
Received 1 August 2023, accepted 22 August 2023, date of publication 5 September 2023, date of current version 9 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3312234

Quaternion and Split Quaternion Neural
Networks for Low-Light Color
Image Enhancement
EDUARDO DE JESÚS DÁVILA-MEZA AND
EDUARDO JOSE BAYRO-CORROCHANO , (Senior Member, IEEE)
Center of Research and Advanced Studies (CINVESTAV), National Polytechnic Institute (IPN), Guadalajara Campus, Zapopan 45019, Mexico

Corresponding author: Eduardo de Jesús Dávila-Meza (eduardo.davila@cinvestav.mx)

This work was supported by the National Council of Humanities, Sciences and Technologies (CONAHCYT), Mexico,
under Grant CVU.854352.

ABSTRACT In this study, twomodels of multilayer quaternionic feedforward neural networks are presented.
Whereas the first model is based on quaternion algebra, the second model uses split quaternion algebra. For
both quaternionic neural networks, a learning algorithm was derived using an adaptation of the extended
Kalman filter. In addition, to analyze the performance of these two neural network models, they were applied
to address the problem of enhancing low-light color images, which for this work consists particularly in the
recovery of illuminated color images by quaternionic neural network processing from underexposed images.
The quaternion neural network enhances images in the RGB color space (Euclideanmetric), whereas the split
quaternion neural network enhances images in the HSV color space (Minkowski metric). From the results,
we can observe that the split quaternion neural network using the HSV color model shows advantages that
were not previously published and were not shown by the quaternion neural network using the RGB color
model. Therefore, this article introduces a novel quaternionic neural network that uses the Minkowski metric
for color image processing, which can be advantageously used by practitioners interested in working with
the HSV color model.

INDEX TERMS Extended Kalman filter, low-light image enhancement, quaternion, quaternion neural
network, RGB and HSV color space, split quaternion, split quaternion neural network, underexposed image.

I. INTRODUCTION
Image enhancement procedures consist of a set of techniques
or operations aimed at improving the visual appeal of an
image or converting an image into a form that is more suitable
for analysis by a human viewer or machine processing.
In an image enhancement system, there are no conscious
efforts to increase the fidelity of the reproduced image in
relation to a desired image form, as is the case in image
restoration. Thus, there is currently no general unifying
theory for image enhancement because there is no general
image quality standard that can serve as a design criterion for
an image enhancement processor [1]. In this sense, enhancing
color images becomes a more difficult task, not only due
to the extra dimension of the data compared to grayscale

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiangqiang Yuan.

images, but also due to the added complexity of color
perception [2].

On the other hand, the algebra of quaternions, first
described by the mathematician William Rowan Hamilton in
1843, has recently attracted the interest of researchers in areas
such as color image processing, automatic control, aerospace,
satellite tracking, and body motion tracking. An attractive
feature of quaternion algebra is that it minimizes the number
of parameters while improving computational complexity
and functional simplicity [3], [4].

In addition, in recent years, quaternion neural networks
(QNNs) have been used to address a variety of engineering
challenges, including color image compression, control
problems, inertial body sensing, and wind profile modeling.
QNNs are distinguished by the fact that their input, weights,
activation functions, and output are all quaternion-valued;
therefore, they can process quaternion-valued data directly.

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 108257

https://orcid.org/0000-0002-3493-400X
https://orcid.org/0000-0002-4738-3593

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

Thus, quaternions have reduced the number of parameters
and operations required for these applications [5].

Furthermore, neural network literature has been flooded
with studies that offer several training methods that pur-
portedly outperform traditional backpropagation and similar
approaches in terms of generalization, mapping accuracy,
overall performance, and training time. In this sense, the
extended Kalman filter (EKF) constitutes the principal com-
ponent of a second-order neural network training approach
that is both feasible and successful compared with other
second-order methods. The essence of the recursive EKF
technique is that, during training, an approximation error
covariance matrix storing second-order information concern-
ing the training problem is maintained and evolved, and
the weights of the network architecture evolve sequentially.
Singhal and Wu [6] introduced the global EKF training
algorithm in the late 1980s and has served as the basis
for the formulation and improvement of a set of methods
for computational training of neural networks. This has
enabled the application of feedforward and recurrent neural
networks to control problems, pattern recognition, and signal
processing [7].

Therefore, in this context, our work aims to design,
develop, and apply quaternionic neural networks using
quaternion and split quaternion algebras, and an adaptation
of the EKF as a learning algorithm. Since quaternion neural
networks have become very popular, as we have seen, the goal
of this paper is to analyze their role in color image processing
for enhancement by using different geometric spatial metrics
and color models.

The relevant literature related to this study is briefly
introduced in the following. These previous works focused on
the EKF for multilayered perceptron training and, similarly,
on Quaternion Algebra and its use in neural networks for
image processing.

In 1992, Iiguni et al. [8] used the extended Kalman filter
technique as a learning algorithm for a multilayer perceptron
neural network. They demonstrated that the convergence
performance of their learning method outperformed the
backward error propagation strategy using the steepest
descent technique.

In 1999, Rughooputh et al. [9] adapted the extended
Kalman filter technique for a hypercomplex multilayer
perceptron neural network. The weights and biases of this
neural network are quaternions, and in the same form, the
input and output signals.

In 2002, Puskorius and Feldkamp presented in [7] a brief
discussion of the feedforward network architecture that they
considered for training using the EKF method. Therefore,
they presented a global EKF training approach, followed
by parameter setting suggestions, including the relationship
between learning rate selection and initialization of the error
covariance matrix.

In 2004, Matsui et al. [10] showed through tests
that the quaternion version of the backpropagation pro-
cedure performs correct geometric transformations in the

three-dimensional space and color space for the image
compression problem, whereas real-valued backpropagation
fails. The most important contribution to the development of
this work is the appendix of the article, where the gradient of
the neural network output, concerning all adjustable network
parameters, is computed for the backpropagation algorithm.

Also in 2004, Kusamichi et al. [11] presented a neural
network for extracting color information from low-light
images. They adopted a quaternion feedforward neural
network, in which the neuronal parameters were presented
as four-dimensional vectors. The network was trained by
setting a low-light image as the input and its original image as
the target using a quaternion version of the backpropagation
algorithm.

In 2009, Isokawa et al. [12] presented a type of quaternion
neural network model. This model is a multilayer perceptron
configured on geometric transformations using quaternions,
where these transformations are operators in a three-
dimensional space: dilation, spatial rotation, and translation.
Color-night vision and color image compression problems
were used to demonstrate the usefulness of this neural
network.

Thus, as has already been noticed, the use of quaternions
for neural networks is not new. However, the significance
of this work is the use of split quaternion algebra to design
a neural network model based on the geometric operations
of split quaternions, and the application of the extended
Kalman filter technique to adapt a learning algorithm for this
neural network model that can be advantageously used by
practitioners interested in workingwith the HSV color model,
since it enhances color images using the Minkowski metric.

The remainder of this paper is organized as follows.
Section II provides the mathematical foundation necessary
for developing the subsequent content. Section III describes
the quaternionic neural network model using quaternion
and split quaternion algebras and describes the learning
algorithm for these two quaternionic neural networks.
Section IV introduces the application of both quaternionic
neural networks to the low-light color image enhancement
problem. In Section V, the training and testing results are
reported. Finally, conclusions are drawn in Section VI. The
partial derivatives for the gradient of the split quaternion
neural network model are calculated in the Appendix.
To visualize the gradient calculation of the quaternion neural
network model, refer to [10].

II. PRELIMINARIES
A. QUATERNION ALGEBRA
Quaternions are an associative but not commutative algebra
over R. Next, this subsection specifies some definitions,
properties, and notations of quaternion algebra according to
[3], [4], [5], [10], [11], [12], [13], [14], [15], and [16].
Definition 1: A quaternion is defined as a vector x in a

four-dimensional vector space, which is

x = x(e) + x(i)i+ x(j)j+ x(k)k, (1)

108258 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

where x(e), x(i), x(j), x(k) ∈ R, and i, j and k are the three
imaginary units.
Definition 2: Quaternion algebra is an associative and

noncommutative algebra over R, defined by the set of all
formal expressions given by (1) that is

H = span
{
1, i, j, k

}
=
{
x(e) + x(i)i+ x(j)j+ x(k)k

| x(e), x(i), x(j), x(k) ∈ R
}
, (2)

which is called the set of real quaternions or Hamilton
numbers. Likewise, the imaginary bases in quaternion algebra
satisfy the following rules:

i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j. (3)

From these rules, we can see that multiplication in H is
associative and noncommutative.
Definition 3: The conjugate of the quaternion x = x(e) +

x(i)i+ x(j)j+ x(k)k is defined as

x∗
= x(e) − x(i)i− x(j)j− x(k)k. (4)

It can also be defined by the notation x.
Definition 4: A quaternion with the real part equal to zero

has the form

x = x(i)i+ x(j)j+ x(k)k, (5)

and it is defined as pure quaternion.
Let p and q be quaternions defined as p = p(e) + p(i)i +

p(j)j+ p(k)k and q = q(e) + q(i)i+ q(j)j+ q(k)k , respectively.
Then, we can define a series of operations for the quaternions
that will be used in this study:
Definition 5: Addition and subtraction (±):

p± q =
(
p(e) ± q(e)

)
+
(
p(i) ± q(i)

)
i

+
(
p(j) ± q(j)

)
j+

(
p(k) ± q(k)

)
k. (6)

Definition 6: Element-wise product (⊙):

p⊙ q = p(e)q(e) + p(i)q(i)i+ p(j)q(j)j+ p(k)q(k)k. (7)

Definition 7: Quaternion product (⊗):

p⊗ q =
(
p(e)q(e) − p(i)q(i) − p(j)q(j) − p(k)q(k)

)
+
(
p(e)q(i) + p(i)q(e) + p(j)q(k) − p(k)q(j)

)
i

+
(
p(e)q(j) − p(i)q(k) + p(j)q(e) + p(k)q(i)

)
j

+
(
p(e)q(k) + p(i)q(j) − p(j)q(i) + p(k)q(e)

)
k. (8)

Definition 8: Product between scalar and quaternion (·):
The product of the scalar λ and the quaternion x = x(e) +

x(i)i+ x(j)j+ x(k)k is defined by

λ · x = λx(e) + λx(i)i+ λx(j)j+ λx(k)k, (9)

where λ, x(e), x(i), x(j), x(k) ∈ R.

