENF signal in a frame as a frequency sinusoid
near the nominal value embedded in noise, applying the
spectrogram method should ideally peak its power spectral
density (PSD) at the sinusoidal signal frequency. In this situa-
tion, finding the frequency whose spectral component has the
maximum power is a simple way to estimate this frequency.
However, directly adopting this frequency as the ENF value
usually results in a loss of accuracy because the spectrum
is computed for a discretized frequency value, and there
might be a misalignment of the exact frequency of the maxi-
mum energy and the discretized frequency. Consequently, the
STFT-based ENF estimation method often employs quadratic
interpolation [49] or a weighted approach [12] to perform
additional operations to achieve a more precise estimation.
Quadratic interpolation is usually performed around the iden-
tified spectral peak, while the weighted approach is applied
to the detected ENF estimate, in which the frequency bins of
the nominal value are weighted according to their spectrum
intensities [43]. Examples of spectrogram-based approaches
includes the maximum-energy approach and the weighted-
energy approach.

2) WEIGHTED ENERGY APPROACH
This approach involves calculating the average frequency of
each spectrogram’s time bin, considering the weighting of
the frequency bins based on their energy levels relative to
the nominal ENF value. This results in an average frequency
value that is representative of the energy of the signal. The
expression of the frequency estimation as described by [46]
is given as:

F (m) =

∑K2
k=K1

f (m, k) S (m, k)∑K2
k=K1

S (m, k)
(2)

where K1 and K2 denote the FFT indices of the averaging
region’s boundary, f (m, k) and S(m, k) represents, respec-
tively, the frequency and energy values for the k th frequency
bin of themth time-frame. Compared to the maximum energy
approach, this approach estimates the instantaneous ENF
frequencies more accurately because of the robustness of the
weighting against outliers.

3) TIME RECURSIVE ITERATIVE ADAPTIVE APPROACH
(TR-IAA)
The most recently developed non-parametric frequency esti-
mation approach relies on the TR-IAA [50]. To obtain the
spectral estimate for a particular frame, the algorithm for-
mulates a weighted least-squares method to minimize the
quadratic function. The TR-IAA is an iterative approach
with a convergence period of 10 -15 iterations. The spectral
estimate in the first iteration was set to the value from either
the spectrogram or the last value from the time frame before
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it [51]. This approach requires a longer processing time than
the spectrogram-based approach. A quadratic interpolation
procedure was applied after the spectral estimate converged
to estimate frequency. Compared with the spectrogram-based
approach, this approach has been demonstrated to yield some-
what better frequency estimation results, particularly when
the frame size is between 20 and 30s [50].

C. PARAMETRIC APPROACH TO FREQUENCY-DOMAIN
ENF ESTIMATION
Parametric approaches to frequency-domain ENF estimation
are based on making specific model assumptions about the
signal and the underlying noise. These approaches produce
more precise estimations than non-parametric approaches
because of the explicit model assumptions on which they rely.
In fact, modeling the signal provides a means of avoiding the
idea that the recorded sequence has a value of zero beyond
the time period in which it was observed. This makes the res-
olution dependent on the SNR such that increasing the SNR
results in an improved resolution threshold [52], [53]. The
MUltiple SIgnal Classification (MUSIC) [54] and Estimation
of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) [55] are two of the most commonly used para-
metric approaches that rely on the subspace analysis of a
model that includes both the signal and noise components.
In principle, these methods can be utilized for the frequency
estimation of a signal composed of P complex frequency
sinusoids contained in white noise. The value of P for ENF
signals is equal to 2 because there is only a single actual
sinusoid in an ENF signal [46]. A brief discussion of these
methods is provided below.

1) MUSIC
The MUSIC algorithm estimates the essential characteristics
of a signal based on the observations provided [54]. This
approach assumes that a signal x is composed of p complex
sinusoidal components with an unknown angular frequency
ω embedded in additive white Gaussian noise. It conducts
an eigenspace decomposition of the autocorrelation matrix
RM×M
xx based on M observations of signal x, in such a way

that it projects the p complex sinusoids onto a signal space
that is perpendicular to the noise space. Such a projectionmay
be generated by performing Singular Value Decomposition
(SVD) on the RM×M

xx for which the highest eigenvalues cor-
respond to the signal sub-space eigenvectors [54], [56]. The
signal spectrum can then be obtained from the noise subspace
as follows:

Pmu
(
ejω

)
=

1∑M
k=p+1 |eHwk |2

(3)

where e = [1ejωej2ω . . . ej(M−1)ω] is a vector that containsM
complex sinusoids, eH denotes the Hermitian operator, wk is
the eigenvector of RM×M

xx , and xx is the vector matrix of the
signal x.

Compared to the Fourier-based analysis, the MUSIC
approach offers a better frequency estimation. The spectrum

in equation (3) is a continuously differentiable function in
ω that allows for some flexibility because the frequency
resolution may be raised to counteract the binning problem,
which affects the Discrete Fourier Transform (DFT). It can
also intrinsically reduce the level of additive white noise
in the measured signal. However, these features come at
the expense of reduced stability when there is a drop in
the SNR or when the noise stops becoming addictive and
white [54]. The MUSIC method may also lead to increased
computational complexity when the autocorrelation matrices
and the number of frequency points are large. A variant of
the MUSIC method called Root MUSIC [57], [58] provides a
high-resolution estimation of instantaneous frequency while
significantly conserving computational resources.

2) ESPRIT
The ESPRIT approach employs invoked rotational attributes
between staggered subspaces to provide frequency esti-
mation. ESPRIT shares similarities with MUSIC, as both
approaches rely on subspace analysis. However, ESPRIT
differs in that it operates in the signal subspace instead of
the noise subspace [55]. In addition, ESPRIT relies on the
information in the data matrix to compute the signal sub-
space, whereas MUSIC explicitly computes the correlation
matrix. ESPRIT, like MUSIC, offers a robust estimation of
the signal frequency utilizing fewer data points compared
to spectrogram-based approaches. Compared with MUSIC,
ESPRIT has the advantage of lower computation and storage
costs [59].

IV. DETECTING ENF PRESENCE IN DIGITAL
MULTIMEDIA RECORDING
Detecting the presence of ENF in digital multimedia record-
ings is a crucial and fundamental issue that must be resolved
to conduct a successful ENF-based forensic investigation
process with confidence. The ENF traces can be obtained
from media recordings and reflect the way the power net-
work operates during recording. Therefore, it is essential that
there is electrical activity present at the location where the
recording is made in order to acquire ENF traces. It is com-
monly accepted that audio recordings created by recorders
connected to a power outlet will contain ENF traces owing
to the electromagnetic interference produced by the con-
nection between the recorder and the wall outlet [8], [39].
However, when it comes to audio recordings captured with
recorders that use battery as a source of power, the situation
becomes more complicated because of several factors. For
video recordings, studies [11], [12] have shown that ENF can
be picked up as time-varying light intensity by multimedia
recordings made with cameras, resulting in unseen flickering
generated by electric-powered interior lighting. Nevertheless,
the ENF signal that is present in audio/video content may
be destroyed by strong Doppler effects as a result of normal
recording device movement, because the nominal frequency
(together with a number of harmonic frequencies) exists in
the lower frequency band [60], [61].
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We noted that in an audio recording, the intensity of the
ENF signal and the square of the distance between the micro-
phone and the nearest ENF source are inversely proportional,
whereas in video recording, it is normally rare to observe
the flickering of the light intensity [60], [61]. Meanwhile,
even when the recording is done near a mains power, the
ENF hum’s intensity is consistently much weaker compared
to the recorded material of interest [62]. Therefore, we can
infer that the recorded ENF signal is on average quite weak.
It is irrelevant to adopt an ENF-based forensic analysis if
the file under investigation is severely distorted by interfer-
ence, noise, and Doppler effects. It is even more dangerous
to progress the analysis assuming that the ENF signal was
successfully captured, as this will negatively impact on the
related investigation. Therefore, before performing further
forensic studies based on ENF, it is necessary to ascertain
whether it is captured in the media file under investigation.
This step will aid in checking if ENF is present and then
inform the progress analysis. Several approaches have been
proposed for ENF detection.

The authors of [63] presented a comprehensive examina-
tion of the ENF detection problem in audio recording and
proposed three practical detectors to address these prob-
lems. In their approach, the audio file under examination
is down-sampled and bandpass filtered in the preprocessing
step, which removes duplicate computational overheads and
subdues the interference and out-of-band noise, respectively.
Consequently, the detection of the ENF signal within an
audio file was explained by identifying a delicate ENF signal
that has been corrupted by unknown WSS Gaussian noise
with varying colors. In general, this problem is challenging
owing to the frail nature of ENF, the random behavior of
the amplitudes and instantaneous frequencies, and the ini-
tial phase of the ENF signal. Supposing prior information
about the ENF signal, the authors developed three Neyman-
Pearson (NP) detectors, including a matched filter (MF)-like
detector, a general matched filter (GMF), and the asymptotic
approximation of the GMF to address this problem. Sup-
posing the unknown parameters of the ENF are constants,
the authors suggested two least-squares (LS)-based time
domain-detectors known as LS-LRT and naive-LRT. Addi-
tionally, assuming that the ENF is steady over a short time
interval, the authors suggested a time-frequency (TF) domain
detector to conduct short-time Fourier transform-based TF
analysis of the audio file utilizing the ENF’s prior knowl-
edge obtained from public reference ENF databases. The
performance of the proposed detectors was comprehensively
evaluated in relation to the test statistic distribution, thresh-
old selection, and computational complexity. The authors
reported that the decision thresholds for LS-LRT, naive-LRT,
and TF detectors could be efficiently established without
knowing the noise parameter. The results of experiments
using synthetic and actual audio recordings revealed that the
LS-LRT and TF detectors produced highly competitive detec-
tion outcomes for normal and lengthy recordings, whereas the

naïve LRT detector surpassed the others for extremely small
recordings. Their results further demonstrated that estimating
ENF using the nominal value is an effective remedy for ENF
detection in extremely short recordings.

Liao et al. [64] suggested amulti-tone harmonic combining
(MHC) approach that exploits the harmonic components of
the ENF to improve the single-tone TF domain ENF detector
presented in [64]. Their approach first eliminated contami-
nated harmonics that may interfere with ENF detection using
an enhanced sub-band SNR estimator. Then, the test statis-
tics (TS) of the TF detector were applied to further screen
the selected harmonic candidates. Subsequently, the MHC
mechanism was applied to combine the harmonic compo-
nents and generate the TS function used to make the final
ENF detection decision. The suggested multi harmonic TS
may also be used to measure the quantity and quality of the
ENF harmonics that can be utilized. Both the results of the
simulation and real-world experiment revealed that the MHC
detector achieved improved detection precision compared to
the single-tone DF detector.

The authors in [65] introduced a detector for ENF presence
that can identify the presence of an ENF signal in a digital
video recording. This is accomplished by conductingmultiple
ENF estimations on stable regions of the video, known as
super pixels. The detector computes the average of steady
super-pixels instead of all the steady pixels contained in a
frame. Each video was segmented into super-pixel regions,
and the steady points within each region were identified
throughout all frames. The steady pixels within all regions
of every frame of the video were combined to generate an
intensity signal, from which an ENF vector was computed
for each successive video frame in a particular shot. The next
step involved analyzing the similarity between the computed
ENF vectors to detect whether the ENF was present or absent
in the test video. The detector was applied to a video dataset
of 160 videos of different lengths recorded under differ-
ent conditions using cameras that adopt both metal oxide
semiconductor (CMOS) and charged-couple device (CCD)
sensors, and the findings of the experiments showed that
the proposed detector is capable of detecting ENF signals in
videos even as short as 2-minutes video clips. The detector
can be useful in cases where a set of data on a disc or social
media is subjected to ENF-based forensic examination to
detect and distinguish ENF-containing videos from ENF-free
videos before progressing analysis. In doing so, unnecessary
exposure of ENF-free videos to a full ENF-based analysis
can be avoided, thereby saving both time and computational
effort.