Definition 9: Norm (∥.∥): The norm of the quaternion x =

x(e) + x(i)i+ x(j)j+ x(k)k is defined by

∥x∥ =
√
x ⊗ x∗

=

√
x(e)2 + x(i)2 + x(j)2 + x(k)2. (10)

B. SPLIT QUATERNION ALGEBRA
Split quaternions are also an associative and noncommutative
algebra over R. This subsection provides some definitions,
properties, and notations for split quaternion algebra accord-
ing to [3], [4], [5], [10], [11], [12], [13], [14], [15], [16],
and [17].
Definition 10: A split quaternion is defined as a vector x

in a four-dimensional vector space, which is

x = x(e) + x(i)i+ x(j)j+ x(k)k, (11)

where x(e), x(i), x(j), x(k) ∈ R, and i, j and k are the three
bases.
Definition 11: Split quaternion algebra is an associative,

noncommutative, and nondivided ring over R, defined by the
set of all formal expressions given by (11) that is

Hs = span
{
1, i, j, k

}
=
{
x(e) + x(i)i+ x(j)j+ x(k)k

| x(e), x(i), x(j), x(k) ∈ R
}
, (12)

which is called the set of real split quaternions. Similarly, the
bases in split quaternion algebra satisfy the following rules:

i2 = −1, j2 = k2 = ijk = 1

ij = −ji = k, jk = −kj = −i, ki = −ik = j. (13)

From these rules, we can see that multiplication in Hs is
associative and noncommutative.
Definition 12: The conjugate of the split quaternion x =

x(e) + x(i)i+ x(j)j+ x(k)k is defined as

x∗
= x(e) − x(i)i− x(j)j− x(k)k. (14)

It can also be defined by the notation x.
Definition 13: A split quaternion with the real part equal

to zero has the form

x = x(i)i+ x(j)j+ x(k)k, (15)

and it is defined as pure split quaternion.
Let p and q be split quaternions defined as p = p(e) +

p(i)i + p(j)j + p(k)k, and q = q(e) + q(i)i + q(j)j + q(k)k ,
respectively. We can then define a series of operations for the
split quaternions that will be used in this study:
Definition 14: Addition and subtraction (±):

p± q =
(
p(e) ± q(e)

)
+
(
p(i) ± q(i)

)
i

+
(
p(j) ± q(j)

)
j+

(
p(k) ± q(k)

)
k. (16)

Definition 15: Element-wise product (⊙):

p⊙ q = p(e)q(e) + p(i)q(i)i+ p(j)q(j)j+ p(k)q(k)k. (17)

VOLUME 11, 2023 108259

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

Definition 16: Split quaternion product (⊗):

p⊗ q =
(
p(e)q(e) − p(i)q(i) + p(j)q(j) + p(k)q(k)

)
+
(
p(e)q(i) + p(i)q(e) − p(j)q(k) + p(k)q(j)

)
i

+
(
p(e)q(j) − p(i)q(k) + p(j)q(e) + p(k)q(i)

)
j

+
(
p(e)q(k) + p(i)q(j) − p(j)q(i) + p(k)q(e)

)
k. (18)

Definition 17: Product between scalar and split quater-
nion (·): The product of the scalar λ and the split quaternion
x = x(e) + x(i)i+ x(j)j+ x(k)k is defined by

λ · x = λx(e) + λx(i)i+ λx(j)j+ λx(k)k, (19)

where λ, x(e), x(i), x(j), x(k) ∈ R.
Definition 18: Norm (∥.∥): The norm of the split quater-

nion x = x(e) + x(i)i+ x(j)j+ x(k)k is defined by

∥x∥ =

√
|x ⊗ x∗|

=

√∣∣∣x(e)2 + x(i)2 − x(j)2 − x(k)2
∣∣∣. (20)

FIGURE 1. HSV color model. This figure was created using MATLAB
software.

C. HSV COLOR SPACE USING SPLIT QUATERNIONS
The HSV color space is a three-dimensional representation
of color based on the components of hue, saturation, and
brightness, as defined in 1978 by Alvy Ray Smith [18]. It is
also a more accurate representation of how people perceive
colors and their quality. Color tones are grouped, unlike in
the RGB scenario, in which colors are not sorted in a coherent
manner. The color space created by this model corresponds to
a cone, as shown in Fig. 1. This color model is based on hue,
saturation, and value (HSV), which are described below:

• Hue refers to the dominant pure color or wavelength of
light in color. It is represented by an angle around the
vertical axis (0◦,. . . , 360◦), but also in the modular range
[0.0, 1.0].

• Saturation represents the relative purity of the hue.
It ranges from 0.0 to 1.0, where the maximum purity is
represented by S = 1.0, whereas with S = 0.0 we have
the grayscale.

• Value corresponds to the relative brightness. It ranges
from 0.0 to 1.0, where zero stands at the bottom of the
cone and represents black, whereas the maximum value
corresponds to the top of the cone, with white in the

center and pure colors in the perimeter, since they are
hues and primary colors with V = 1.0 and S = 1.0.

The equations that relate the components of the HSV
model to those of the RGB model are as follows:

V = max (R,G,B) , (21)

X = min (R,G,B) , (22)

S =

{
0, if V = 0

V−X
V , otherwise,

(23)

H =

not defined, if V = X
1
6

(
5 +

V−B
V−X

)
, if R = V and G = X

1
6

(
1 −

V−G
V−X

)
, if R = V and B = X

1
6

(
1 +

V−R
V−X

)
, if G = V and B = X

1
6

(
3 −

V−B
V−X

)
, if G = V and R = X

1
6

(
3 +

V−G
V−X

)
, if B = V and R = X

1
6

(
5 −

V−R
V−X

)
, if B = V and G = X

. (24)

Next, we explain why quaternion models are more advan-
tageous for color image processing, particularly for the HSV
color model using split quaternion algebra. A representation
of color theory using the HSV color space mapped onto a
convex cone can be made using split quaternions that have
a space-time Minkowski metric; therefore, the space has
a pseudo-Euclidean metric R3,1. In this sense, considering
a color sequence, such as the one depicted in Fig. 2a,
we observe that the color vector q(x, y, z) in the color cone
moves along a smooth path, as shown in Fig. 2b. On the
contrary, we observe that the color vector q(x, y, z) in the
RGB space, tracking the same color sequence, moves along
an erratic path, as shown in Fig. 2c. In the experimental results
of Section V, we present an analysis of both methods for
enhancing color images.

FIGURE 2. Color change sequence from black to red. This figure was
created using MATLAB software.

D. MEAN IMAGE VIA RGB COLOR SPACE
The computation of the mean image M between the RGB
images A and B (both images of width w, height h, and three
channels) in the RGB color space is shown in the pseudocode

108260 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

of Algorithm 1. The RGB image is returned as a numeric
array of h × w × 3, where the third dimension defines the
red, green, and blue channels for each pixel.

Algorithm 1 RGB-Mean Image

1 forall pixels (u, v,w) in M do

2 M (u, v,w) =
A(u, v,w) + B(u, v,w)

2
;

3 end

In Section V, note that image A is computed in the RGB
color space and image B is computed using the HSV color
model; thus, to compute the mean of both images (and for
storage and display), we convert the resulting HSV image to
RGB.

E. MEAN IMAGE VIA HSV COLOR SPACE
The Computation of the mean image M between the RGB
images A and B (both images of width w, height h, and
three channels) in the HSV color space is shown in the
pseudocode in Algorithm 2. The function rgb2hsv converts
the red, green, and blue values of an RGB image into the
hue, saturation, and value components of an HSV image,
as described in (21)–(24). This HSV image is returned as a
numeric array of h×w×3 with values in the range [0.0, 1.0],
where the third dimension defines the hue, saturation, and
value of each pixel. In contrast, the function hsv2rgb
converts the hue, saturation, and value components of anHSV
image to the red, green, and blue values of an RGB image.

In Section V, note that image A is computed in the
RGB color model and image B, using the HSV color space;
however, to compute themean image, we need to convert both
images to HSV, since they are stored in RGB for display.

III. QUATERNIONIC NEURAL NETWORKS
A. QUATERNIONIC NEURAL NETWORK MODEL
The multilayer quaternionic neural network is built by
arranging the nodes or neurons in layers, allowing each
neuron in a layer to take only the output of nodes that are in the
former layer or in the external input as input. If there are two
layers of neurons in the network, the network is called a two-
layer network, and so on. Due to its structure, this network is
commonly referred to as a feedforward network [19]. Fig. 3
shows an example of this architecture.

The neural network model is then expressed as a geometric
operation using quaternions or split quaternions. The follow-
ing list of notation defines the parameters used in the very
following equations:

xj Input of the jth neuron in the input layer.
yl Output of the l th neuron in the output layer.

{a} Set of a elements.
Lj,i Input from the jth neuron in the ith layer for neurons in

the (i+ 1)th layer. If i = 1, then Lj,i = xj.

Algorithm 2 HSV-Mean Image

1 A = rgb2hsv(Argb);
2 B = rgb2hsv(Brgb);
3 forall pixels (u, v,w) in M do
4 if w == 1 then
5 d =

∣∣A(u, v,w) − B(u, v,w)
∣∣;

6 if d > 0.5 then
7 d = 1 − d ;
8 if A(u, v,w) < B(u, v,w) then
9 M (u, v,w) =

∣∣A(u, v,w) − 0.5d
∣∣;

10 else
11 M (u, v,w) =

∣∣B(u, v,w) − 0.5d
∣∣;

12 end
13 else
14 if A(u, v,w) < B(u, v,w) then
15 M (u, v,w) = A(u, v,w) + 0.5d ;
16 else
17 M (u, v,w) = B(u, v,w) + 0.5d ;
18 end
19 end
20 else

21 M (u, v,w) =
A(u, v,w) + B(u, v,w)

2
;

22 end
23 end
24 Mrgb = hsv2rgb(M);

FIGURE 3. A fully connected two-layer quaternionic feedforward network
with three inputs, four hidden neurons, and two outputs. This figure was
created using Dia software.

8k,i Activation function of the k th neuron in the ith layer.
If the ith layer is the output layer, then 8k,i = yl ,
otherwise, 8k,i = Lk,i.

sk,i Sum in the k th neuron in the ith layer; this is the
argument of the activation function 8k,i.

ϕ Activation function for each part of the quaternionic
argument sk,i of 8k,i(sk,i).

VOLUME 11, 2023 108261

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

wj,k,i Synaptic weight between the jth neuron, in the ith layer,
and the k th neuron in the (i+ 1)th layer.

bk,i Bias from ith layer, for the k th neuron in the (i + 1)th

layer.
Ni Total number of neurons in the ith layer.
According to Fig. 3, we can generalize the neural network

model for the output 8k,i+1 of the quaternionic neuron k in
layer (i+ 1), which is the input Lk,i+1 for the neurons in the
(i+ 2)th layer, as follows:

Lk,i+1 = 8k,i+1(sk,i+1)

= 8k,i+1

(Ni∑
j=1

wj,k,i ⊗ Lj,i ⊗ w∗
j,k,i∥∥wj,k,i∥∥ + bk,i

)
. (25)

Similarly, the output of each neuron is determined by the
output of the activation function 8, which is defined as

8(s) = ϕ(s(e)) + ϕ(s(i))i+ ϕ(s(j))j+ ϕ(s(k))k, (26)

where ϕ(a) = tanh(a), for the work of this paper.
Therefore, the output yl of neural network (NN) of the

quaternionic neuron l is defined as

yl = 8l,3(sl,3)

=8l,3

(N2∑
k=1

wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2∥∥wk,l,2∥∥ + bl,2

)
; (27)

and the output8k,2 of the quaternionic neuron k in the hidden
layer, which is the input Lk,2 of the neurons in the output
layer, is expressed as

Lk,2 = 8k,2(sk,2)

= 8k,2

(N1∑
j=1

wj,k,1 ⊗ xj ⊗ w∗

j,k,1∥∥wj,k,1∥∥ + bk,1

)
. (28)

Since bias can be understood as a weight operating on a
clamped input to 1, the joint term ‘‘weight’’ has frequently
been used to include both weights and biases.

In general, multilayer neural networks use a certain number
of hidden layers depending on the classification or regression
task being addressed. Therefore, we tested up to three hidden
layers but found that one hidden layer was sufficient, as the
efficiency of the neural networks did not improve with an
increase in the number of hidden layers. In addition, what
matters is themetric used, as is the case of the split quaternion
neural network that utilizes the Minkowski metric of the
split quaternion algebra in a four-dimensional vector space.
Interestingly, we can change the metric in a quaternionic
neural network to the Euclidean (quaternion algebra) or
Minkowski (split quaternion algebra) metric, which opens up
great versatility in the use of these neural network models.

B. THE EXTENDED KALMAN FILTER PROCEDURE
The Kalman filter is widely known for its ability to estimate
the states of a linear system with additive state and output
disturbances. The network weights become the states to be
estimated while training the neural network using the Kalman

filter. Due to the nonlinearity of the neural network mapping,
an extended Kalman filter (EKF) algorithm is necessary.
Therefore, training aims to find the optimal weight values
of the network to reduce the prediction error. The following
nonlinear discrete-time system can represent the behavior of
a neural network [7]:

W (κ + 1) = W (κ) + ω(κ), (29)

D(κ) = h(W (κ), u(κ)) + ν(κ)

= Y (κ) + ν(κ). (30)

The first of these equations, generally recognized as the
process equation, simply specifies that the state of the ideal
neural network system is defined as a stationary process
which is represented by the values of the network weight
parameter W (κ), and is altered by the noise of the process
ω(κ). The second equation is the observation or measurement
equation, which describes the desired response vectorD(κ) of
the network as a nonlinear function of the weight parameter
vector W (κ) and the input vector u(κ), which is disturbed
by random measurement noise ν(κ). Additionally, process
noise ω(κ) is commonly defined as white noise of zero
mean with covariance matrix Qω(κ) specified by Qω(κ) =

E[ω(κ)ωT (κ)]. Similarly, measurement noise ν(κ) is defined
as white noise of zero mean with covariance matrix Rν(κ)
provided by Rν(κ) = E[ν(κ)νT (κ)].

C. LEARNING ALGORITHM
The training task for a quaternionic neural network applying
the EKF is defined to find the estimate of the minimum mean
squared error of the quaternionic stateW (p) by utilizing all the
data observed up to that moment. Consequently, the following
real-time recursion provides the EKF solution to the training
problem [7], [9]:

A(p)(κ) =
[
R(p) + H (p)T (κ)P(p)(κ)H (p)(κ)

]−1
, (31)

K (p)(κ) = P(p)(κ)H (p)(κ)A(p)(κ), (32)

Ŵ (p)(κ + 1) = Ŵ (p)(κ) + αK (p)(κ)ξ (p)(κ), (33)

P(p)(κ + 1) = P(p)(κ) − K (p)(κ)H (p)T (κ)P(p)(κ)

+ Q(p), (34)

where p = {e, i, j, k}. The scaling matrix A(p)(κ) is deter-
mined from the measurement noise covariance matrix R(p),
approximation error covariance matrix P(p)(κ), and network
output derivativematrixH (p)(κ) related to all trainable weight
parameters. For feedforward networks, matrix H (p)(κ) is
computed using static backpropagation. The Kalman gain
matrix K (p)(κ) is determined by multiplying the matrices
P(p)(κ),H (p)(κ), and A(p)(κ). The vector Ŵ (p)(κ) contains the
estimated states or weights of the system at the update step κ

and is determined by the learning rate α, the matrix K (p)(κ),
and the error vector ξ (p)(κ) = d (p)(κ)−y(p)(κ), where d (p)(κ)
is the target vector and y(p)(κ) is the output vector for the κ th

exposure to a training pattern. Finally, with the estimation
of the weight vector, the matrix P(p)(κ) evolves recursively
as a function of the matrices K (p)(κ) and H (p)(κ), and the

108262 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

covariance matrix of the process noise Q(p)(κ). Therefore,
it stores the second-derivative information in relation to the
training problem. This algorithm seeks the optimal weight
values that minimize the average sum of squared errors

1
4

∑
p={e,i,j,k}

ξ (p)T (κ)ξ (p)(κ). (35)

It should be noted that the algorithm requires that
the process and measurement noise covariance matrices,
Q(p) and R(p), be provided for all training instances and that
they are generally diagonal matrices. Similarly, the estimated
error covariance matrix P(p)(κ) must be established at the
beginning of training [7].
Since matrix H (p)(κ) is equivalent to the gradient of the

output yl concerning all the weights and biases of the network
at step κ , which is expressed as

H (p)(κ) =

[
∂yl(κ)
∂w(κ)

](p)T
w(κ)={wj,k,i(κ),bk,i(κ)∈Ŵ (κ)}

, (36)

its calculation depends on the quaternionic neural network
model that is used. Thus, for the quaternion neural network
(QNN) model, the partial derivatives are defined as

∂
yl
bl,2

= 8′

l,3(sl,3), (37)

∂ylwk,l,2 =
1∥∥wk,l,2∥∥

(
2∂ylbl,2 ⊗ wk,l,2 ⊗ L∗

k,2

− ∂
yl
bl,2

⊙
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2∥∥wk,l,2∥∥2 ⊗ wk,l,2

)
, (38)

∂
yl
bk,1

=

 N3∑
l=1

w∗

k,l,2 ⊗ ∂
yl
bl,2

⊗ wk,l,2∥∥wk,l,2∥∥
⊙ 8′

k,2(sk,2), (39)

∂ylwj,k,1 =
1∥∥wj,k,1∥∥

(
2∂ylbk,1 ⊗ wj,k,1 ⊗ L∗

j,1

− ∂
yl
bk,1

⊙
wj,k,1 ⊗ Lj,1 ⊗ w∗

j,k,1∥∥wj,k,1∥∥2 ⊗ wj,k,1

)
. (40)

Note that ∂y(k)
∂x(k) = ∂

y
x , for compactness in the notation

and distinguishing these partial derivatives from other
derivatives. In addition, note that ∂

yl
bl,2

(k), ∂
yl
wk,l,2 (k), ∂

yl
bk,1

(k),
∂
yl
wj,k,1(k) ∈ H.
Similarly, for the split quaternion neural network (SQNN)

model, these partial derivatives are defined as

∂
yl
bl,2

= 8′

l,3(sl,3), (41)

∂ylwk,l,2 =
1∥∥wk,l,2∥∥

[
2

(
wk,l,2 ⊗ L∗

k,2 ⊗ ∂
yl (i)
bl,2

i

+ ∂
yl (j)
bl,2

j⊗ L∗
(i)

k,2 i⊗ wk,l,2

+ i⊗ L∗
(j)

k,2 j⊗ wk,l,2 ⊗ ∂
yl (j)
bl,2

j⊗ i

+ L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ ∂
yl (j)
bl,2

j

+ ∂
yl (k)
bl,2

k ⊗ L∗
(i)

k,2 i⊗ wk,l,2

+ L∗
(j)

k,2 j⊗ wk,l,2 ⊗ ∂
yl (k)
bl,2

k

+ i⊗ L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ ∂
yl (k)
bl,2

k ⊗ i

)

− ∂
yl
bl,2

⊙
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2∥∥wk,l,2∥∥4 ⊗ λ1q1

]
, (42)

∂
yl
bk,1

=

 N3∑
l=1

wk,l,2 ⊗ ∂
yl
bl,2

⊗ w∗

k,l,2∥∥wk,l,2∥∥
⊙ 8′

k,2(sk,2),

(43)

∂ylwj,k,1 =
1∥∥wj,k,1∥∥

[
2

(
wj,k,1 ⊗ L∗

j,1 ⊗ ∂
yl (i)
bk,1

i

+ ∂
yl (j)
bk,1

j⊗ L∗
(i)

j,1 i⊗ wj,k,1

+ i⊗ L∗
(j)

j,1 j⊗ wj,k,1 ⊗ ∂
yl (j)
bk,1

j⊗ i

+ L∗
(k)

j,1 k ⊗ wj,k,1 ⊗ ∂
yl (j)
bk,1

j

+ ∂
yl (k)
bk,1

k ⊗ L∗
(i)

j,1 i⊗ wj,k,1

+ L∗
(j)

j,1 j⊗ wj,k,1 ⊗ ∂
yl (k)
bk,1

k

+ i⊗ L∗
(k)

j,1 k ⊗ wj,k,1 ⊗ ∂
yl (k)
bk,1

k ⊗ i

)

− ∂
yl
bk,1

⊙
wj,k,1 ⊗ Lj,1 ⊗ w∗

j,k,1∥∥wj,k,1∥∥4 ⊗ λ2q2

]
. (44)

where:

λ1 = w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2 | λ1 ∈ R,

q1 = w(e)
k,l,2 + w(i)

k,l,2i− w(j)
k,l,2j− w(k)

k,l,2k | q1 ∈ Hs,

λ2 = w(e)2

j,k,1 + w(i)2

j,k,1 − w(j)2

j,k,1 − w(k)2

j,k,1 | λ2 ∈ R,

q2 = w(e)
j,k,1 + w(i)

j,k,1i− w(j)
j,k,1j− w(k)

j,k,1k | q2 ∈ Hs.

Again, note that ∂y(k)
∂x(k) = ∂

y
x , for compactness in the

notation and distinguishing these partial derivatives from
other derivatives. In this case, note that ∂

yl
bl,2

(k), ∂
yl
wk,l,2 (k),

∂
yl
bk,1

(k), ∂ylwj,k,1 (k) ∈ Hs.

IV. LOW-LIGHT IMAGE ENHANCEMENT
A. PROBLEM STATEMENT
Consider the schematic represented in Fig. 4. In this scheme,
a quaternionic feedforward neural network is used to extract
pixel values from an input low-light image and obtain new
values as the output of this quaternionic neural network to
finally reconstruct an output image where the original scene
is appreciated with brightness. Therefore, to train this neural
network, a pair of images of the same scene is necessary.
Whereas the first image is selected so that there is sufficient
illumination to appreciate the scene, the second image is
selected so that the original scene is difficult to appreciate
due to a low illumination condition. In this order, the first
image is set as the target image or the desired output, and
the second image is set as the input for the neural network.

VOLUME 11, 2023 108263

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

FIGURE 4. Schematic of the training framework for the quaternion feedforward neural network and the split
quaternion feedforward neural network. This figure was created using Dia and PowerPoint software.