Recently, the authors in [13] and [66] suggested that it
is possible to detect and retrieve ENF from a single image
captured by rolling shutter cameras under electric light. They
showed that the sequential read-out time mechanism of a
rolling shutter camera provides the resultant image to pick up
instances of electric light signal entering at slightly various
points in time, resulting in a brief section of ENF patterns.

VOLUME 11, 2023 101247



E. Ngharamike et al.: ENF Based Digital Multimedia Forensics

Section V presents a detailed discussion of the ENF within a
single image.

V. A REVIEW OF RESARCH ON ENF EXTRACTION FROM
AUDIO AND VIDEO RECORDING
This section provides an overview of the methods that have
been suggested for extracting the ENF signal embedded into
audio and video recordings and from a single image.

A. ENF EXTRACTION FROM AUDIO RECORDING
The use of ENF in audio forensic analyses has been widely
studied. The crucial initial stage of this process involves suc-
cessfully extracting the ENF pattern from the audio record-
ings under investigation. Researchers have proposed several
parametric and nonparametric techniques to estimate and
extract the ENF signals. Early approaches to ENF extrac-
tion from audio recordings were based on the STFT. The
questioned signal is first partitioned into overlapping frames,
after which Fourier analysis is performed on each frame to
ascertain the available frequencies. Next, the instantaneous
frequency (IF) of every frame was combined to create an
estimate of the ENF [7], [16], [29], [45]. In addition to
the widely used STFT-based approach, substantial research
efforts have focused on more accurate ENF estimates.

In [50], the authors introduced a technique called the
time-recursive iterative adaptive approach (TR-IAA), which
is a non-parametric, high-resolution algorithm that is also
adaptive. To obtain the spectral estimate for a particular
frame, the algorithm formulates a weighted least-squares
method to minimize the quadratic function. The TR-IAA is
an iterative approach with a convergence period of 10 -15
iterations. The spectral estimate in the first iteration was set
by utilizing the value obtained from either the spectrogram
or the last value from the time frame before it [67]. This
approach requires a longer processing time in contrast to
the FFT-based approach. According to the authors, the FFT
method achieved a slightly more precise estimation of the
network frequencywhen dealingwith the high SNR produced
by the first dataset. Nonetheless, in the second dataset, which
contained other strong interfering signals, the proposed IAA
obtained a higher ENF estimation precision. To enhance the
precision of their ENF extraction, the authors formulated
a frequency-tracking algorithm rooted in discrete dynamic
programming [68], which searches for the path of minimum
cost. The approach creates a list of potential frequency peak
locations for each frame, and then builds the path with the
lowest cost. A cost function is chosen considering the slowly
varying nature of the ENF and penalizes large frequency vari-
ations between frames. The estimated ENF was determined
using the lowest path.

In situations where there is a low SNR, it may be difficult to
accurately determine the possible locations of the frequency
peaks utilized by the authors in [50]. To circumvent the issue
of uncertain peak locations, the authors in [69] and [70]
proposed a novel weak frequency component detection and
tracking algorithm for conditions with very low SNR and

in nearly real-time, termed Adaptive Multi-Trace Carving
(AMTC). The process involves using iterative dynamic pro-
gramming together with adaptive trace compensation on a
preprocessed output from a system, such as a spectrogram,
to detect frequency traces. The proposed algorithm uses fairly
high energy traces that persist for a particular amount of time
to prove the existence of the desired frequency components
of interest after several forward and backward passes. Experi-
mental results utilizing both synthetic and actual forensic data
power signatures reveal that under low SNR conditions, the
proposed technique performs better than other representative
earlier methods [50] and can be applied in near real-time
environments.

Other adaptations to non-parametric approaches have been
suggested in previous studies to improve the estimation of the
final ENF signal. In [71], the authors presented the idea of
computing precise spectral lines at a specific frequency using
a DFT algorithm rather than across the entire frequency band.
The spectral line computation was then repeated for each
target frequency bin using a binary search technique until the
concealed ENF signal was extracted. An experimental study
of the algorithm using real audio recording and simulated
audio signals with various SNRs and error-evaluation criteria
proved its effective performance with regard to accuracy and
precision. However, SNR significantly influences the perfor-
mance of the suggested algorithm. A large window length is
required under low-SNR conditions, which may weaken its
ability to track frequency fluctuations in the time domain.

A frequency-extraction problem was constructed by the
author in [72] as a frequency-modulation problem. The
author postulated that instead of measuring the ENF directly,
it should be considered as a sinusoidal signal at the nominal
power network frequency that is subject to frequency modu-
lation by a frail frequency, making it possible to create and
analyze an intermediate-frequency signal with a frequency
of 0 Hz. According to the authors, this provides substan-
tial data reduction through comprehensive down-sampling
to enable the utilization of FM demodulation algorithms to
extract the ENF.

In [73], the authors suggested a method that utilizes tem-
poral windowing and a filter-bank carpon spectral estimator.
Their method proposed building non-parametric frequency
estimation techniques on top of the refined periodograms.
Their studies also showed that selecting proper windows can
offer an enhanced spectral resolution and improve frequency
estimation precision. The superiority of the method over [50]
is in its ability to achieve high accuracy even in the recording
of 1s frame length.

An approach that combines the Blackman-Tukey spec-
tral estimation method with a modified lag window design
was introduced by the authors of [74]. Such a lag window
design ensures an accurate ENF calculation under various
SNR situations, while striking a balance between minimizing
smearing and leakage. They formulated leakage reduction
as an energy-maximization problem within the main lobe
of the spectral window. The ENF estimation accuracy was
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measured using the maximum correlation coefficient (MCC)
and minimum standard deviation of the errors. A test of the
proposed approach on real-world datasets revealed that it
outperformed many existing techniques.

The authors in [75], presented a method that leverages
robust principal component analysis to exploit the low-rank
nature of the ENF signal, enabling the elimination of speech
content interference as well as background noise. This
approach enhances the extraction of the ENF estimates, par-
ticularly in situations where the SNR is low. ENF estimates
were then extracted by enforcing aweighted linear prediction.
The authors reported that a small number of signal observa-
tions are required for the proposed method to successfully
capture ENF variations along the time axis while maintaining
adequate frequency precision.

The robustness of ENF signal estimation may be improved
by exploiting the existence of ENF traces at multiple har-
monics when extracting the ENF signal. In [76], the authors
extended a model based on single-tone harmonics to a
multi-tone ENF model by applying the maximum-likelihood
estimator (MLE). The model employed the Cramer-Rao
bound (CRB) to estimate the variance of the ENF Estimator
and demonstrated that the proposed model can achieve a
theoretical improvement factor of O(M3) in the estimation
accuracy, where M represents the number of harmonics. The
experimental findings indicated that the proposed model out-
performed estimators based on a single-tone.

In [38], the authors proposed a spectrum combining
method that adaptively combines the various ENF compo-
nents that are present at different harmonics in a signal using
the local SNR at each harmonic. Compared with estimates
produced using only one component, the technique produced
estimates that were more reliable and accurate.

In [77], the authors presented a technique based on the
linear canonical transform (LCT) to estimate ENF audio files
recorded in a complex noise environment, such as multipath
interference. The authors argued that the method proposed
in [76] may not be adequate in a noisy network such as
China’s electrical network, because it did not account for
unpredictability in delays and amplitudes. They modeled the
electrical signal from such a complex and noisy network
as a signal with variable amplitude and narrow bandwidth
and applied the LCT, adjusting the coefficient suitably to
transform the signal into a frequency spectrum characterized
by a sharp pulse.

In [78], the authors presented a strong filter technique
called the robust filtering algorithm (RFA) to enhance the
ENF signal estimation in audio recording. The RFA accepts
as input a preprocessed (down-sampled and bandpass fil-
tered) recording and produces a denoised ENF signal, which
is then extracted and further analyzed. RFA achieves its
denoising operation by encoding the time-domain expres-
sion of the preprocessed audio signal into the instantaneous
frequency of an analytical sinusoidal frequency modulated
(SFM) signal. A kernel function is then formulated to cre-
ate a sinusoidal time-frequency distribution (STFD) of the

encoded signal, where the STFD peaks correspond to the
ENF signal that has been purified from noise. RFA con-
verges within two or three iterations in a single-tone harmonic
formulation. The authors noted that this algorithm could be
integrated with any frequency estimation method to improve
the performance of the estimator by increasing the SNR.

In [79], the authors proposed a robust ENF extrac-
tion framework that included an improvement over the
single-tone algorithm proposed in [78]. First, the authors
introduced a harmonic robust filtering algorithm (HRFA) to
extend single-tone RFA to a multi-tone scenario. The HRFA
enhances each harmonic element individually without any
unwanted interference from other elements, thereby reducing
the impact of undesired noise and audiomaterial. Considering
that certain harmonic elements may still be distorted despite
the use of HRFA, the authors introduced a graph-based har-
monic selection algorithm (GHSA) that selects a group of har-
monic elements based on their strong correlations with each
other. The problem of selecting the most suitable harmonic
element was framed as a maximum-weight clique problem,
and the authors employed the Bron-Kerbosch algorithm to
effectively solve it. According to the authors, the proposed
framework surpasses the current single- and multi-tone tech-
niques when used in combination with modern MLE to
estimate the ENF. The superiority of the proposed framework
was demonstrated through an experimental evaluation using
130 real-world audio recordings from the ENF-WHU dataset.

B. ENF EXTRACTION FROM VIDEO RECORDING
Recent research has focused on the difficult problem of recov-
ering ENF signals from visual content. The fluctuation in
light intensity over time included inside the video frames may
be leveraged to obtain the ENF signal. Oscillations in the
ENF in the grid network influence the brightness of the light
emitted by any light source linked to the power grid. Because
the light source flickers during both positive and negative
AC current cycles, the frequency of the light is twice that
of the main power frequency. Thus, the light signal may be
considered as an absolute representation of the cosine wave
function [65]. For instance, for any video recording made
under indoor illumination powered by 50 Hz power mains,
because the polarity of the current changes at double the
frequency of the main power, the light flickers at 100Hz.

In addition, higher harmonics of decaying energy fre-
quently exist at integer multiples of 100Hz when there is a
mild deviation from a perfect sinusoidal mains power signal.
In addition, the higher harmonics have a larger bandwidth
than the primary component because the actual ENF sig-
nal, which is a narrowband signal rather than a completely
stable sine wave, is the signal of interest. Consequently,
the nth-harmonic component bandwidth is n times the ENF
component bandwidth at 100 Hz. Therefore, according to the
Nyquist theorem, it is necessary to have a sampling frequency
of at least 200 Hz to reliably detect and extract the frequency
of illumination from the recorded data [65].
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TABLE 1. A summary of research in ENF estimation in audio recordings.

Although the majority of consumer cameras cannot offer
such a high frame sampling rate, the illumination frequency
can still be estimated from its aliased frequency. Assuming
that fs is the sampling frequency of the camera and fl is the
frequency of the illumination of the light source, the aliased
illumination frequency fa is expressed as [80]:

fa = |fℓ − j.fs| <
fs
2

, ∃j ∈ N , (4)

where N is the number of samples/observation. Therefore,
when a 100Hz illumination signal from a light source is sam-
pled using a camera with a frame-rate of 29.97Hz, the aliased
base frequency of the ENF is obtained as 10.09 Hz while the
aliased second harmonic is obtained as 9.79 Hz [12]. The
aliased effect resulting from camera’s insufficient sampling
rate is mainly associated with cameras with the global shutter
mechanism.

The sampling rates of widely accessible cameras were
significantly lower than the nominal ENF value. Common
commercially available video cameras come at three sam-
pling rates (fps): 24, 25, and 30 fps. Cameras with 24 fps
are utilized for film production, while majority of amateur
hand-held cameras have 25 or 30 fps. Cameras with a sam-
pling rate of 25 fps are common in Europe and the majority

of Asia and are invented by the PAL analog TV standard,
while 30 fps cameras are invented by the NTSC standard
and are common in Japan and North America. Most video
cameras have a frame rate that varies significantly from 25 to
30 fps. A frame rate of 24.98 is specified by the PAL standard
whereas a frame rate of 29.97 frames per second is required
by the NTSC standard.

The approaches for estimating the ENF in videos depend
on the type of sensor used to capture the video. There are
two types of sensors: charged-couple device (CCD) sensors,
which utilize a global shuttle mechanism, and the metal
oxide semiconductor (CMOS) sensors, which utilize a rolling
shutter mechanism. Two types of camera images (CCD and
CMOS) can capture the flicker caused by the ENF at either
the level of individual frames or rows. This section provides
a discussion of the two sensor mechanisms and the research
studies that utilize them.

1) VIDEO RECORDING BASED ON GLOBAL SHUTTER
MECHANISM
Typically, CCD cameras capture video using global shutters.
It captures video by exposing and reading all the pixels of
the frame at the same time. The inadequate sampling rate of
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FIGURE 5. ENF fluctuation measured for white wall video showing the
aliased ENF signal [12].

this particular camera type causes a problemwhen attempting
to estimate the ENF because of the aliasing effect it induces.
However, the aliasing effect has no consequence on the ENF
extraction, provided that the frame rate used for sampling
is not a divisor of the ENF nominal value or its harmonics.
In such a situation, the aliased ENF is obtained at 0 Hz (DC
component), which makes it extremely difficult to estimate
the ENF.

The authors in [12] conducted the first experiment to
demonstrate that the ENF signal can be extracted from a video
recording. They utilized a charge-coupled device (CCD) cam-
era to capture two recordings. The first was a video of a
white-wall that was lit by fluorescent light. The second was
a recording in a room with varying camera positions for
surveillance purposes, with occasional movement of people
in the foreground. The authors extracted the ENF signal
by calculating the average intensity of each frame of the
white- wall video to produce an intensity signal. The signal
is then run over time through a temporal bandpass filter
whose passband matches the desired frequency to extract
the ENF. Given that the video content is largely consistent
between frames, it was concluded that the ENF signal was
responsible for the considerable amount of energy detected in
the frequency of interest. The aliased ENF signals extracted
from the white-wall video are presented in figure 5. In their
second experiment with video recording with movement,
directly averaging the pixel values of the entire frame may
not be an appropriate preprocessing step prior to carrying out
frequency analysis because of the inconsistency in the content
of each frame of the video. However, the authors averaged
the pixel intensity of relatively steady regions in the video
where there were no much inconsistencies and extracted the
ENF signal from the averaged pixel intensity spectrogram.
The extracted ENF was utilized for time-of-recording and
tampering detection applications.

The recordings used in the experiment in [12] were cap-
tured in China and India where there is a 100 Hz illumination
frequency using a sampling rate of 30 fps. Consequently,
there was an aliased component at 10 Hz. ENF extraction
is unaffected by this blend of the ENF nominal value and
the frame rate of the CCD. However, in countries where the
ENF frequency is 120-Hz, such as the US, global shutter
videos recorded at a sampling rate of 30fps can pose critical
challenges for estimating the ENF.

Researchers have also employed image-segmentation
approaches to analyze videos for ENF analysis. The authors
in [81] introduced a technique for image segmentation that
uses Simple Linear Iterative Clustering (SLIC) [82], [83].
To generate the mean intensity time series, they employed the
SLIC algorithm to create regions of similar properties, termed
super-pixels, with an average intensity above a certain thresh-
old. According to the authors, the embedded ENF in those
regions is not impeded by interference and noise including
shadows, textures, and brightness, resulting in more precise
estimations irrespective of whether a still or non-still test
video is used. The method was applied to a public dataset of
static and non-static CCD videos [84], and the mean intensity
time-series signal generated was passed through an ESPRIT
or STFT method to estimate the ENF.

Another method based on averaging pixels of particular
characteristics for extracting ENF from non-still videos was
proposed by the author in [85]. The method first employs
a background subtraction algorithm named ViBe [86] to
mitigate the deviation caused by movement. Before averag-
ing the pixels, a differentiator filter was used at the pixel
level to eliminate the time-dependent mean value at each
point. Luminance differences beyond a certain threshold were
suppressed, requiring the processing of only valid pixels of
successive frames. The frame-level signal was passed to a
Phase-Locked Loop-based FM demodulator [87] after pre-
processing to extract the ENF in an autoregressive manner.
This method was used to determine the time when some CCD
videos were recorded, and the simulation results showed its
effective performance. However, this method may be insuf-
ficient for extracting the ENF if the variations caused by
movement affect a significant number of pixels in every
frame.

2) VIDEO RECORDING BASED ON ROLLING
SHUTTER MECHANISM
CMOS cameras capture images based on a rolling shutter
mechanism [88]. Unlike global shutters that capture the entire
frame of an image at a single instant, rolling shutters sense
each frame by scanning across it, row by row, in a verti-
cal or horizontal manner. The frame rows are exposed to
light and read out one at a time, after which there is an
idle time before moving on to the next frame. As a result,
embedding of the ENF is achieved when the intensity of
each frame’s rows is sequentially captured. Figure 6 depicts
this process. Because of the exposure of pixels in different
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FIGURE 6. Sampling timing of rolling shutters [91].

rows at different times and their simultaneous display during
playback, the rolling shutter can generate skew, blur, and
other visual distortions, particularly with speedy objects and
quick flashes of light [89]. As a result of the associated
distortions, the rolling shutter’s sequential read-out process
has long been considered unfavorable to image/video quality.
Conversely, recent research has demonstrated that techniques
such as computational photography and computer vision can
be employed to take advantage of rolling shutters [88], [90].
The ENF signal can be sensed faster by the rolling shutter
than by the global shutter because of its sequential manner of
capturing the rows of each frame. Although it is traditionally
seen to be unfavorable to image/video quality, the rolling
shutter can sample fluctuating light signals at a much more
rapid rate. The potential contamination of ENFs by aliasing
can be eliminated by sampling at a faster rate [43]. The rolling
shutter’s ability to sequentially acquire rows of each frame
effectively multiplies the sampling rate by the number of
rows per frame, thereby addressing the issue of an inadequate
sampling rate. However, the rolling shutter method introduces
the issue of idle time in successive frames, where sampling
does not occur. Therefore, some light samples will not be
captured during the idle time period which occurs at the end
of every frame.

In [91], the authors initially leveraged a rolling shutter as
a solution to the inadequate sampling rate for ENF extraction
from video recordings. For their analysis, they formulated
an L-branch filter bank model of the rolling shutter mecha-
nism and showed how the dominant ENF harmonic shifted
to different frequencies as a result of the idle period in the
videos. To extract the ENF, the method ignores the idle time,
utilizes the average of each row’s pixel values as tempo-
ral samples, and concatenates them to form a row signal
when the foreground has a uniform color or is eliminated
using motion compensation. The row signal is then passed
through a spectrogram to generate ENF traces. The ENF
was then extracted by determining the primary instantaneous
frequency in a narrow band at the desired frequency. The
multi-rate signal analysis employed in this method to evaluate
the concatenated signal reveals that neglecting the frame’s
idle time during direct concatenation could lead to a mild
alteration in the computed ENF patterns [43].
The authors in [92], [93], and [94] also designed ENF

extraction methods based on calculating the average intensity

of each framewhen the foreground is uniform (in the case of a
white-wall video) or eliminated using motion compensation
(in the case of videos with motion) to generate an intensity
signal that is passed through Fourier analysis to extract the
ENF. The extracted ENF was further used for video synchro-
nization applications.

To avert such deformation in [91], the authors in [95]
and [96] proposed a periodic zero-padding approach to deal
with the idle time problem. The authors argued that instead
of ignoring the idle period, equally uniform sampling along
time should be conducted by returning zeros to the end of
each row signal until they reach the idle time duration before
combining them. This zero-padding strategy is capable of
producing ENF traces that are free of distortion; however,
it does need to know the duration of the idle period in advance.
The idle period can be determined using the camera read-
out time, which is model-specific [97]. The results of their
experiment demonstrated that this technique enhanced the
SNR of the estimated ENF signal.

In [98], the authors presented a phase-based method to
address the idle time problem when the read-out time was
not predefined. Their method aimed to apply row-by-row
samples separately on a frame-by-frame basis to prevent any
discontinuity owing to the idle period. DFT was applied to
each row sample, followed by quadratic interpolation with
its adjacent values. They used the read-out time estimated by
averaging all sinusoidal cycles acquired from all frames. The
precision of the read-out time estimation was verified using a
vertical phase method.

In [99], the authors presented a model that replaced the
primary ENF frequency with new ENF components deter-
mined by the duration of the idle period for each frame. Their
model further demonstrated that the strength of the acquired
ENF signal and the duration of idle time are inversely pro-
portional. The authors further suggested a new idle period
estimation method for camera forensics, which can also be
used for videos when the nominal ENF is a multiple of frame
rate.

In [100], the authors postulated a MUSIC spectrum-
combining method that exploits the rolling shutter mech-
anism without requiring any prior information of the idle
period. Given a test video, the method computes row-by-
row, the average pixel intensity, and concatenates them in a
singular time-series using a sampling rate of the frame rate
multiplied by the number of rows. The time-series signal
is then passed through the preprocessing stages, where the
local average is subtracted to enable a more precise result,
particularly when a video contains movements. The signal
was further down-sampled to 1kHz after applying an anti-
aliasing filter. Using the resulting signal, MUSIC and Fourier
domain analyses were conducted in parallel, and the respec-
tive spectra were combined to extract the ENF. The proposed
technique was utilized for time-of-recording verification, and
the experimental results showed its effectiveness even in a
more difficult scenario of 1-minute recording of both static
and non-static videos.
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TABLE 2. Summary of research in ENF estimation in video recordings.

C. ENF EXTRACTION FROM A SINGLE IMAGE
Recently, the authors of [13] and [66] demonstrated that it is
possible to obtain ENF traces from a solitary image captured

with a rolling shutter camera. Their work tried to answer
questions about the possibility of detecting ENF footprints in
an image and whether the location of image capture operate at
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a frequency of 50 Hz or 60 Hz. According to their opinion, the
sequential read-out time mechanism of a rolling shutter when
capturing an image permits the acquisition of samples of the
incoming electric light signal at various time points, resulting
in a brief section of the ENF traces in the resulting image.
As in the case of videos captured using a rolling shutter,
every image row is sequentially captured, which includes
a temporally fluctuating element attributed to the ENF. All
image rows are acquired in the frame period, which according
to the common frame rate, is normally 1/30 or 1/25s. This
time is too brief to extract a significant temporal signal for
the majority of ENF-based analysis tasks [43].