This training method is based on the results reported by
Kusamichi et al. in [11], where a quaternion feedforward
neural network is trained by the backpropagation algorithm
and used in their proposed method for the implementation of
a color night vision system.

Thus, nine pixels of the input image are used as
input for the neural network. The pixel values of the
pixel located at the coordinates (x, y) are set as input,
together with the pixel values of the immediate neighboring
pixels located at (x + i, y + j), where the pair (i, j)
∈ Z, such that

{
(i, j)

}
=

{
(−1, −1), (0, −1), (1, −1),

(−1, 0), (1, 0), (−1, 1), (0, 1), (1, 1)
}
. Thus, the output of the

neural network corresponds to the pixel values of the pixel
located at coordinates (x, y) in the output image, and the
desired output corresponds to the pixel values of the pixel
located at coordinates (x, y) in the desired image.
Considering that one quaternionic input is necessary for the

three components of a single input pixel, and one quaternionic
output is sufficient for the three components of the output
pixel, the number of quaternionic neurons for the input and
output of the neural network is then equal to the number of
previously established input and output pixels, respectively.

It should be noted that multilayer neural networks use
a certain number of hidden layers, depending on the
classification or regression task. To address this problem,
we found that one hidden layer was sufficient because the
efficiency of the neural network did not improve with an
increase in the number of hidden layers. In addition, what

really matters is that the quaternionic neural network model,
even with one hidden layer, uses either the Minkowski metric
or the Euclidean metric in a four-dimensional space.

In this manner, the structure of the quaternionic neural
network used corresponds to a fully connected three-layer
feedforward network with nine input neurons, one output
neuron, and, according to the preliminary tests carried out,
one hidden layer with nine neurons.

Hence, to address this color enhancement problem, two
quaternionic feedforward neural networks were used. These
two versions were trained using the extended Kalman filter
(EKF) algorithm, which was described for both neural
network models in the previous section. Thus, two different
cases were configured to show the results according to the
neural network model and the color space used to treat the
images. The two cases are a Quaternion Feedforward Neural
Network (QFFNN) using images in the RGB color space, and
a Split Quaternion Feedforward Neural Network (SQFFNN)
using images in the HSV color space.

Note that the input and output of the neural network for
this problem are pure quaternions (or pure split quaternions),
where each imaginary part or base stores one component of
the color triplet for a single pixel. In the first case, where the
RGB color space is used, the coefficient of the imaginary
unit i corresponds to the red channel, the coefficient of
the imaginary unit j belongs to the green channel, and
the coefficient of the imaginary unit k refers to the blue
channel. And in the case where the HSV color space is

108264 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

used, it is necessary to change the HSV values in Cartesian
coordinates to adequately treat these values, since they are
commonly measured in the closed interval [0.0, 1.0]. Thus,
the conversion is as follows:

θ = 2π · H (for the Hue), (45)

ρ = S · V (for the Saturation), (46)

z = V (for the Value), (47)

X = ρ · cos (θ), (48)

Y = ρ · sin (θ). (49)

Z = z. (50)

The necessity of this conversion can be observed in Fig. 5.

FIGURE 5. Graphic representation of the change from HSV values to
Cartesian coordinates. This figure was created using MATLAB and
PowerPoint software.

Therefore, for the second case, where SQFFNN is used,
the coefficient of the imaginary unit i corresponds to the
Z channel, the coefficient of the base j belongs to the
Y channel, and the coefficient of the base k refers to
the X channel. Hence, we obtain the following color vector:

q(x, y, z) = Zi+ Yj+ Xk, (51)

where q ∈ HS , and X ,Y ,Z ∈ R.

B. DATASET FOR TRAINING
The CIFAR-10 dataset [20] was used to train the two neural
network models. This dataset consists of 60,000 32×32 pixel
color images in 10 classes (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck), with 6000 images
per class, where there are 50,000 training images and 10,000
test images. However, we used only the training set and other
images with a better resolution for testing.

Consequently, we used two versions for each image. The
first version corresponds to the original image, where there is
enough light to appreciate the scene, and the second version
is configured so that there is a low-light condition to visualize
the original scene adequately.

We determined that using this dataset is advantageous
because it has a wider spectrum of colors and illumination
levels since every scene of each class might possess a
landscape, room, sky, or sea as background in addition to the
object or animal of the class. Furthermore, due to the low
resolution of the images, the loading and transformation of
each image would be faster during training.

In this manner, two versions of each image were used for
training. The first version is equivalent to the original image,
and the second version is configured so that the values of
all pixels decrease 80% their level in the value channel of
the HSV color map, and consequently, a darkened image is
obtained. The two versions were images of 32 × 32 pixels,
whose values are represented in a 64-bit format. In this order,
they were set as the desired image and the input image for the
training method, respectively.

Since 1024 (32 × 32) pixels constitute each image for
training, performing an iteration using all pixels would
represent a high computational cost, in addition to the
redundancy that would occur due to the processing of too
much similar information. Subsequently, four pixels were
used for each training iteration as an arbitrary and suitable
choice. These four pixels are selected in a random manner,
whose distribution function is uniform, considering from the
pixel at the leftmost and uppermost location to the pixel at the
rightmost and lowermost location in the randomly selected
image for the current training epoch.

C. COST FUNCTION FOR TRAINING
The two neural networks were trained using the EKF
algorithm, where the training cost function at iteration κ is
given by

J (κ) =
1
3

1
4

4∑
n=1

(
d (i)n − y(i)n

)2
+

1
4

4∑
n=1

(
d (j)n − y(j)n

)2
+

1
4

4∑
n=1

(
d (k)n − y(k)n

)2 (52)

where d (l)n is the desired output in the base l for the random
pixel n; y(l)n is the neural network output in the base l for the

random pixel n; 1
4

∑4
n=1

(
d (l)n − y(l)n

)2
is the mean squared

error in the base l of the four random pixels selected for the
iteration κ; and thus, J (κ) is basically the average of the mean
squared errors, of the three bases, at iteration κ .

For the two cases, the training was set to end when the EKF
minimized the cost function to a value less than 1 · 10−4.

D. A PARTICULAR IMAGE FOR TESTING
To evaluate the performance of each neural network,
we created and selected a distinctive image with very
particular content. Therefore, the first image corresponds to
the transformation of the values of the HSV color space
into a plane. The space of this model is represented by
a three-dimensional region whose shape is a cone. The
alignment is more closely correlated with the way human
vision perceives and distinguishes the colors of the visible
light spectrum. In general, this model can be more useful for
choosing a specific color. Fig. 6 shows the cone of the HSV

VOLUME 11, 2023 108265

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

FIGURE 6. Transformation of the HSV space into a plane. This figure was
created using MATLAB and PowerPoint software.

color space and the image that results from the transformation
of its external values into a plane.

Using this image for testing could be more advantageous
because it has a wider color spectrum than any other image
that might have a landscape, room, person, animal, or any
other object in the scene. Thus, we could observe a more
general performance for each neural network model along the
color spectrum.

V. RESULTS
This section presents the results that each neural network
model produced using its specific quaternionic algebra, its
specific color space for image processing, and the image
reconstruction scheme explained in Section IV-A.

It is worth mentioning that each neural network configu-
ration required different epochs to complete its training and
minimize its cost function to a value less than 1 · 10−4.
Quaternion Feedforward Neural Network (QFFNN) with
RGB color space required 1012 iterations, whereas Split
Quaternion Feedforward Neural Network (SQFFNN) with
HSV color space required 1208 iterations. In both cases,
a learning rate of 0.1 was used.

A. EXPERIMENTAL RESULTS ON LOW-LIGHT
CONDITIONED IMAGES
Figs. 7, 8, 9, 10, and 11 show the results produced by
each neural network model on several images. In them,
Fig. x.a shows the input image; Fig. x.b, the desired image;
Fig. x.c, the image reconstructed by QFFNN using the RGB
color space; Fig. x.d, the image reconstructed by SQFFNN
using the HSV color space; Fig. x.e, the image obtained by
computing the average image through the RGB color space,
as defined inAlgorithm 1, using Figs. x.c and x.d; and Fig. x.f,
the image obtained by computing the mean image through
the HSV color space, as defined in Algorithm 2, using
Figs. x.c and x.d again.

The original images used in these figures were chosen for
the following reasons. The image in Fig. 7b was preferred for
the reason explained in Section IV-D. The images in Figs. 8b,
9b, and 10b were selected because they correspond to three
of the ten classes that the CIFAR-10 dataset considers in its
content. And Fig. 11b was elected because we wanted to

evaluate the performance of the neural network models on
human skin tone, because the dataset used for their training
does not contain a class on people.

As was done during training, a darkened version of each
original image was configured for testing. This version
corresponds to the one shown in Fig. x.a of the aforemen-
tioned figures and was conditioned so that the values of all
pixels decreased 80% their level in the value channel of
the HSV color space. The two versions, as well as those
consequently reconstructed, are images with a resolution of
1024× 1024 pixels, whose values are represented in a 64-bit
format.

In addition, each subsequent table (Table 1 after Fig. 7,
Table 2 after Fig. 8, Table 3 after Fig. 9, Table 4 after Fig. 10,
and Table 5 after Fig. 11) shows how quantitatively similar
the input and reconstructed images are to the original image
with respect to themean squared error (MSE), peak signal-to-
noise ratio (PSNR), structural similarity (SSIM),Chi-Square,
and Intersection metrics. The MSE represents the mean
squared error value calculated based on the difference in
pixels between the reference and reconstructed images. The
PSNR determines the quality of the image reconstruction by

FIGURE 7. Comparison of the original input (7a) and output (7b) images
with those reconstructed by QFFNN with RGB (7c), SQFFNN with HSV (7d),
and those obtained by computing the mean image through the RGB (7e)
and HSV (7f) color spaces, respectively, for test image 1 (7b). Source of
the original image (7b): Primary.

TABLE 1. Quantitative comparison of the enhancement effect according
to the results obtained in Fig. 7 for test image 1 (7b).

108266 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

FIGURE 8. Comparison of the original input (8a) and output (8b) images
with those reconstructed by QFFNN with RGB (8c), SQFFNN with HSV (8d),
and those obtained by computing the mean image through the RGB (8e)
and HSV (8f) color spaces, respectively, for test image 2 (8b). Source of
the original image (8b): Adapted from [24].

TABLE 2. Quantitative comparison of the enhancement effect according
to the results obtained in Fig. 8 for test image 2 (8b).

TABLE 3. Quantitative comparison of the enhancement effect according
to the results obtained in Fig. 9 for test image 3 (9b).

computing the error between the corresponding pixels, that is,
the MSE [21]. The SSIM defines structural information from
the perspective of the composition of the image, reflecting the
structural attributes of the scene and considering the mean to
estimate the brightness, standard deviation for contrast, and
covariance to compute the degree of structural similarity [22].
The Chi-Square and Intersectionmethods obtain a numerical
parameter that expresses how well the two histograms of the
images match each other [23].