However, the authors illustrated that when smooth image
regions are corrupted by real-valued sinusoidal signals, these
regions tend to become complex or exhibit greater entropy.
Because of the sinusoidal signal’s positive and negative addi-
tive values, the lone bin in the histogram, prior to corruption,
begins to divide into several bins when applied to an image
column with uniform intensity. Because of such corruption,
the entropy of the constant signal increases from zero to
a positive value. The same statistical behavior occurs in
the instance of an image column with a linear increase in
intensity values; however, the increase is less pronounced
than that in the instance of constant intensity. The histogram
of the linearly increasing intensity case represents the win-
dow prior to corruption. After corruption, the bins on either
side of the window divide, potentially increasing entropy.
Based on this backdrop, the authors suggested an approach
to minimize the entropy for images with parametric surfaces
removed. The results of their experiment revealed the effec-
tiveness of the proposed method, where ENF traces were
prominent. However, there are several unresolved research
problems in the study of ENF in images. For instance, the
method suggested in [13] and [66] is only effective for images
that contain synthetically embedded ENF. Its effectiveness in
real-world photos can be further improved by adopting amore
sophisticated physical embedding model [43].

D. FACTORS AFFECTING ENF CAPTURING AND
ESTIMATION IN AUDIO AND VIDEO RECORDINGS
ENF traces were obtained from media recordings and
reflected the electrical activity of the power network during
the recordings. Therefore, it is essential to have electrical
activity in the recording location to acquire ENF traces.
Recordings made with recorders plugged into a wall outlet
are widely believed to contain ENF traces owing to the
electromagnetic interference caused by the recorder’s con-
nection to the wall outlet [5], [7], [8], [10], [39]. However,
for audio recordings obtained with recorders powered by a
battery, the situation becomes complicated because of several
factors. Therefore, identifying the factors that either facilitate
or impede ENF trace acquisition in media recordings can
provide valuable insights into circumstances in which ENF
analysis is relevant. Furthermore, this can aid in the develop-
ment of ENF-based applications.

TABLE 3. Factors influencing ENF acquisition in audio recordings
obtained with recorders powered by a battery [60].

In general, there are two types of factors that can affect
howwell ENF traces are acquired: environmental and record-
ing device-related factors. In addition, how different factors
interact with each other may also lead to different results.
For example, the electromagnetic field in the recording loca-
tion fosters ENF acquisition when the microphone used
for recording is dynamic. However, when the microphone
is an electret, the electromagnetic field does not have the
same effect. [43], [60]. Sample factors explored in the liter-
ature [10], [23], [39] and their effects on ENF acquisition in
audio recording are presented in Table 3. The most prevalent
source of ENF traces acquisition in audio recordings is the
acoustic mains hum, that are generated by mains-powered
appliances present in the recording location [39], [102].
A study conducted by the authors in [39] indicated that the
ENF traces were highly robust, with traces detectable even in
a recording carried out 10m distant from a source of noise
located in a separate room. The author in [60] carried out
experiments to examine the factors that impact ENF trace
acquisition, such as wave interference, recorder movement,
and recorder type.

1) WAVE INTERFERENCE
When several pieces of equipment connected to electrical
power in a given location, acoustic mains hum can originate
from a variety of sources. The different copies of the signal,
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along with their reflections, would produce different levels
of interference when they converge at the location where
the recorder captures the signal, resembling the behavior of
sound waves. The interference caused by sound waves that
carry ENF traces was investigated in a controlled experiment
by the authors of [60]. To conduct their experiment, they
positioned two speakers 1 m apart and emitted a syntheti-
cally generated tone signal at 240 Hz. They then recorded
the signals using two recorders placed at different locations
within a room. The results of their study revealed that in a
given environment where ENF traces are likely to be present,
such as a room, the particular position of a recorder within
that environment can influence whether the ENF is captured,
and the reliability of the ENF traces that can be captured as a
result.

2) RECORDER MOVEMENT
The authors in [60] illustrated that the movement of an
audio recorder during recording can impact the quality of
the ENF traces that can be captured. These observations
could potentially be caused by air pressure fluctuations. Most
microphones are susceptible to air pressure variations during
mobility, which could lead to substantial noise that might
potentially impact the ENF traces that are captured. Another
factor is theDoppler effect, perhaps in combinationwith other
sources such as airflow and vibrations. For the experiment,
the authors recorded a 10-minute audio at an office in Mary-
land using an Olympus recorder.

During the first 5-minutes, the recorder was kept stationary,
and afterwards, it was casually moved around by a person
in the room by hand during the remaining 5-minutes of
the recording. A plot of the ENF extracted from the audio
recording with the reference ENF recorded simultaneously is
shown in Figure 7.

FIGURE 7. ENF signal obtained from the audio recording and a reference
power recording captured concurrently [60].

In this experiment, we observed that in the first five min-
utes, there was a good correlation between the ENF signal in
the audio and power signals, but this correlation diminished
afterwards, when there was movement of the audio recorder.

This indicates that the movement of the audio recorder during
recording can affect the accuracy of the ENF traces obtained.

In another experiment, a controlled recording lasting
9-minute was made. This recording had three parts: a motion
phase lasting 3-6 minutes where someone held the recorder
and walked at a consistent pace towards and away from the
source, as well as two stationary parts when the recorder
was placed on a table, lasting 0-3 minutes and 6-9 minutes.
A speaker, which served as the source was used to emit a
55Hz synthesized single-tone sound. In the section involving
motion, the individual that held the camera walked away from
the speaker nine times and towards it eight times. The plot of
the frequency of the collected sound in the second experiment
is depicted in Figure 8 using a 2-second sliding window and
90% overlap.

FIGURE 8. Estimated dominant frequencies over time showing the
Doppler effect [60].

The graph depicts 17 distinct sub-phases within the motion
phase lasting 3-6 min, where the frequencies alternate with
respect to the source frequency. These frequencies match the
movements towards (shown in blue) and away from (shown
in red) the speaker. In general, the quality of the ENF traces
that can be obtained may be adversely affected by moving
the recorder during the recording process. In practice, proper
attention should be given to this issue, for instance, pro-
cessing the raw ENF trace with suitable compensations or
denoising algorithms, as this would impose further challenges
on the subsequent ENF-based forensic application.

3) RECORDER (RECEIVER) TYPE
The authors of Hajj-Ahmad et al. [60] demonstrated that the
recorder or receiver of a recording device utilized to generate
an audio recording can impact how ENF traces are recorded
in the resultant recording. Their experiment employed diverse
recorders in similar recording settings, which showed the
capture of ENF traces of different strengths and multiple
harmonics. Additional investigations in this area will improve
our understanding of the usefulness of studies and aid in
the development of ENF-based applications that can be
scaled up.
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In video recording, ambient conditions, camera settings
and motion, data properties, and the inverse square law of
light can affect the capture or estimation of ENF signals [61],
[82], [103]. In [61], the authors studied how the impact of a
main-powered illumination source as well as the compression
of the video recording, affects the capturing and/or how good
the captured ENF signal can be. They performed experi-
ments using video recordings made under different lighting
sources, such as white light-emitting diodes (LED), incan-
descence, and white compact fluorescent (CFL). The videos
were divided into different sizes and compressed at various bit
rates such as 5000Kbps, 1000Kbps, 500Kbps, and 100 Kbps.
Furthermore, a compressed Facebook version of every video
was generated by consecutively uploading and downloading
from the website. Following their experiments for recording
time, the author reported that the best ENF estimation was
achieved for video captured under LED lighting, while the
ENF signal quality declined dramatically under CFL lighting.
They also noted that compressed videos at low bit rates (e.g.,
100Kbps) and Facebook uploads noticeably diminished ENF
detection performance on video captured under LED, while
they resulted in a complete failure in ENF detection and time
of recording verification for 2 min and 5 min videos captured
under CFL.

The challenges of object motions in the recording scene,
camera motion, and camera brightness changes in ENF cap-
turing and estimation have been studied and addressed by the
authors in [82]. The authors presented motion and brightness
compensation schemes that enabled the effective estimation
of the ENF.

In [103], the authors provided an analysis of the frame rate
harmonics problem caused by the inverse square law of light.
This problem often emerges when attempting to estimate the
ENF signal from rolling shutter videos, especially when the
intended ENF frequency is a multiple of the video frame rate,
causing an overlap between the harmonics of the ENF and
frame rate. As such, the authors presented a method based on
refining the luminance waveform to significantly reduce the
impact of frame rate harmonics and consequently improve the
measured ENF signal.

VI. ENF APPLICATIONS
ENF analysis is an application-driven research topic.
Researchers have employed this tool in for several mul-
timedia forensic applications, such as verifying recording
time, detecting forgery/tampering, authenticating location,
and identifying camera/devices used for recording. There are
also applications beyond forensic analysis, such as multime-
dia synchronization. This section provides a comprehensive
review of studies conducted in various application areas.

A. TIME OF RECORDING VERIFCATION
Initial studies on ENF-based forensic analysis [4], [5], [6],
[7], [9], [10], [104] concentrated primarily on the devel-
opment of audio timestamp verification systems. The ENF
pattern of an audio signal should closely resemble the ENF

pattern of a power reference recording performed simulta-
neously. Therefore, given a test audio signal with a power
reference captured at the stated audio recording time, the
extracted ENF sequence of the audio signal can be compared
to the ENF sequence derived from the power reference signal.
The stated duration of the audio signal’s recording time can
be considered authentic if the derived audio ENF sequence
matches that of the reference ENF sequence [43].
When verifying that the timestamp of an audio file and

the questioned ENF contained a specified recorded time,
a speedy conclusion may be reached by visual comparison
of the questioned ENF with the simultaneously recorded
reference ENF. The least efficient visual comparison provides
the quickest effective method for assessing ENF match-
ing [6], [8]. However, visually searching for a match between
the questioned recording and the reference ENF becomes
impractical when the questioned recording has no declared
date on which it was recorded. This is because finding a
corresponding segment of the reference ENF from a huge
reference database is necessary for matching the questioned
ENF. In addition, a visual comparison did not provide a
quantitative measurement of the level of similarity between
the two sequences. These drawbacks limit the adoption of
visual comparison in real applications to estimate recording
time. Usually, the time-frequency pattern of the reference
ENF acquired is significantly greater than the length of the
recorded audio to enable a search within the timeframe in
which the audio data were probably obtained. Hence, to deter-
mine the level of similarity between the derived ENF signal
and all possible reference segments, either the minimum
mean squared error (MMSE) or maximum correlation coef-
ficient can be employed [8]. For a time-frequency pattern of
the extracted and reference ENF signals represented as r(m)
and a(m) with length H and M respectively, H > M , the
MSE, e, is expressed as

e (i) =
1
m

M−1∑
m=0

(ri (m) −a (m) )2 (5)

and the correlation coefficient, ρ, is expressed as

ρ (i) =

∑M−1
m=0 [

(
ri (m) − r̄ ī

)
(a (m) − ā)]√∑M−1

m=0 (ri (m) − r̄i)2
√∑M−1

m=0 (a (m) − ā)
(6)

where i ∈ {0, 1, 2, . . . ,H −M} and ri (m) = r(m+ i).
The timestamp estimate can be calculated using the value

that produces the MMSE or MCC [22]. Several suggestions
have been made to improve the matching criteria in published
studies.

In [105], the authors suggested a method that employs a
piecewise linear autoregression (AR) process to model the
ENF signal, with the aim of improving ENF-based recording
time estimation matching. The model enabled the authors to
disintegrate the ENF signal into predictive and innovation
processes and analyze its performance using a hypothesis
detection framework. The innovative signals generated by
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the AR modeling of the ENF signal were then extracted and
utilized for matching instead of the original ENF signals.
Their experiments, which were conducted using a hypothesis
detection framework, demonstrated that the method provides
a more confident result in recording time estimation and
validation.

To improve the matching accuracy when the extracted ENF
signal is affected by in-band noise as well as the resolution
problem, the authors in [22] introduced a threshold-based
dynamic matching method called error correction match-
ing method (ECM) that can automatically correct the
noise-impacted frequency estimation before performing the
matching. In their approach, a threshold is set based on
the windowed length of the STFT, which determines the
frequency resolution of the windowed signal. Based on
this threshold, an auto-correction procedure is performed
during the matching process. The superiority of the pro-
posedmethodwas demonstrated through experimental results
obtained using both synthetic and actual signals. However,
its performance has the drawback of requiring additional
computational time. Consequently, it can only be used for
verifying audio timestamps when a user specifies a short
search range for the reference ENF [106].

The authors in [106] presented a similarity measurement
method for matching two ENF signals called bitwise simi-
larity matching (BSM). The BSM simply assesses the extent
of the correlation between two ENF sequences by binarizing
the local difference scale. A pair of bits whose absolute error
is below a predefined threshold value is considered to be
matched. After the process of converting into binary form,
the dissimilarity between two sequences is simplified into a
solitary sequence of bits, with successive 1s indicating a seg-
ment that is locally matched. The results of their experiment
revealed that the proposed BSM technique is effective and
efficient, and has a considerably reduced computation time.

In [107], the authors provided a comparative study of
ECM and BSM techniques in comparison to the classical
MMSE matching criterion. The study opined that the use of
a predetermined threshold provides the advantage of toler-
ating inevitable errors during the matching process, unlike
in the MMSE. On the other hand, tolerable matching errors
may result in inaccurate matches in some scenarios, whereas
the MMSE baseline may produce an accurate match. The
threshold-based approaches under such scenarios are infe-
rior to the baseline method. Their analysis revealed that in
practical situations, the ECM and BSM methods may not
necessarily perform better than the baseline MMSE method
owing to the complexity of the scenarios. However, the results
of the seven scenarios investigated by the authors show that
the ECM produced the most precise matching, whereas BSM
compromised matching precision in favor of faster computa-
tion time.

The authors in [108] constructed a robust approach for
time-stamping relatively contaminated ENF contents. The
approach employs a threshold value to detect all useful

samples of the estimated ENF signal, specifically those that
are comparatively non noisy. The threshold values were spec-
ified for the maximum allowable departure from the nominal
value and the speed of the ENF variation based on the ref-
erence signal. For both the extracted ENF signal and the
reference data, a binary mask is created to indicate the sam-
ples that are useful. Next, the masks were used to execute a
modifiedNCC analysis between the extracted ENF signal and
reference data. The results of the experiment indicated that
the proposed method considerably enhanced performance.

The authors in [99] presented a technique for verify-
ing the recording time of ENF signals estimated from videos
recorded using rolling shutter cameras. As previously stated
in Section V, rolling shutter cameras usually have an idle
period between successive frames where no exposure is per-
formed, leading to the loss of some samples of the ENF in the
resulting video. This method involves interpolating the absent
period of illumination within every frame bymaking different
assumptions about period of inactivity to compensate for the
lost data points. An ENF signal was then obtained from each
interpolated time series and compared to the ENF reference
signal using correlation coefficients to determine or authen-
ticate the recording time.

The process of verifying the authenticity of a time-stamp
through ENF features is considered successful when the
ENF obtained from a suspicious media file is accurately and
exclusively matched to a segment of the ENF reference that
corresponds to a particular time-frame that may include the
actual time-stamp of the recording being tested. In terms of
uniqueness, this implies that one best match should be pro-
duced in the match process based on metrics such as MSE or
correlation coefficient (CC). In terms of accuracy, it implies
that the bestmatch should show that there is sufficient similar-
ity between the reference segment and the derived ENF from
the test to make a judgement, such as having a sufficiently
small MMSE or CC value close to one. Therefore, given a
test recording as well as a match scope, the question of the
reliability of the time-stamp authentication result logically
arises. The authors in [109] attempted to answer this question
by examining the factors that determine the dependability of
ENFmatching such as the SNR, duration of the reference sig-
nal, duration of the test recording, and ENF estimation tem-
poral resolution. They introduced a time-frequency domain
(TFD) synthesis scheme and employed it for analysis utilizing
both synthetic and actual data. After analyzing the data, they
observed that the most critical external component was the
SNR, whereas the duration of the test recording was the most
significant of the other three intrinsic factors, followed by
the duration of the reference ENF. They further observed that
the ENF matching process was insensitive to ENF temporal
resolution.

An actual scenario where ENF analysis was used to ver-
ify the recording time of a media recording in a law court
was presented in [6]. The authenticity of a recording of the
conversation between two business men provided as evidence
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was questioned by a public prosecutor in Cracow, Poland in
2003. It was a 55-minutes long recording where the recording
time and date stated by the evidentiary recorder differed by
196 days and 14 hours, respectively, from the time and date
claimed by the witnesses to the conversation. The Institute of
Forensic Research, tasked with examining audio recordings,
identified the existence of an ENF signal through their anal-
ysis.

The ENF signal taken from the recording used as evidence
was matched with ENF signals obtained from the power
network operator for reference. The result of the analysis
showed that the true time of the evidentiary recording was the
time claimed by witnesses. The reason for this discrepancy
is that the user of the recording device incorrectly set the
date and time before starting the recording. Figure 9 shows
a comparison between the ENF signal extracted from the
evidentiary recorder and the reference ENF signal obtained
from the power network operator.

FIGURE 9. Comparison of signals before (upper) and after (lower)
modification. Red arrows represent typical sections in both signals; blue
arrows show which component of the original signal was deleted from
the lower signal [6].

The ENF signal initially caught the attention of the foren-
sic community owing to its application in time-of-recording
authentication. However, various obstacles remain to be over-
come before it can be widely used in practical situations.
First, the aforementioned study assumed no signal tampering.
If the signal has been altered, the strategies described in
this sub-section might not be effective. Second, determin-
ing whether a media’s ENF sequence matches all potential
ENF sequences may require a high computation cost, based
on the information initially available about the recording.
A solution to this problem is proposed in [110]. Third, this
application presupposes that the time and place where the
media recording in question took place already have its refer-
ence ENF measured. If the reference data are insufficient or
non-existent, a forensic investigator will have to employ alter-
nativemethods to conduct the investigation. One suchmethod
determines the grid-of-origin (which will be discussed later in

this section) of a media recording without requiring simulta-
neous reference of ENF data [43].

B. LOCATION AUTHENTICATION
This sub-section discusses the use of ENF signals for
location-information inference. The details of amedia record-
ing can be obtained from ENF patterns derived from such
recordings (e.g., audio and video recordings) and utilized to
discern its location. Various techniques have been suggested
in the literature that can employ the ENF signal to infer
the grid where a media recording is captured, referred to
as inter-grid localization, and to pinpoint the environment
within a grid where a media recording is obtained, referred
to as intra-grid localization.

1) INTER-GRID LOCALIZATION
Several methods have been implemented that attempt to
determine the source grid of a multimedia recording contain-
ing the ENF signal when the power reference signal recorded
simultaneously is unavailable. Such methods can find useful
applications in security and forensic analysis to determine the
origin of ENF-containing multimedia files, especially those
involved in domestic violence, child exploitation and pornog-
raphy, ransom demands, and terrorism attacks [111]. Such
methods can also be leveraged to significantly minimize the
computational complexity when performing recording time
or intra-grid localization estimations. In a situation where a
forensic examiner is provided with media recording with no
information about its time and location, he/she can initially
apply these methods to determine the source grid where the
media file was recorded. Subsequently, the reference data
of the selected grid can be utilized to perform additional
forensic processes, including recording time authentication
and precise location estimates [112].

ENF signals obtained from various power grids were
observed to exhibit different types of ENF variations, which
are usually associated with the control mechanism employed
to manage the frequency of the standard value, as well as
the power grid size. The average 1-minute frequency over
a 48-hours period from three distinct locations and three
distinct grids is shown in figure 10 [25]. Spain, connected to
the large continental European grid may be observed in this
figure to exhibit a narrow range of frequency values and rapid
variations. Great Britain, which is the smallest of the three
grids, showed relatively large values of frequency variations.
In general, frequency variations tended to decrease as the size
of the power grid increased.

For any test media recording containing the ENF acquired
from various grids, the ENF signals in the test recordings can
be analyzed to retrieve unique and relevant features. These
features can then be exploited to train a machine learning
system to classify ENF signals based on their source grid.
Researchers have developed several such systems to pinpoint
the source grid of any ENF-containing media recording.
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FIGURE 10. Measurement of frequency variations in (a) Spain. (b) China.
(c) Great Britain [24].

The author in [112] constructed a machine learning sys-
tem that could determine the recording location where an

ENF-containing media file was captured when its simulta-
neous power reference was unavailable. From 11 distinct
grids across the world, the authors obtained power and audio
recordings and extracted ENF signal segments of 8-minutes
length from each recording. From the segments, statistical,
linear-predictive, and wavelet-based features were extracted
and utilized to train a multi-class Support Vector Machine
(SVM). The authors separated the ‘‘clean’’ and ‘‘noisy’’ ENF
signals obtained the power and audio recordings, respectively,
and then combined them in varying proportion during training
in various settings assess the impact of the training data type
on the resulting testing outcomes. The proposed approach
identified ENF signals in the power and audio recordings
from 11 target power grids with 88.4% and 84.3% over-
all precision, respectively. The authors further investigated
the use of multi-conditional methods that can accommodate
situations in which different noise conditions exist for the
training and testing data. When the dataset used for training
was restricted to clean ENF signals from retrieved power
recordings, this method improved the detection accuracy of
noisy ENF signals of extracted audio recordings by 20%.

The SVM method proposed in [112] was improved by the
authors in [113] by making the classification method a multi-
stage method. The multi-stage classification system utilized
the given training datasets to classify the input signal in three
stages. First, it distinguished whether the signal was either
power or audio. In the second stage, the nominal frequency
of the signal was determined, and in the third stage, a region-
of-recording analysis was performed. Their proposed method
yielded an improvement of 17.33% in the overall accuracy.

The authors in [114] investigated the use of five
machine-learning algorithms in region-of-recording identi-
fication using power and audio recordings captured from
ten various power grids. The machine-learning algorithms
examined were SVM,K-nearest neighbors, linear perceptron,
random forests, and neural networks. In their analysis, they
employed the features used in [112] and extra features related
to the extrema, rising edge, and autocorrelation. The features
associated with the extrema and rising edge in the ENF signal
demonstrated an improved performance, ranging from 3%
to 19%. In their setup, the RF classifier achieved an overall
highest accuracy of 91%.