In the same tables (Tables 1, 2, 3, 4, and 5), the ↓ marker
means that the lower the metric, the better the match, which
is the case for the MSE and Chi-Square methods; and the

FIGURE 9. Comparison of the original input (9a) and output (9b) images
with those reconstructed by QFFNN with RGB (9c), SQFFNN with HSV (9d),
and those obtained by computing the mean image through the RGB (9e)
and HSV (9f) color spaces, respectively, for test image 3 (9b). Source of
the original image (9b): Adapted from [25].

FIGURE 10. Comparison of the original input (10a) and output (10b)
images with those reconstructed by QFFNN with RGB (10c), SQFFNN with
HSV (10d), and those obtained by computing the mean image through the
RGB (10e) and HSV (10f) color spaces, respectively, for test image 4 (10b).
Source of the original image (10b): Adapted from [26].

↑ marker indicates that the higher the metric, the more
accurate the match, which is the case for the PSNR, SSIM
and Intersection methods. In this sense, we can observe or
expect a perfect match when we compare the original or base
image with itself, so that the parameter obtained serves as a
reference to compare the quality of the reconstructed images
according to each of the metrics used. Additionally, for each
metric, we can notice that the bmarker indicates which model

VOLUME 11, 2023 108267

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

TABLE 4. Quantitative comparison of the enhancement effect according
to the results obtained in Fig. 10 for test image 4 (10b).

FIGURE 11. Comparison of the original input (11a) and output (11b)
images with those reconstructed by QFFNN with RGB (11c), SQFFNN with
HSV (11d), and those obtained by computing the mean image through the
RGB (11e) and HSV (11f) color spaces, respectively, for test image 5 (11b).
Source of the original image (11b): Primary.

TABLE 5. Quantitative comparison of the enhancement effect according
to the results obtained in Fig. 11 for test image 5 (11b).

or reconstructed image obtained the best result, whereas the ·

marker indicates the second-best result.
From the graphic results that we observed in the last five

figures (Figs. 7, 8, 9, 10, and 11), as well as from the following
ones presented in the next subsection (Figs. 12, 13, 14, 15,
16, 17, 18, and 19), we can realize that the QFFNN model
works on the intensity in each of the RGB channels, whereas
the SQFFNN model works not only on the value channel
(brightness) but also on the saturation channel of the HSV
color space. We can also observe that the adjustment made in
the red, green, and blue components in the RGB color space
by QFFNN, as well as the adjustment in the saturation and

FIGURE 12. Comparison between the original input image (12a) and
those reconstructed by QFFNN with RGB (12b), SQFFNN with HSV (12c),
and those obtained by computing the mean image through the RGB (12d)
and HSV (12e) color spaces, respectively, for test image 6 (12a). Source of
the original image (12a): Adapted from [27].

FIGURE 13. Comparison between the original input image (13a) and
those reconstructed by QFFNN with RGB (13b), SQFFNN with HSV (13c),
and those obtained by computing the mean image through the RGB (13d)
and HSV (13e) color spaces, respectively, for test image 7 (13a). Source of
the original image (13a): Adapted from [28].

value components in the HSV color space by SQFFNN, is not
precisely to the same extent.

Moreover, from the numerical results in Tables 1, 2, 3,
4, and 5, we can observe several results that generally
favor a certain image reconstruction method based on the
evaluationmetric used. For theMSEmetric, and consequently
for the PSNR metric, the images reconstructed by QFFNN
(Figs. x.c), followed by the RGB-mean images (Figs. x.e),
obtained a better quantitative match in most of the results. For
the SSIMmetric, the RGB-mean images (Figs. x.e) produced

108268 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

FIGURE 14. Comparison between the original input image (14a) and
those reconstructed by QFFNN with RGB (14b), SQFFNN with HSV (14c),
and those obtained by computing the mean image through the RGB (14d)
and HSV (14e) color spaces, respectively, for test image 8 (14a). Source of
the original image (14a): Adapted from [29].

FIGURE 15. Comparison between the original input image (15a) and
those reconstructed by QFFNN with RGB (15b), SQFFNN with HSV (15c),
and those obtained by computing the mean image through the RGB (15d)
and HSV (15e) color spaces, respectively, for test image 9 (15a). Source of
the original image (15a): Adapted from [30].

a better quantitative match in most cases. For the Chi-Square
metric, SQFFNN (Figs. x.d) obtained a better quantitative
match with respect to its image reconstruction quality in most
of the results. And for the Intersection metric, the similarity
parameter increased when a mean image was computed in the
RGB color space (Figs. x.e), and even in the HSV color space
(Figs. x.f), through both images reconstructed by each of the
quaternionic neural network models (Figs. x.c and x.d).

FIGURE 16. Comparison between the original input image (16a) and
those reconstructed by QFFNN with RGB (16b), SQFFNN with HSV (16c),
and those obtained by computing the mean image through the RGB (16d)
and HSV (16e) color spaces, respectively, for test image 10 (16a). Source
of the original image (16a): Adapted from [31].

FIGURE 17. Comparison between the original input image (17a) and
those reconstructed by QFFNN with RGB (17b), SQFFNN with HSV (17c),
and those obtained by computing the mean image through the RGB (17d)
and HSV (17e) color spaces, respectively, for test image 11 (17a). Source
of the original image (17a): Adapted from [32].

B. EXPERIMENTAL RESULTS ON IMAGES WITH NATURAL
LOW-LIGHT CONDITIONS
Figs. 12, 13, 14, 15, 16, 17, 18, and 19 show the results
produced by each neural network model on several images
with natural low-light conditions. In them, Fig. x.a shows
the original input image; Fig. x.b, the image reconstructed
by QFFNN using the RGB color space; Fig. x.c, the image
reconstructed by SQFFNN using the HSV color space; and

VOLUME 11, 2023 108269

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

FIGURE 18. Comparison between the original input image (18a) and
those reconstructed by QFFNN with RGB (18b), SQFFNN with HSV (18c),
and those obtained by computing the mean image through the RGB (18d)
and HSV (18e) color spaces, respectively, for test image 12 (18a). Source
of the original image (18a): Adapted from [33].

FIGURE 19. Comparison between the original input image (19a) and
those reconstructed by QFFNN with RGB (19b), SQFFNN with HSV (19c),
and those obtained by computing the mean image through the RGB (19d)
and HSV (19e) color spaces, respectively, for test image 13 (19a). Source
of the original image (19a): Adapted from [34].

Figs. x.d and x.e display the results of computing an average
image through the RGB and HSV color spaces, respectively,
using Figs. x.b and x.c.

The original images used in these figures (Figs. 12a,
13a, 14a, 15a, 16a, 17a, 18a, and 19a) were particularly
picked due to their various degrees of natural low light
intensity, in addition to the fact that in each of them there
is no homogeneous light condition throughout the entire
image. Furthermore, not all correspond precisely to any
of the classes considered by the CIFAR-10 dataset in its

content. These underexposed input images, as well as those
consequently reconstructed, are images with a resolution of
1024× 1024 pixels, whose values are represented in a 64-bit
format.

From the graphic results observed in the last eight figures
(Figs. 12, 13, 14, 15, 16, 17, 18, and 19), it is more evident
that the quaternion neural network model works on the
intensity in each of the RGB channels, whereas the split
quaternion neural network model works not only on the value
channel (brightness), but also on the saturation channel of
the HSV color space. Similarly, we can observe that both
quaternionic neural networks treat in a very particular way
those regions in the images that had better illumination before
their processing, thus obtaining a supersaturated region in
terms of intensity for the case of QFFNN, and in terms of
color saturation for the case of SQFFNN. Note that this effect
is to be expected because both neural network models were
trainedwith input scenes in which the low-light conditionwas
homogeneous or uniform throughout the entire image.

If we wished to quantitatively analyze the differences in
these results, as was done in the previous subsection using
the match metrics briefly described in Section V-A, we would
need a base image with a ‘‘good’’ or adequate exposure.
However, since the original images (Figs. x.a) correspond
to underexposed photographs, we would have to generate
a new version of each one as the ground truth through an
improvement in brightness and shadows, for example, either
manually or by another method of color adjustment.

VI. CONCLUSION
In this study, a Quaternion Feedforward Neural Network
(QFFNN) and Split Quaternion Feedforward Neural Network
(SQFFNN) were used to enhance low-light images. This
method extracts information from the scene of a low-light
or underexposed image to produce an image in which the
original scene is appreciated with improved illumination.

From the figures and tables presented in Section V,
we can observe several experimental results that could
generally favor a certain quaternionic neural network model,
depending on the quality of the resulting image or the
evaluation metric used. In that sense, particularly for theMSE
metric (and consequently the PSNR metric), QFFNN has
a better quantitative performance, which is understandable
because the RGB color model focuses on intensity, which
is the essence of these metrics that, without a doubt, favor
the improvement of intensity. Now, considering the Chi-
Square metric, SQFFNN has a better quantitative match
with respect to its image reconstruction quality, indicating
that the histogram comparison of this metric suggests to be
more sensitive to hue and saturation. However, the same
results reveal that taking into account the Intersectionmetric,
the similarity parameter increases when a mean image is
computed in the RGB color space, and even in the HSV
color space, through both images reconstructed by each
quaternionic neural network, which indicates that the images
reconstructed by QFFNN could be improved in terms of

108270 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

color saturation, since this model only works on the intensity
of RGB channels, whereas SQFFNN works on the value
(brightness) and saturation components.

However, a conclusive theoretical explanation for qualify-
ing the QFFNN model (based on the RGB color space or the
Euclidean metric) and the QFFNN model (based on the HSV
color space or the Minkowski metric) is difficult, as we are
trying to approach the subject of human perception because,
as a cognitive process, there is no clear metric that describes
it, nor a general unifying theory for image enhancement that
can serve as a design criterion.

It should be remembered that the images presented
in Section V-A were obtained by setting low-light input
images with lighting similar to that used in the images for
training, whereas the images presented in Section V-B were
particularly selected due to their various degrees of natural
low light intensity.

Although both quaternionic neural network models per-
form image reconstruction by improving the illumination of
images that are underexposed or could benefit from light,
we note that these images could still be improved in aspects
such as sharpening, contrast, denoising, and color balance
adjustment. Even, in particular, we note that the results
obtained in Fig. 11 could still be improved to reproduce the
skin tone more faithfully, since humans relate to skin tones
more critically than other colors; water, grass, environment,
sky, animals, or any other object might look off or saturated
without concern, but if the skin tones look off or saturated,
the human subject might seem sick or dead, for example.
However, these considerations are beyond the scope of the
present study.

The experimental results suggest the utility and per-
formance that multilayer quaternionic feedforward neural
network models can exhibit against other more complex or
deeper neural network structures. In particular, what makes
this work significant is the use of split quaternion algebra
to design a neural network model based on the geometric
operations of split quaternions for color image processing,
as well as the application of the extended Kalman filter
technique to design a learning algorithm for this neural
network model. In addition, we can observe that the split
quaternion neural network using the HSV color model shows
advantages not previously published, which are not shown by
the quaternion neural network using the RGB color model.
Therefore, this work presents a novel quaternionic neural
network using the Minkowski metric for color processing,
which can be advantageously used by practitioners interested
in working with the HSV color model.