The authors in [115], [116], [117], [118], [119], and [120]
also presented machine learning systems for inferring source
grids using power and audio recordings captured from nine
grids [121]. In the implementations in [115], [116], and [117],
statistical and wavelet-based features were extracted and
utilized to train a multi-class SVM. The overall accuracies
achieved by the works in [115] and [116] were 88% and
87%, respectively, while thework in [117] achieved an overall
accuracy of 94.7%. In the implementation in [118], extra
features such as spectral centroid and roll-off together with
statistical and wavelet-based features are used to train Ran-
dom Forests, SVM, and AdaBoost classifiers, with Random
Forests achieving the most effective overall accuracy of 88%.
In addition, in the setup used in [119], different combinations
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of statistical and wavelet-based features and features associ-
ated with extrema and rising edges were fed to a Binary SVM
classifier, which yielded a classification accuracy of 92%.
In the implementation in [120], the authors trained a Linear
SVM and a Bagged Tree using statistical and wavelet-based
features. The experimental results revealed that the Bagged
Tree outperformed the Linear SVM,with an average accuracy
of 82%.

In [122], the authors used a dataset of power signals
recorded at the distribution level from six distinct grids
in the US and ENF signals from audio and video online
datasets to infer the source grid. The extracted statistical
and wavelet-based features were used to train the SVM
and XGBoost algorithms, respectively. The accuracy of the
proposed algorithm was evaluated for each dataset using
15-minutes, 30-minutes, and an hour time unit. The experi-
mental results revealed that the XGBoost classifier achieved a
more accurate estimation result when the number of analysis
data points increased.

To ensure cost-effective and scalable location inference,
the authors in [123] introduced a method that uses a LIS-
TEN attack to construct an ENF signal MAP from online
streaming multimedia data, extract the ENF signal from can-
didate devices, and estimate their grid-of-origin. The LISTEN
attack approach first crawls and scraps audio and video
data from multimedia services (e.g., ‘‘EarthCam’’ [124],
‘‘Skyline’’ [125], ‘‘Explore’’ [126]) with recording location
information and is assumed to have been captured using AC
main-powered devices. Then, the multimedia data are ana-
lyzed using a series of signal processing methods to detect,
retrieve, and create a map of the signal. The second step
involves setting a target victim and extracting the ENF signal
from the recorded voice or device of the victim. In their
experiments, they were able to determine the source grid of
audio streams obtained from Skype and Torfan across seven
different power grids. They achieved an accuracy rate of
85-90% in classifying audio lasting between 10-40 minutes.
As we’ll see, their suggested solution also addressed intra-
grid localization.

2) INTRA-GRID LOCALIZATION
At an inter-grid level, research has shown that it is possible to
distinguish between recordings obtained across various grids,
because the ENF signal variations at a specific moment are
often distinct across grids that are operated independently.
At the intra-grid level, it is assumed that at different points
within the same grid, the ENF variations recorded simulta-
neously are very similar. However, studies have revealed that
there are detectable disparities among these variations, which
may likely result from alterations in the power consumption
of a certain city as well as the duration required to transmit
a reaction to load changes to other sections of the grid [35].
The varying ENF values may also be caused by system distur-
bances, including short circuits, line switching, and generator
failures [24]. A small load change in a particular region may

have a localized impact on the ENF in that region. However,
a significant change, such as generator disconnection, may
affect the entire grid. This change is propagated over the grid
of the Eastern US at a regular rate of approximately 500 miles
per second [33].
The authors of [46] and [127] hypothesized that load

changes may create position-specific fingerprints in the ENF
pattern, which may then be used to identify the exact site
within a grid where the recording was made. They expected
that the ENF signals for locations near one another would
be significantly similar to those farther apart, because of
the limited transmission rate of the frequency disturbances
throughout the grid. In their experiment, the authors in [127]
made three concurrent power signal recordings in Cottage
Park, Maryland, Princeton, New Jersey, and Atlanta, Georgia,
which are part of the US eastern grid. Figure 11 shows a plot
of the ENF signals obtained from the recordings.

FIGURE 11. ENF signals samples obtained from power signal recordings
made concurrently in three locations in the US eastern grid [127].

They observed a high correlation between the three ENF
signals at the microscopic level; however, some variations
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between the three signals were detected in the magnified
plot presented in figure 11(b). Next, the extracted ENF sig-
nal underwent high-pass filtering to isolate variations, and
the similarity of location across recordings was analyzed by
measuring the CC between the filtered segments. The CC
between distinct 600s ENF segments from various sites at
the same time is presented in Figure 12. As shown in figure
15, that as closer two cities are, the higher the CC between
their ENF signals, and the more distant they are, the lower
the CC of their ENF signals. Based on this observation, the
authors [127] designed a half-plane intersection approach to
estimate the position of recordings containing ENF signals.
They discovered that the precision of localization may be
enhanced by increasing the number of ancho-nodes positions.
Their results revealed that the proposed approach could yield
an estimation precision of 90% under specified situations.

FIGURE 12. Three-location data from the US east coast and the pairwise
correlation coefficient between their high pass-filtered ENF signals for
query segment of 600 seconds long [127].

The LISTEN framework proposed in [123] for identifying
the grid of recording also includes the capability to infer a
particular site where a target recording was made using the
map of the ENFmap constructed from the ENF trace obtained
from various live-streaming websites. After determining the
source grid, they calculated the Euclidean distance between
an interpolated time-series sequence of signals in the selected
source grid and the ENF signal present in the target recording.
This technique then pinpoints the recording site to a particular
area within the grid.

The authors in [128], [129], and [130] utilized the FNET/
GridEye system to pinpoint locations within a grid using
the features of noise and variations in ENF signals derived
from clean power signals without relying on the simultaneous
ENF power references. These types of noise characteristics
and ENF signal variations are caused by electromechani-
cal propagation, nonlinear loads, and recurring local dis-
turbances [128]. In [128] and [129], wavelet-based features

extracted from ENF signals were utilized to train a neural
network. The results in [128] found that the proposed system
achievedmore accuracy at a larger geographical scale, as well
as when there was less time between the recordings. In [130],
statistical and wavelet-based features were fed into a Random
Forest classifier for training. According to the experimental
results, the precision of identification is heavily influenced by
two key factors: the distance between the measurement sites
and the quality of the frequency signals.

In [131], the authors introduced a trilateration-based
method that employed the Half-Plane Intersection approach
presented in [127] and a correlation quantization method for
intra-grid localization without requiring training or reference
recording acquired from the query location. As the distance
between the recording locations increases, the correlation
between the two high-passed signals retrieved from these
areas diminishes. This finding was demonstrated through
the analysis of recordings taken in different geographical
areas within the same grid. Based on the correlation-distance
relationship, the authors suggested a correlation quantization
scheme. In the proposed scheme, the correlation values were
quantized in distance ranges and used by a trilateration pro-
tocol to evaluate the possible recording area for a given city.
The performance of the proposedmethodwas evaluated using
an ENF file acquired from five different areas. Four of these
areas were used as anchor cities, whereas the ENF file of the
fifth city was used as the query to evaluate its area. The results
of their study indicated that the localization precision was
enhanced with the correlation quantization technique com-
pared with the half-plane intersection technique. In another
experiment, the authors used a combination of the two meth-
ods, which yielded the best localization effectiveness with
regard to the localization probability and area. Their results
also show that by connecting more sites as anchor nodes, the
distance-correlation relationship may be further improved,
and the localization accuracy is enhanced, resulting in a
scalable finer localization approach.

C. FORGERY/TAMPERING DETECTION
ENF-based authentication relies on the basic idea that when
a recording containing ENF traces is manipulated, the modi-
fications will also alter the extracted ENF signals. Therefore,
ENF analysis of a manipulated signal exposes discontinuities
in the retrieved ENF signal, raising suspicions of manipu-
lation. Such manipulations include deleting portions of the
recording, adding unrelated segments, and combining clips
of several recordings [132], [133].

Earlier studies have shown that with the availability of
reference ENF, checking for manipulation can easily be done
by a comparison of the extracted ENF and reference ENF
signals obtained from the reported time and location of the
recording, to either confirm or cast doubt on the integrity of
the recording.

The authors in [7] presented a scenario in which the com-
parison of an ENF signal derived from a video file with its
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TABLE 4. Summary of research in ENF localization.

reference signal exposes the inclusion of an extraneous video
segment, as shown in figure 13. However, various alternative
techniques have been discussed in the literature to identify
manipulations in recordings containing ENF, even in cases
where no reference ENF information is available. In general,
when manipulations occur in a recording containing the ENF
signal, discontinuities in the ENF phase are likely to exist in
the parts where the manipulation occurred.

The authors in [20] conducted experiments to study the
impact of phase changes on ENF signals using original and
edited speech signals. Editing of the edited signal was per-
formed at the original sampling frequency by swapping two
small frames. The researchers noted that the ENF signal
implanted in a recording can experience a modulation effect
owing to phase variations when the recording is bandpassed
within the nominal ENF band. Figure 14 shows an example,
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FIGURE 13. ENF matching result indicating detection of video alteration
based on ENF traces [7].

FIGURE 14. Original and edited audio signal from Brazil bandpassed
around the nominal value of 60Hz, where (a) is the filtered original signal
and (b) is the filtered edited signal [20].

where noticeable discrepancies exist between the relative
amplitude of the edited signal and that of its original version.
We note that a drop in amplitude occurred at spots where the
authors made changes to the audio signals.

The authors of [134] presented a method that identifies
and quantifies the phase discontinuity of the power signal.
The audio recordingwas downsampled and band-pass filtered
around the nominal ENF value. The output was regarded as
a solitary tone for which the phase could be evaluated using
a high-precision Fourier analysis method called DFT [135].
Plotting the estimated phase serves as a useful visual aid not
only to detect the editing spots (which are indicated by abrupt
phase shifts) but also to deduce the sort of audio editing that
was performed (the addition of unrelated or removal of part of
audio fragments), as shown in figure 15. The authors further
introduced an automatic method that utilizes features derived

FIGURE 15. Estimation of phase from edited Spanish audio signal dataset
using DFT, indicating (a) segment deletion and (b) segment
insertion [134].

from the evaluated values to measure the discontinuity of the
ENF phase and to certify an original or edited signal. They
defined the suggested feature F as:

F = 100log

 1
Nf − 1

Nf∑
nf =2

[∅
(
nf

)
− A∅]

2

 (7)

where Nf represents the total number of frames used to
estimate the phase, ∅

(
nf

)
represents the estimated ENF phase

of frame nf , and A∅ denotes the average of the calculated
phases. The hypothesis groups H0,HE is then defined for the
process of detection, where H0 and HE denote the original
and edited audio signals hypothesis, respectively. If the value
of F surpasses a certain threshold γ , then hypothesis HE
holds, indicating the detection of editing in the audio signal.
Otherwise, the audio signal is original, that is, hypothesisH0.
Their experiments using Spanish databases (AHUMADAand
GAUDI) yielded 6% EER. Their experiments using Brazilian
databases (Carioca 1 and Carioca 2) yielded a 7% EER.

In [136], the authors improved their work in [134] to
account for a situation in which the ENF signal of the test
recording could not be found at the ENF nominal value
owing to corruption. This type of situation can also be caused
by attacks targeted at preventing forensic analysis [137],
[138]. With the assumption that non-linearity in the recording
technique allows for higher harmonics of the ENF to be
found in the signal, the authors described extracting the ENF
from higher harmonics for their automatic tampering detector
approach.