APPENDIX A
MATRIX REPRESENTATION OF SPLIT QUATERNIONS
Let x = x(e) + x(i)i + x(j)j + x(k)k be a split quaternion and
y = y(i)i + y(j)j + y(k)k a pure split quaternion. These split
quaternions can then be represented in vector form using their
real coefficients as elements for a column vector [10], [14],

[15], [17], such as follows:

x =

x(e)

x(i)

x(j)

x(k)

 , y =

y(i)y(j)

y(k)

 . (53)

Similarly, we can represent the split quaternion product as
a multiplication of matrices. In this form, the split quaternion
product of i, j and k with x, respectively, is

i⊗

x(e)

x(i)

x(j)

x(k)

 = IL

x(e)

x(i)

x(j)

x(k)

 =

−x(i)

x(e)

−x(k)

x(j)

 ,

where IL =

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ; (54)

j⊗

x(e)

x(i)

x(j)

x(k)

 = JL

x(e)

x(i)

x(j)

x(k)

 =

x(j)

−x(k)

x(e)

−x(i)

 ,

where JL =

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ; (55)

k ⊗

x(e)

x(i)

x(j)

x(k)

 = KL

x(e)

x(i)

x(j)

x(k)

 =

x(k)

x(j)

x(i)

x(e)

 ,

where KL =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (56)

The split quaternion product of x with i, j and k,
respectively, is

x(e)

x(i)

x(j)

x(k)

⊗ i = IR

x(e)

x(i)

x(j)

x(k)

 =

−x(i)

x(e)

x(k)

−x(j)

 ,

where IR =

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ; (57)

x(e)

x(i)

x(j)

x(k)

⊗ j = JR

x(e)

x(i)

x(j)

x(k)

 =

x(j)

x(k)

x(e)

x(i)

 ,

VOLUME 11, 2023 108271

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

where JR =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ; (58)

x(e)

x(i)

x(j)

x(k)

⊗ k = KR

x(e)

x(i)

x(j)

x(k)

 =

x(k)

−x(j)

−x(i)

x(e)

 ,

where KR =

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 . (59)

In general, we can also represent the split quaternion
product of a split quaternion x as a matrix. Let QL(x) and
QR(x) be matrices that represent the product of x from the
left-hand and from the right-hand sides, respectively. These
are expressed as follows:

QL(x) = x(e)U + x(i)IL + x(j)JL + x(k)KL

=

x(e) −x(i) x(j) x(k)

x(i) x(e) x(k) −x(j)

x(j) x(k) x(e) −x(i)

x(k) −x(j) x(i) x(e)

 , (60)

QR(x) = x(e)U + x(i)IR + x(j)JR + x(k)KR

=

x(e) −x(i) x(j) x(k)

x(i) x(e) −x(k) x(j)

x(j) −x(k) x(e) x(i)

x(k) x(j) −x(i) x(e)

 , (61)

where U is the identity matrix.
Products of the split quaternions x and y satisfy the

following properties:

QL(x)QL(y) = QL(xy),

QR(y)QR(x) = QR(xy),

QR(y)QL(x) = QL(x)QR(y). (62)

Any rotation is defined by

y = a⊗ x ⊗ a∗ (63)

This operation can also be represented as a matrix. Applying
(60) and (61), the operation can be rewritten as follows:

0
y(i)

y(j)

y(k)

 = QR(a∗)QL(a)

0
x(i)

x(j)

x(k)

 (64)

where

QR(a∗)QL(a) =

x(e)

2
+ x(i)

2
− x(j)

2
− x(k)

2

0
0
0

0
x(e)

2
+ x(i)

2
+ x(j)

2
+ x(k)

2

2
(
x(e)x(k) + x(i)x(j)

)
2
(
x(i)x(k) − x(e)x(j)

)
0

2
(
x(e)x(k) − x(i)x(j)

)
x(e)

2
− x(i)

2
− x(j)

2
+ x(k)

2

2
(
x(e)x(i) − x(j)x(k)

)
0

−2
(
x(e)x(j) + x(i)x(k)

)
−2
(
x(e)x(i) + x(j)x(k)

)
x(e)

2
− x(i)

2
+ x(j)

2
− x(k)

2

 . (65)

Therefore, the matrix representation of the split quater-
nions is used to improve the readability of the equations in
the remainder of this paper.

APPENDIX B
DERIVATIVES OF SQNN FOR EKF ALGORITHM
Recalling the split quaternion neural model, the sum sk,i+1 of
the neuron k , in the ith layer, is expressed as

sk,i+1 =

Ni∑
j=1

wj,k,i ⊗ Lj,i ⊗ w∗
j,k,i∥∥wj,k,i∥∥ + bk,i. (66)

So, by applying (65), sk,i+1 can be represented in matrix
form as:

sk,i+1 =

Ni∑
j=1

1∥∥wj,k,i∥∥
w(e)2
j,k,i + w(i)2

j,k,i + w(j)2

j,k,i + w(k)2
j,k,i

2
(
w(e)
j,k,iw

(k)
j,k,i + w(i)

j,k,iw
(j)
j,k,i

)
2
(
w(i)
j,k,iw

(k)
j,k,i − w(e)

j,k,iw
(j)
j,k,i

)
2
(
w(e)
j,k,iw

(k)
j,k,i − w(i)

j,k,iw
(j)
j,k,i

)
w(e)2
j,k,i − w(i)2

j,k,i − w(j)2

j,k,i + w(k)2
j,k,i

2
(
w(e)
j,k,iw

(i)
j,k,i − w(j)

j,k,iw
(k)
j,k,i

)
−2
(
w(e)
j,k,iw

(j)
j,k,i + w(i)

j,k,iw
(k)
j,k,i

)
−2
(
w(e)
j,k,iw

(i)
j,k,i + w(j)

j,k,iw
(k)
j,k,i

)
w(e)2

j,k,i − w(i)2

j,k,i + w(j)2

j,k,i − w(k)2

j,k,i

L(i)j,i
L(j)j,i
L(k)j,i

+

b
(i)
k,i

b(j)k,i
b(k)k,i

 . (67)

Updates of the network parameters are determined by the
EKF learning algorithm, where the gradient of yl is necessary
with respect to the network parameters {wj,k,i} and {bk,i} for
matrix H in (36). Then, to calculate the gradient of the split

108272 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

quaternion neural network (SQNN), we can base our calculus
on the gradient for the output yl of a Real-valued Neural
Network (RNN). Thus, for an RNN, we have

∂yl
∂bl,2

=
∂8l,3

∂sl,3

∂sl,3
∂bl,2

, (68)

∂yl
∂wk,l,2

=
∂8l,3

∂sl,3

∂sl,3
∂wk,l,2

, (69)

∂yl
∂bk,1

=
∂8l,3

∂sl,3

∂sl,3
∂8k,2

∂8k,2

∂sk,2

∂sk,2
∂bk,1

, (70)

∂yl
∂wj,k,1

=
∂8l,3

∂sl,3

∂sl,3
∂8k,2

∂8k,2

∂sk,2

∂sk,2
∂wj,k,1

. (71)

Hence, for SQNN, since ∂
yl
bl,2

, ∂ylwk,l,2 , ∂
yl
bk,1

and ∂
yl
wj,k,1 ∈ H,

the derivative is calculated as follows:

∂yl
∂bl,2

= ∂
yl
bl,2

=

∂yl

∂b(i)l,2
∂yl

∂b(j)l,2
∂yl

∂b(k)l,2

 =

∂8
(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂b(i)l,2

∂8
(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂b(j)l,2

∂8
(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂b(k)l,2

=

8

′(i)
l,3

(
s(i)l,3
)
· 1

8
′(j)
l,3

(
s(j)l,3
)
· 1

8
′(k)
l,3

(
s(k)l,3
)
· 1

 = 8′

l,3(sl,3). (72)

where

8′(s) =
∂ϕ(s(i))
∂s(i)

i+
∂ϕ(s(j))
∂s(j)

j+
∂ϕ(s(k))
∂s(k)

k. (73)

The derivative of the output yl with respect to the synaptic
weight between the k th neuron, in the hidden layer, and the
l th neuron in the output layer, ∂yl

∂wk,l,2
, is determined as

∂yl
∂wk,l,2

=

∂yl
∂w(e)

k,l,2
∂yl

∂w(i)
k,l,2

∂yl
∂w(j)

k,l,2
∂yl

∂w(k)
k,l,2

=

∂8
(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂w(e)

k,l,2

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂w(e)

k,l,2

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂w(e)

k,l,2

∂8
(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂w(i)

k,l,2

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂w(i)

k,l,2

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂w(i)

k,l,2

∂8
(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂w(j)

k,l,2

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂w(j)

k,l,2

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂w(j)

k,l,2

∂8
(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂w(k)

k,l,2

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂w(k)

k,l,2

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂w(k)

k,l,2

= ∂
yl (i)
bl,2

∂s(i)l,3
∂w(e)

k,l,2

∂s(i)l,3
∂w(i)

k,l,2

∂s(i)l,3
∂w(j)

k,l,2

∂s(i)l,3
∂w(k)

k,l,2

+ ∂

yl (j)
bl,2

∂s(j)l,3
∂w(e)

k,l,2

∂s(j)l,3
∂w(i)

k,l,2

∂s(j)l,3
∂w(j)

k,l,2

∂s(j)l,3
∂w(k)

k,l,2

+ ∂
yl (k)
bl,2

∂s(k)l,3
∂w(e)

k,l,2

∂s(k)l,3
∂w(i)

k,l,2

∂s(k)l,3
∂w(j)

k,l,2

∂s(k)l,3
∂w(k)

k,l,2

= ∂

yl (i)
bl,2

T1 + ∂
yl (j)
bl,2

T2 + ∂
yl (k)
bl,2

T3. (74)

Next, we develop each term of (74) separately. The first
term, ∂yl (i)bl,2

T1, is then calculated by applying the quotient rule
as follows:

∂
yl (i)
bl,2

T1 = ∂
yl (i)
bl,2

1∥∥wk,l,2∥∥

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(i)
∂w(e)

k,l,2

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(i)
∂w(i)

k,l,2

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(i)
∂w(j)

k,l,2

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(i)
∂w(k)

k,l,2

−

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(i)∥∥wk,l,2∥∥2

∂
(
∥wk,l,2∥

)
∂w(e)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(i)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(j)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(k)

k,l,2

= ∂

yl (i)
bl,2

(A1 − A2) (75)

So, for the calculus of the terms A1 and A2, we have

A1 =
1∥∥wk,l,2∥∥

2w(e)
k,l,2L

(i)
k,2 + 2w(k)

k,l,2L
(j)
k,2 − 2w(j)

k,l,2L
(k)
k,2

2w(i)
k,l,2L

(i)
k,2 − 2w(j)

k,l,2L
(j)
k,2 − 2w(k)

k,l,2L
(k)
k,2

2w(j)
k,l,2L

(i)
k,2 − 2w(i)

k,l,2L
(j)
k,2 − 2w(e)

k,l,2L
(k)
k,2

2w(k)
k,l,2L

(i)
k,2 + 2w(e)

k,l,2L
(j)
k,2 − 2w(i)

k,l,2L
(k)
k,2

VOLUME 11, 2023 108273

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

=
2∥∥wk,l,2∥∥

L(i)k,2

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

+ L(j)k,2

w(k)
k,l,2

−w(j)
k,l,2

−w(i)
k,l,2

w(e)
k,l,2

+L(k)k,2

−w(j)

k,l,2

−w(k)
k,l,2

−w(e)
k,l,2

−w(i)
k,l,2

=
2∥∥wk,l,2∥∥

L(i)k,2

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

⊗ i⊗ (−i)

+L(j)k,2

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

⊗ j⊗ (−i)

+L(k)k,2

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

⊗ k ⊗ (−i)

=
2∥∥wk,l,2∥∥

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

⊗ Lk,2 ⊗ (−i)

=
2∥∥wk,l,2∥∥wk,l,2 ⊗ Lk,2 ⊗ (−i)

=
2∥∥wk,l,2∥∥wk,l,2 ⊗ L∗

k,2 ⊗ i; (76)

A2 =

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(i)∥∥wk,l,2∥∥2

∂
(
∥wk,l,2∥

)
∂w(e)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(i)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(j)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(k)

k,l,2

=

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(i)∣∣∣∣w(e)2
k,l,2 + w(i)2

k,l,2 − w(j)2
k,l,2 − w(k)2

k,l,2

∣∣∣∣5/2

w(e)
k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)
w(i)
k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)
−w(j)

k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)
−w(k)

k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)

=

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(i)∥∥wk,l,2∥∥5 ⊗ λ1q1, (77)

where

λ1 = w(e)2

j,k,i + w(i)2

j,k,i − w(j)2

j,k,i − w(k)2

j,k,i | λ1 ∈ R,

q1 = w(e)
k,l,2 + w(i)

k,l,2i− w(j)
k,l,2j− w(k)

k,l,2k | q1 ∈ Hs.

Consequently, we obtain the first term of (74) as

∂
yl (i)
bl,2

T1 =

∂
yl (i)
bl,2∥∥wk,l,2∥∥

(
2 wk,l,2 ⊗ L∗

k,2 ⊗ i

−

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(i)∥∥wk,l,2∥∥4 ⊗ λ1q1

)

=
1∥∥wk,l,2∥∥

(
2 wk,l,2 ⊗ L∗

k,2 ⊗ ∂
yl (i)
bl,2

i

− ∂
yl (i)
bl,2

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(i)∥∥wk,l,2∥∥4 ⊗ λ1q1

)
.

(78)

Therefore, a similar technique can be applied to develop
the second and third terms of (74), resulting for ∂

yl (j)
bl,2

T2 in

∂
yl (j)
bl,2

T2 = ∂
yl (j)
bl,2

1∥∥wk,l,2∥∥

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(j)
∂w(e)

k,l,2

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(j)
∂w(i)

k,l,2

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(j)
∂w(j)

k,l,2

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(j)
∂w(k)

k,l,2

−

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(j)∥∥wk,l,2∥∥2

∂
(
∥wk,l,2∥

)
∂w(e)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(i)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(j)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(k)

k,l,2

= ∂

yl (j)
bl,2

(B1 − B2). (79)

108274 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

Then, for the calculus of terms B1 and B2, we have the
following:

B1 =
1∥∥wk,l,2∥∥

2w(k)
k,l,2L

(i)
k,2 + 2w(e)

k,l,2L
(j)
k,2 − 2w(i)

k,l,2L
(k)
k,2

2w(j)
k,l,2L

(i)
k,2 − 2w(i)

k,l,2L
(j)
k,2 − 2w(e)

k,l,2L
(k)
k,2

2w(i)
k,l,2L

(i)
k,2 − 2w(j)

k,l,2L
(j)
k,2 − 2w(k)

k,l,2L
(k)
k,2

2w(e)
k,l,2L

(i)
k,2 + 2w(k)

k,l,2L
(j)
k,2 − 2w(j)

k,l,2L
(k)
k,2

=
2∥∥wk,l,2∥∥

L
(i)
k,2

w(k)
k,l,2

w(j)
k,l,2

w(i)
k,l,2

w(e)
k,l,2

+ L(j)k,2

w(e)
k,l,2

−w(i)
k,l,2

−w(j)
k,l,2

w(k)
k,l,2

+L(k)k,2

−w(i)

k,l,2

−w(e)
k,l,2

−w(k)
k,l,2

−w(j)
k,l,2

=
2∥∥wk,l,2∥∥

(−j) ⊗ i⊗ L(i)k,2

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

+i⊗ j⊗ L(j)k,2

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

⊗ (−j) ⊗ i

+k ⊗ L(k)k,2

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

⊗ (−j)

=

2∥∥wk,l,2∥∥
(
(−j) ⊗ L(i)k,2i⊗ wk,l,2

+i⊗ L(j)k,2j⊗ wk,l,2 ⊗ (−j) ⊗ i

+L(k)k,2k ⊗ wk,l,2 ⊗ (−j)
)

=
2∥∥wk,l,2∥∥

(
j⊗ L∗

(i)

k,2 i⊗ wk,l,2

+i⊗ L∗
(j)

k,2 j⊗ wk,l,2 ⊗ j⊗ i

+L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ j
)

; (80)

B2 =

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(j)∥∥wk,l,2∥∥2

∂
(
∥wk,l,2∥

)
∂w(e)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(i)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(j)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(k)

k,l,2

=

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(j)∣∣∣∣w(e)2
k,l,2 + w(i)2

k,l,2 − w(j)2
k,l,2 − w(k)2

k,l,2

∣∣∣∣5/2

w(e)
k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)
w(i)
k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)
−w(j)

k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)
−w(k)

k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)

=

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(j)∥∥wk,l,2∥∥5 ⊗ λ1q1, (81)

Consequently, we obtain the second term of (74) as

∂
yl (j)
bl,2

T2 =

∂
yl (j)
bl,2∥∥wk,l,2∥∥

(
2j⊗ L∗

(i)

k,2 i⊗ wk,l,2

+ 2i⊗ L∗
(j)

k,2 j⊗ wk,l,2 ⊗ j⊗ i

+ 2L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ j

−

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(j)∥∥wk,l,2∥∥4 ⊗ λ1q1

)

=
1∥∥wk,l,2∥∥

(
2∂yl (j)bl,2

j⊗ L∗
(i)

k,2 i⊗ wk,l,2

+ 2i⊗ L∗
(j)

k,2 j⊗ wk,l,2 ⊗ ∂
yl (j)
bl,2

j⊗ i

+ 2L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ ∂
yl (j)
bl,2

j

− ∂
yl (j)
bl,2

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(j)∥∥wk,l,2∥∥4 ⊗ λ1q1

)
.

(82)

and resulting for ∂
yl (k)
bl,2

T3 as follows:

∂
yl (k)
bl,2

T3 = ∂
yl (k)
bl,2

1∥∥wk,l,2∥∥

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(k)
∂w(e)

k,l,2

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(k)
∂w(i)

k,l,2

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(k)
∂w(j)

k,l,2

∂
(
wk,l,2⊗Lk,2⊗w∗

k,l,2

)(k)
∂w(k)

k,l,2

VOLUME 11, 2023 108275

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

−

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(k)∥∥wk,l,2∥∥2

∂
(
∥wk,l,2∥

)
∂w(e)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(i)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(j)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(k)

k,l,2

= ∂

yl (k)
bl,2

(C1 − C2). (83)

So, for the calculus of the terms C1 and C2, we have

C1 =
1∥∥wk,l,2∥∥

−2w(j)
k,l,2L

(i)
k,2 + 2w(i)

k,l,2L
(j)
k,2 + 2w(e)

k,l,2L
(k)
k,2

2w(k)
k,l,2L

(i)
k,2 + 2w(e)

k,l,2L
(j)
k,2 − 2w(i)

k,l,2L
(k)
k,2

−2w(e)
k,l,2L

(i)
k,2 − 2w(k)

k,l,2L
(j)
k,2 + 2w(j)

k,l,2L
(k)
k,2

2w(i)
k,l,2L

(i)
k,2 − 2w(j)

k,l,2L
(j)
k,2 − 2w(k)

k,l,2L
(k)
k,2

=
2∥∥wk,l,2∥∥

L(i)k,2

−w(j)

k,l,2

w(k)
k,l,2

−w(e)
k,l,2

w(i)
k,l,2

+ L(j)k,2

w(i)
k,l,2

w(e)
k,l,2

−w(k)
k,l,2

−w(j)
k,l,2

+L(k)k,2

w(e)
k,l,2

−w(i)
k,l,2

w(j)
k,l,2

−w(k)
k,l,2

=
2∥∥wk,l,2∥∥

(−k) ⊗ i⊗ L(i)k,2

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

+j⊗ L(j)k,2

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

⊗ (−k)

+i⊗ k ⊗ L(k)k,2

w(e)
k,l,2

w(i)
k,l,2

w(j)
k,l,2

w(k)
k,l,2

⊗ (−k) ⊗ i

=

2∥∥wk,l,2∥∥
(
(−k) ⊗ L(i)k,2i⊗ wk,l,2

+L(j)k,2j⊗ wk,l,2 ⊗ (−k)

+i⊗ L(k)k,2k ⊗ wk,l,2 ⊗ (−k) ⊗ i
)

=
2∥∥wk,l,2∥∥

(
k ⊗ L∗

(i)

k,2 i⊗ wk,l,2

+L∗
(j)

k,2 j⊗ wk,l,2 ⊗ k

+i⊗ L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ k ⊗ i
)

; (84)

C2 =

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(k)∥∥wk,l,2∥∥2

∂
(
∥wk,l,2∥

)
∂w(e)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(i)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(j)

k,l,2

∂
(
∥wk,l,2∥

)
∂w(k)

k,l,2

=

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(k)∣∣∣∣w(e)2
k,l,2 + w(i)2

k,l,2 − w(j)2
k,l,2 − w(k)2

k,l,2

∣∣∣∣5/2

w(e)
k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)
w(i)
k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)
−w(j)

k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)
−w(k)

k,l,2

(
w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2

)

=

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(k)∥∥wk,l,2∥∥5 ⊗ λ1q1, (85)

Consequently, we obtain the third term of (74) as

∂
yl (k)
bl,2

T3 =

∂
yl (k)
bl,2∥∥wk,l,2∥∥

(
2k ⊗ L∗

(i)

k,2 i⊗ wk,l,2

+ 2L∗
(j)

k,2 j⊗ wk,l,2 ⊗ k

+ 2i⊗ L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ k ⊗ i

−

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(k)∥∥wk,l,2∥∥4 ⊗ λ1q1

)

=
1∥∥wk,l,2∥∥

(
2∂yl (k)bl,2

k ⊗ L∗
(i)

k,2 i⊗ wk,l,2

+ 2L∗
(j)

k,2 j⊗ wk,l,2 ⊗ ∂
yl (k)
bl,2

k

+ 2i⊗ L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ ∂
yl (k)
bl,2

k ⊗ i

− ∂
yl (k)
bl,2

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(k)∥∥wk,l,2∥∥4 ⊗ λ1q1

)
.