The authors in [139] developed a new method for identify-
ing edits in forensic audio analysis, which included improve-
ments in their methodology [134]. The new method applies a

VOLUME 11, 2023 101263



E. Ngharamike et al.: ENF Based Digital Multimedia Forensics

data-driven threshold-based approach to ENF analysis as well
as a decision criterion to identify abnormal ENF variations
associated with edit activities. After conducting a qualita-
tive investigation into the impact of noise contamination and
the duration and location of edits on detection capability,
the authors evaluated the effectiveness of the approach with
regards to EER detection. Experimental results using the
Carioca dataset of edited and unedited signal, which was
also used in [134], revealed that the proposed new method
accomplished a 4% EER, whereas the edit detector reported
in [134] achieved a 7% EER. The proposed method also
achieved an EER of 6% on the new Spanish dataset. Accord-
ing to the authors’ findings, amplitude clipping and additive
broadband noise have a significant impact on the detection
effectiveness of the proposed method, indicating that further
study is required to enhance detection performance in more
difficult settings.

In [140], the authors enhanced their method in [139]
by exploiting the typical ENF fluctuation pattern induced
by audio editing to improve the detection criteria. Their
major improvement on the threshold-based detection strategy
of [139] is to check whether an identified anomaly is consis-
tent with a particular pattern of ENF fluctuations triggered by
edits in the signal under testing, which reduces the number
of false positives produced by the edit detector. Experi-
ments were conducted to directly compare the proposed
improved method with the baseline method of [139]. The
results revealed that the improvedmethod is more dependable
than the baseline method because it tends to provide a lower
percentage of EER detection: a decrease from an EER of 4%
to an EER of 2% in the Carioca 1 database and a decrease
from 6% to 1% EER in the Spanish database.

The authors in [141] constructed a novel method for ver-
ifying the authenticity of audio recording, which employs
a phase-locked loop (PLL). Their method utilizes a
voltage-controlled oscillator (VCO) in the PLL to generate
an artificial signal that is comparable to the input signal.
By comparing the artificial and input signals, any discrepan-
cies between the two can be detected, and the VCO signal
can be adjusted to better match the ENF signal. However,
if there are severe phase fluctuations, substantial disparities
will occur between the VCO and ENF signals, indicating
possible manipulation. The authenticity of the audio was
subsequently established through an automated process that
involved comparing VCO frequency fluctuations with an
estimated threshold. Experiments using the proposed method
on the Carioca and AHUMADA databases indicated that
the proposed method can identify ENF discontinuities at
a high accuracy level, attaining 2% EER and 4.5% EER,
respectively, which is approximately the same performance
achieved in previous studies [134], [139].
The authors in [132] introduced an audio authentication

system that utilized the ENF to conduct both timestamp
validation and tampering detection. Given a testing audio
recording, the system processes the recording to check for

tampering. If no tampering is detected, the system performs a
timestamp verification. Otherwise (if tampering is detected),
the system performs tampering detection operations to ascer-
tain the nature of tampering (deletion, insertion, or splicing)
and the region where tampering occurs. The system employs
an absolute error map (AEM) to determine the authenticity
of the recording being analyzed. This involved comparing the
extracted ENF signal from reliable segments of the recording
with the ENF signal from the reference database, which
represents a two-dimensional representation of all the local
errors that occurred during the marching operation. The AEM
was then used to make authentic decisions. The features of
the AEM demonstrate how its line pattern corresponds to
three tampering operations: insertion, deletion, and splicing.
In addition, the authors developed two techniques that can
recognize horizontal line patterns in the AEM and generate
the necessary validation output without any manual interven-
tion. If the signal under study is determined to be authentic,
the system delivers a timestamp when a match is discovered.
If not, the two algorithms inspect the AEM to classify the
tampering type and identify tampered regions. Synthetic per-
formance analysis and experimental findings demonstrated
the effectiveness of the concept and a number of real-world
considerations.

In [142] and [143], the authors proposed tamper detection
techniques that incorporate the ESPRIT-Hilbert ENF estima-
tor together with an SVM classifier termed SPHINS to detect
tampering. The proposed SPHINS techniques employ an
ESPRIT-Hilbert ENF estimator, which provides a summary
of the ENF disturbances by utilizing sample kurtosis and
feeding them into an SVM classifier. Their proposed SPHINS
technique achieved an improved performance of 4% EER on
the original clean form of the Carioca 1 database compared
with the techniques in [134] and [139], especially in scenarios
with low SNR and nonlinear digital saturation.

In [144], the authors presented a method for detecting
audio manipulation based on autoregressive (AR) modeling.
Their approach first exposes the extracted ENF signal to a
wavelet filter to generate and highlight more detailed ENF
variations, which are then used for AR modeling. The gener-
ated AR coefficients were utilized in the training process of
the SVM classifier as input features to detect manipulation.
The authors reported that their proposed method significantly
outperformed the existing work method proposed in [140]
under noisy conditions and offered resilience to MP3 com-
pression.

In [145] and [146], a method that uses the maximum offset
for cross-correlation (MOCC) to detect audio authenticity
was proposed. This method involves comparing the ENF
signal obtained from a questioned audio recording with the
reference signal. The obtained ENF signal is split into blocks
that overlap, and an enhancement scheme is used to improve
the quality of the ENF signal. The MOCC between the ques-
tioned audio recording’s ENF and the reference ENF was
computed, and the changes in the MOCCs from different
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blocks were compared and used to determine audio authentic-
ity. According to the authors, their suggested method not only
detects the boundaries of the edited region but also recognizes
the type of forgery that has occurred.

In [147], the authors suggested an ENF-based algorithm for
detecting inter-frame video forgery in static video recording.
Given a suspected video, the algorithm retrieves its ENF and
employs cubic spline interpolation to address data deficits
in the retrieved ENF. From the interpolated ENF signal, the
algorithm first obtains the CC between every consecutive
period, and then utilizes the sharp decreases in the value of the
CC to identify the presence and location of the forgery. Their
experimental findings demonstrated the effectiveness of the
proposed method in identifying inter-frame video forgeries,
including frame deletion, frame insertion, and frame dupli-
cation. Additional experiments indicated that when it comes
to identifying inter-frame forgery in static scene surveillance
videos, the proposed algorithm outperformed several other
contemporary algorithms [148], [149].

In [150], the authors presented a technique for identifying
audio tampering that relies on the consistency of the ENF
component (ENFC). From the extracted ENFC, the phase
features and instantaneous frequency features were extracted
using DFT [135] the and Hilbert transform, respectively. The
feature set represents a measure of the phase magnitude as
well as the instantaneous frequency changes of the ENFC,
and as a pointer to the consistency of the ENFC. After extract-
ing these features, they were utilized as inputs to an SVM
classifier to detect tampering. Experiments demonstrated that
the proposed method provides a high degree of classification
precision. However, adding Gaussian white noise reduces the
precision of the proposed technique for signals with an SNR
of less than 10 dB.

Recaptured audio recordings contain two ENF sig-
nals [151] the ENF signal picked up during the original
recording (content ENF signal) and the ENF signal picked
up during the recapturing process (recaptured ENF signal).
If the recapturing of the recording takes place in a region
with the same nominal ENF value as that of the original
recording, then it is possible that the ENF patterns from both
recording operations will overlap. The two signals may have
different intensities, where higher and lower intensities are
regarded as the dominant ENF and latent ENF respectively.
Conventional ENF estimation algorithms, as demonstrated in
the study of [151], can only extract the dominant ENF signal.
Because audio recapturing may potentially be employed by
an adversary as an anti-forensic strategy for manipulating
ENF traces to misguide forensic investigators, approaches
to extract various overlapping ENF signals are necessary
to complement current strategies against such anti-forensic
operations [137].

The authors of [151] and [152] introduced approaches to
tackle the challenge of dealing with recaptured audio signals.
In [151], the authors presented a decorrelation algorithm
to retrieve ENF patterns in a more difficult case, in which
the two patterns overlap each other in frequency, employing

the assistance of a power reference signal. Assuming the
availability of the power grid reference data, the suggested
decorrelation algorithmmay be utilized to detect audio recap-
ture, that is, to determine whether a particular audio recording
is a genuine or recaptured copy. In [152], the author described
an approach for discerning whether a recording is genuine or
recaptured, which relies on a convolutional neural network
(CNN). The CNN uses spectral characteristics derived from
the fundamental ENF and its harmonics. The research also
examined how the analysis window impacts the effectiveness
of the approach and uses intermediate feature maps to obtain
an understanding of the learning and decision-making pro-
cess of the CNN.

D. CAMERA AND DEVICE IDENTIFICATION
Researchers have also developed ENF-based applications
that employ ENF pattern implanted in audio or video record-
ings to identify the device model or camera used to acquire
the audio or video chip. For audio recordings, certain
signal-derived features that allow for the differentiation of
various devices can be employed with a machine learning
algorithm to identify the recording device model. In [153],
the author implemented a machine learning solution that is
capable of learning the distinctive features of ENF signals
from a variety of devices and utilizes the learned features
of the ENF signals for its categorization. A system as such
this might potentially determine the device that captures an
ENF signal without the requirement for simultaneous power
references. The author used various recorders, including six
mobile phones and one tablet, to conduct the audio recording.
The harmonic power coefficients were estimated from the
extracted ENF signals and were utilized as features to train
an SVM classifier. The evaluation findings suggest that the
proposed method is effective.

For video recordings, an analysis can be performed to dis-
tinguish the inherent characteristics of the acquired camera.
Research in this area has concentrated on CMOS cameras
equipped with rolling shutters, with an emphasis on esti-
mating the read-out time Tro of the camera. The Tro refers
to the duration required by the camera to capture the rows
of a solitary frame, and it is a camera-specific parameter
that can be leveraged to characterize CMOS cameras with
a rolling shutter mechanism. It is not usually listed in the
user manual or specification catalog of most cameras and is
typically shorter than the frame period [91].

Some studies have exploited Tro on flicker-based video
forensics, which tackled concerns relevant to investigations
into movie piracy in the entertainment industry [80], [154].
This study focused on pirated videos created by filming a
video displayed on an LCD screen using a camcorder. Such
pirated recordings usually display a unique artifact known as
the flicker signal, which results from the interaction between
the LCD screen’s backlight and the video camera’s recording
mechanism. In [80], the authors presented several estimation
methods that analyzed flicker signals and estimated their
frequencies and the Tro value. These methods are used to
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identify the specific camera and LCD screen used to produce
pirated video.

Similar to the flicker signal, the ENF signal is a trace that
can be inherently implanted in a video, owing to the camera’s
recording process and signal existence within the recording
scene. The LCD screen’s backlight serves as the environ-
mental signal for flicker signals, whereas the electric lighting
signal in the recording scene triggers the ENF signal. Inspired
by the similarity between the two signals, the authors of [97]
suggested a nonintrusive approach that utilizes the ENF
recorded in a video to identify or describe the camera used
to create the video by computing the Tro of the camera. Their
approach essentially estimates the Tro of the camera for each
frame using the vertical phase analysis modeled as:

Tro =
Lωb

2π fe
(8)

where L denotes frame’s number of rows, ωb represents the
vertical radial frequency which is calculated from the vertical
phase line’s slope, and fe represents the ENF component
that fluctuates about the nominal frequency. The slope of
the vertical phase line may be acquired by estimating the
ENF phases ∅ [ℓ] (ℓ ∈ {1, 2, 3, 4, 5, . . . ,L}) for every one
of each row. The ∅[ℓ] is extracted by applying the Fourier
Transform to the time series of the l th-row, which can be
generated by calculating the average intensity values of the
lth row from every video frame. The proposed approach was
tested by employing ENF-containing videos captured by five
distinct cameras. The experimental results demonstrated that
the approach attained great precision in computing the Tro
value, with a relative estimation error of less than 1.5%.
However, the suggested approach relies on alias ENF, and
thus, may be ineffective when the frame rate of the camera
that obtains the video is a divisor of the ENF nominal value
(0 Hz alias ENF).

To address this limitation, the authors in [99] introduced a
method that can handle cases where the video camera’s frame
rate can cause a 0Hz ENF. Relying on a model that shifts
the nominal illumination harmonic to various frequencies
based on idle period length. The approach evaluates the two
frequency locations with the highest power where the ENF
components appear and estimates Tro based on the power
ratio between the two components.

E. MULTIMEDIA SYNCHRONIZATION
Synchronizing multimedia data is required to maintain
the original relationship between heterogeneous multimedia
data, ensuring that they remain synchronized before their
final presentation [155]. Traditional techniques that synchro-
nize multimedia content involve either passively or actively
measuring timestamps or finding similar related information
from two or multiple recordings. In audio synchronization,
contextual information such as voice and music can be uti-
lized. On the other hand, overlapping visual sequences, even
those obtained from various viewing viewpoints, can be used
to synchronize videos [43].

The ENF-based approach to synchronization, involves
aligning the implanted ENF signals of audio and visual tracks
to synchronize the recordings. As it is not dependent on
audio or visual data from multimedia signals, it can comple-
ment traditional synchronization procedures and may assist
in addressing issues that would otherwise be intractable. Tra-
ditional synchronization techniques require dedicated hard-
ware, whereas synchronization solutions relying on collected
ENF traces do not require dedicated hardware. However, for
the ENF-based synchronization procedure to be effective, the
ENF signal contained in the audio and visual track recordings
must have sufficient strength to permit the estimation of
reliable ENF signals. This approach is mainly applicable in
use cases where several recordings need to be synchronized,
either because they overlap in time or because they do not.
If numerous recordings from one power grid are captured
with an overlap in time, ENF can synchronize them without
difficulty.

The authors of [92], [93], and [94] proposed approaches
for synchronizing videos by aligning intrinsically embedded
ENF signals. When a video includes both visual and audio
tracks, either modality can be used as the source of synchro-
nization ENF traces. When an audio track is unavailable, as is
sometimes the case in video surveillance settings, it becomes
crucial to use a visual track for multimedia synchroniza-
tion [93]. The use of ENF to synchronize audio streams from
wireless and inexpensive USB sound adaptors was demon-
strated by the authors in [156]. When using multiple sound
cards, it is common for streams to be out of synchronization
because of the differences in the sample buffers filling rates
of the sound cards themselves.

If there was no time overlap between recordings, refer-
ence ENF databases were necessary to precisely pinpoint
the time every track was recorded. If the source location is
known, each recording must match a single or more reference
databases to calculate its timestamp [43].

F. VIDEO AUTHENTICATION
The use of the Internet of Video Things (IoVT) is now
an integral part of smart city infrastructure, where situa-
tion awareness (SAW) is crucial for monitoring and man-
aging cities [157]. As IoVT systems are increasingly being
deployed, a large amount of visual data is generated and
executed at each instant. However, with the advancement of
artificial intelligence (AI) technology, it has become easier
to create fake video and audio feeds as well as adulter-
ated images, which can deceive smart city security opera-
tors [158]. Therefore, verifying the authenticity of visual and
audio feeds is essential for ensuring safety and security. One
way to achieve this is to use an ENF signal obtained from
the power grid, which is a reliable signature for authenti-
cation. In [159], the authors suggested a method for video
authentication using an ENF and steady superpixels. This
method is known as the EVAS. To improve the segmen-
tation performance, memory efficiency, and computational
speed, the authors utilized the SLIC algorithm. To avoid the
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effects of ENF estimation variations, video super-pixels were
created by grouping pixels with consistent intensities and
textures. The EVAS method authenticates a video by com-
paring the estimated ENF with the ground-truth ENF through
reference-matching. However, in surveillance camera video
recording, moving objects may cause disruptions in illumi-
nation samples, leading to an imprecise estimate of the ENF.
The authors overcame this challenge using Selective Super-
pixel Masking, which compensates for occlusions attributed
to moving objects. The proposed method was implemented
on an edge-based platform to authenticate andmonitor indoor
surveillance using the reference data.

G. DEEPFAKE DETECTION
Although advanced end-to-end encryptionmodels are offered
by contemporary video conferencing technologies, they do
not authenticate the media broadcast through them, leaving
the responsibility of verification to end users [160]. This cre-
ates a vulnerability, as an attacker can use replay or deepfake
attacks to fabricate audio or video streams and manipulate
the perception of real-time transcribed events. The progress
made in generative models, including deepfake technology,
enables attackers to mimic a specific individual and manipu-
late online interactions. The successful execution of such an
attack may cause disinformation, which has the potential to
disrupt society and erode the fundamental basis of trust [161].
In [162], the authors introduced DeFakePro, a method

for detecting deepfakes in online video conferencing plat-
forms, using a decentralized consensus mechanism. This
technique utilizes the ENF present in digital media recordings
as a unique environmental signature, which is used in the
proof-of-ENF (PoENF) algorithm to establish consensus. The
PoENF algorithm compares the variations in the ENF sig-
nal to validate media broadcasts on conferencing platforms.
DeFakePro can detect deepfake video recordings broadcast
by malicious participants through video conferencing set-
tings. The system ensured the validity of all incoming media
on both the audio and video channels.

VII. CHALLENGES AND FUTURE WORK
1) In ENF-based forensic studies, several authors [4], [8],
[22], [30], [72], [112], [163] reported that the length of
a questioned recording should be 10 min or longer to
guarantee improved ENF extraction and reliable matching.
This poses a great challenge in the applicability of ENF
because the length of audio evidence in practical scenar-
ios can be as short as 30 s or less. In general, the ENF
analysis performance drops dramatically when the length
of the questioned recording is below 10 min because the
randomness or uniqueness of the ENF pattern weakens with
shorter durations. However, the studies in [164] and [165]
demonstrated that ENF may be detected in somewhat short
recordings, such as 2 min, indicating the feasibility of con-
ducting credible ENF estimates and subsequent forensic
analysis on short recordings. Accordingly, future research
should focus on developing and utilizing high-resolution

frequency-estimation systems for improved ENF detection
and estimation with smaller frame sizes.

2) The approaches proposed in the literature for inferring
both inter-grid and intra-grid localization utilize the power
ENF data. The ENF estimations derived from a power signal
are regarded as its purest and most easily accessible form.
However, multimedia ENF data prove more challenging to
work with because of its noisy nature compared with power
ENF data. The noisy ENF signal in multimedia data poten-
tially makes the localization process challenging because
state-of-the-art approaches use the high-resolution frequency
variations of the ENF signal to construct useful metrics for
localization. We noted that reducing the frame size to 1 s
caused an even greater decrease in the SNR of the audio
ENF signals. Nevertheless, a frame size of 1 s is considered
ideal to achieve acceptable localization accuracy [127]. The
noise sensitivity analysis reported by the authors in [131]
showed that a questioned signal SNR greater than 20 dB is
required for a satisfactory localization performance. In light
of these findings, it is challenging to use ENF signals in mul-
timedia recordings for localization, by utilizing current ENF
estimation methods as well as localization feature extraction
approaches. To extract an ENF signal with high a SNR from
media recordings, a breakthrough is needed in ENF estima-
tion approaches.

3) We noted that the ENF-based approaches proposed in
the literature for tampering detection can handle insertion,
deletion, and splicing attacks, but only when a lone attack
occurs at a single point inside an audio recording. In addition
to from the limitations of the current methods, there are
challenges in handling a combination of several attacks such
as insertion, deletion, splicing, replacement, and shuffling,
which can sometimes appear at multiple points. More inves-
tigations on the effective use of ENF for audio tampering
detection are needed, although the solution presented in [132]
is more of a decent starting point than a completely depend-
able solution. Such studies may not utilize the assumption of
discontinuity at tampered points as the only criterion but may
consider other possible ways to effectively exploit accessible
real-life data from both the questioned audio file and the
reference.

4) Detecting the ENF is a critical initial step in ENF-based
multimedia authentication systems, which has proven chal-
lenging using signal processing and detection theory [62].
For decades, the generic and hypothetical answer to the fun-
damental question of what places/locations can a recording
device capture the ENF has been that the recording device
should be near ENF sources, which still needs some kind of
practical guideline. Therefore, there is a need for other meth-
ods that can be used to promote ENF detection from a forensic
standpoint. As noted by the authors in [62], an approach that
may practically answer this question is to actively measure
the strength of the ENF signal at different spots. The sensor
of the measuring device, for instance, a modified sound-level
meter, should exclusively measure the ENF bandwidth. With
such an ENF level measuring meter, the strength of the ENF
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signal at different location such as restaurants, supermarkets,
cafes, classrooms, quiet office rooms, convenience stores,
lecture halls, home rooms, event trains, can be widely mea-
sured. The selection of the spots to measure is influenced
by the environmental noise level, interior space size, type
of likely media material to be captured, and typical objects
occupying the area, among other factors. With sufficient
experimentation, we can learn the strength of the ENF sig-
nal in a particular or similar sort of spot. Law enforcement
authorities can exploit such experimental information when
media evidence is noted to have been created at a measured
spot. Therefore, instead of treating a questioned audio file
from the signal processing viewpoint as interference, it was
carefully examined to determine the recording spot. This
will allow experimental information regarding the strength
of the ENF in that spot to be utilized. Even though it is
supplementary support, this idea and further research in this
direction can usually offer relevant forensic clues in practice.

5) ENF analysis can be exploited in new cases beyond
audio and video forensics. For example, fine localization fin-
gerprints in ENF can be employed to create secure connected
autonomous Internet of Things (IoT) and cyber physical sys-
tems (CPS) [166]. One possible scenario that could occur
involves utilizing ENF patterns captured by specialized sen-
sors used in IoT/CPS applications to aid in authenticating
location, either by authenticating location in security tokens
or by providing ‘‘Proof-Carrying Sensing’’ for CPS. For
example, in the case of IoT/CPS deployment, each connected
device may contain a photodiode covering the ENF frequency
range, which is relevant for indoor sensing. There could also
be acoustic sensors that are designed to record ENF with a
high SNR or sensors that capture ENF from devices plugged
into the power mains. Employing the approach for inferring
the location proposed in [131], the devices may use the high
SNR ENF from each other to authenticate the location of
each device after validating the reported location with the
estimated location, which utilizes both the ENF signal of the
device and the ENF signal of grid node.

VIII. CONCLUSION
This paper has provided a summary of research endeavors
pertaining to the ENF signal, a random and unique identifier
that may be acquired from multimedia recordings produced
in areas where electrical activity exists. Initially, we discussed
the techniques and sensor hardware for recording ENF ref-
erence data because for us to rely on the outcome of the
application of the ENF signal obtained from media record-
ings, we must verify that the signal we extracted is actually
the ENF signal. Subsequently, we discuss ENF detection in
media recordings. We note that it is dangerous to perform an
analysis assuming that the ENF signal is successfully cap-
tured, as this will negatively impact the related investigation.
We further explored the process of extracting ENF signals
from audio and video recordings. The various factors that
influence the capture of ENF signals in both audio and video
recordings were also analyzed. Next, we review the potential

applications of the ENF fingerprint for media file recording
time verification, tamper detection, location authentication,
recording sensor/device identification, and multimedia syn-
chronization. We also investigated applications for video
authentication and DeepFake detection. Finally, we highlight
the current challenges in the ENF analysis and suggest future
research directions.
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