(86)

Hence, we obtain ∂yl
∂wk,l,2

as

∂yl
∂wk,l,2

=
1∥∥wk,l,2∥∥

(
2 wk,l,2 ⊗ L∗

k,2 ⊗ ∂
yl (i)
bl,2

i

− ∂
yl (i)
bl,2

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(i)∥∥wk,l,2∥∥4 ⊗ λ1q1

)

108276 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

+
1∥∥wk,l,2∥∥

(
2∂yl (j)bl,2

j⊗ L∗
(i)

k,2 i⊗ wk,l,2

+ 2i⊗ L∗
(j)

k,2 j⊗ wk,l,2 ⊗ ∂
yl (j)
bl,2

j⊗ i

+ 2L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ ∂
yl (j)
bl,2

j

− ∂
yl (j)
bl,2

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(j)∥∥wk,l,2∥∥4 ⊗ λ1q1

)

+
1∥∥wk,l,2∥∥

(
2∂yl (k)bl,2

k ⊗ L∗
(i)

k,2 i⊗ wk,l,2

+ 2L∗
(j)

k,2 j⊗ wk,l,2 ⊗ ∂
yl (k)
bl,2

k

+ 2i⊗ L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ ∂
yl (k)
bl,2

k ⊗ i

− ∂
yl (k)
bl,2

(
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2

)(k)∥∥wk,l,2∥∥4 ⊗ λ1q1

)

=
1∥∥wk,l,2∥∥

[
2

(
wk,l,2 ⊗ L∗

k,2 ⊗ ∂
yl (i)
bl,2

i

+ ∂
yl (j)
bl,2

j⊗ L∗
(i)

k,2 i⊗ wk,l,2

+ i⊗ L∗
(j)

k,2 j⊗ wk,l,2 ⊗ ∂
yl (j)
bl,2

j⊗ i

+ L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ ∂
yl (j)
bl,2

j

+ ∂
yl (k)
bl,2

k ⊗ L∗
(i)

k,2 i⊗ wk,l,2

+ L∗
(j)

k,2 j⊗ wk,l,2 ⊗ ∂
yl (k)
bl,2

k

+ i⊗ L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ ∂
yl (k)
bl,2

k ⊗ i

)

− ∂
yl
bl,2

⊙
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2∥∥wk,l,2∥∥4 ⊗ λ1q1

]
. (87)

where

λ1 = w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2 | λ1 ∈ R,

q1 = w(e)
k,l,2 + w(i)

k,l,2i− w(j)
k,l,2j− w(k)

k,l,2k | q1 ∈ Hs.

The derivative of neuron yl with respect to bk,1 is calculated
as follows:

∂yl
∂bk,1

=

∂yl

∂b(i)k,1
∂yl

∂b(j)k,1
∂yl

∂b(k)k,1

 =

∂8l,3
∂sl,3

∂sl,3
∂8

(i)
k,2

∂8
(i)
k,2

∂s(i)k,2

∂s(i)k,2
∂b(i)k,1

∂8l,3
∂sl,3

∂sl,3
∂8

(j)
k,2

∂8
(j)
k,2

∂s(j)k,2

∂s(j)k,2
∂b(j)k,1

∂8l,3
∂sl,3

∂sl,3
∂8

(k)
k,2

∂8
(k)
k,2

∂s(k)k,2

∂s(k)k,2
∂b(k)k,1

=

∂8l,3
∂sl,3

∂sl,3
∂8

(i)
k,2

· 8
′(i)
k,2

(
s(i)k,2

)
· 1

∂8l,3
∂sl,3

∂sl,3
∂8

(j)
k,2

· 8
′(j)
k,2

(
s(j)k,2

)
· 1

∂8l,3
∂sl,3

∂sl,3
∂8

(k)
k,2

· 8
′(k)
k,2

(
s(k)k,2

)
· 1

=

∂8l,3
∂sl,3

∂sl,3
∂8

(i)
k,2

∂8l,3
∂sl,3

∂sl,3
∂8

(j)
k,2

∂8l,3
∂sl,3

∂sl,3
∂8

(k)
k,2

⊙ 8′

k,2(sk,2)

= W ⊙ 8′

k,2(sk,2). (88)

where

W =

∂8l,3
∂sl,3

∂sl,3
∂8

(i)
k,2

∂8l,3
∂sl,3

∂sl,3
∂8

(j)
k,2

∂8l,3
∂sl,3

∂sl,3
∂8

(k)
k,2

=

N3∑
l=1

(
∂8

(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂8

(i)
k,2

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂8

(i)
k,2

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂8

(i)
k,2

)
N3∑
l=1

(
∂8

(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂8

(j)
k,2

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂8

(j)
k,2

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂8

(j)
k,2

)
N3∑
l=1

(
∂8

(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂8

(k)
k,2

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂8

(k)
k,2

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂8

(k)
k,2

)

=

N3∑
l=1

∂
yl (i)
bl,2

∂s(i)l,3
∂8

(i)
k,2

∂s(i)l,3
∂8

(j)
k,2

∂s(i)l,3
∂8

(k)
k,2

+ ∂

yl (j)
bl,2

∂s(j)l,3
∂8

(i)
k,2

∂s(j)l,3
∂8

(j)
k,2

∂s(j)l,3
∂8

(k)
k,2

+∂
yl (k)
bl,2

∂s(k)l,3
∂8

(i)
k,2

∂s(k)l,3
∂8

(j)
k,2

∂s(k)l,3
∂8

(k)
k,2

=

N3∑
l=1

1∥∥wk,l,2∥∥

w(e)2

k,l,2 + w(i)2

k,l,2 + w(j)2

k,l,2 + w(k)2

k,l,2

2
(
w(e)
k,l,2w

(k)
k,l,2 − w(i)

k,l,2w
(j)
k,l,2

)
−2
(
w(e)
k,l,2w

(j)
k,l,2 + w(i)

k,l,2w
(k)
k,l,2

)
2
(
w(e)
k,l,2w

(k)
k,l,2 + w(i)

k,l,2w
(j)
k,l,2

)
w(e)2

k,l,2 − w(i)2

k,l,2 − w(j)2

k,l,2 + w(k)2

k,l,2

−2
(
w(e)
k,l,2w

(i)
k,l,2 + w(j)

k,l,2w
(k)
k,l,2

)
−2
(
w(e)
k,l,2w

(j)
k,l,2 − w(i)

k,l,2w
(k)
k,l,2

)
2
(
w(e)
k,l,2w

(i)
k,l,2 − w(j)

k,l,2w
(k)
k,l,2

)
w(e)2

k,l,2 − w(i)2

k,l,2 + w(j)2

k,l,2 − w(k)2

k,l,2

∂
yl (i)
bl,2

∂
yl (j)
bl,2

∂
yl (k)
bl,2

 (89)

VOLUME 11, 2023 108277

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

So,W can be reformulated as

W =

N3∑
l=1

QR(w∗

k,l,2)QL(wk,l,2)∥∥wk,l,2∥∥

∂
yl (i)
bl,2

∂
yl (j)
bl,2

∂
yl (k)
bl,2

=

N3∑
l=1

wk,l,2 ⊗ ∂
yl
bl,2

⊗ w∗

k,l,2∥∥wk,l,2∥∥ . (90)

Hence, the derivative of neuron yl with respect to bk,1 is

∂yl
∂bk,1

=

 N3∑
l=1

wk,l,2 ⊗ ∂
yl
bl,2

⊗ w∗

k,l,2∥∥wk,l,2∥∥
⊙ 8′

k,2(sk,2). (91)

Finally

∂yl
∂wj,k,1

=

∂yl
∂w(e)

j,k,1
∂yl

∂w(i)
j,k,1

∂yl
∂w(j)

j,k,1
∂yl

∂w(k)
j,k,1

=

∂8l,3
∂sl,3

∂sl,3
∂8k,2

∂8
(i)
k,2

∂s(i)k,2

∂s(i)k,2
∂w(e)

j,k,1

∂8l,3
∂sl,3

∂sl,3
∂8

(i)
k,2

∂8
(i)
k,2

∂s(i)k,2

∂s(i)k,2
∂w(i)

j,k,1

∂8l,3
∂sl,3

∂sl,3
∂8

(j)
k,2

∂8
(j)
k,2

∂s(j)k,2

∂s(j)k,2
∂w(j)

j,k,1

∂8l,3
∂sl,3

∂sl,3
∂8

(k)
k,2

∂8
(k)
k,2

∂s(k)k,2

∂s(k)k,2
∂w(k)

j,k,1

=

∂8
(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂8

(i)
k,2

∂8
(i)
k,2

∂s(i)k,2

∂s(i)k,2
∂w(e)

j,k,1

∂8
(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂8

(i)
k,2

∂8
(i)
k,2

∂s(i)k,2

∂s(i)k,2
∂w(i)

j,k,1

∂8
(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂8

(i)
k,2

∂8
(i)
k,2

∂s(i)k,2

∂s(i)k,2
∂w(j)

j,k,1

∂8
(i)
l,3

∂s(i)l,3

∂s(i)l,3
∂8

(i)
k,2

∂8
(i)
k,2

∂s(i)k,2

∂s(i)k,2
∂w(k)

j,k,1

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂8

(j)
k,2

∂8
(j)
k,2

∂s(j)k,2

∂s(j)k,2
∂w(e)

j,k,1

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂8

(j)
k,2

∂8
(j)
k,2

∂s(j)k,2

∂s(j)k,2
∂w(i)

j,k,1

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂8

(j)
k,2

∂8
(j)
k,2

∂s(j)k,2

∂s(j)k,2
∂w(j)

j,k,1

+
∂8

(j)
l,3

∂s(j)l,3

∂s(j)l,3
∂8

(j)
k,2

∂8
(j)
k,2

∂s(j)k,2

∂s(j)k,2
∂w(k)

j,k,1

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂8

(k)
k,2

∂8
(k)
k,2

∂s(k)k,2

∂s(k)k,2
∂w(e)

j,k,1

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂8

(k)
k,2

∂8
(k)
k,2

∂s(k)k,2

∂s(k)k,2
∂w(i)

j,k,1

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂8

(k)
k,2

∂8
(k)
k,2

∂s(k)k,2

∂s(k)k,2
∂w(j)

j,k,1

+
∂8

(k)
l,3

∂s(k)l,3

∂s(k)l,3
∂8

(k)
k,2

∂8
(k)
k,2

∂s(k)k,2

∂s(k)k,2
∂w(k)

j,k,1

= ∂
yl (i)
bk,1

∂s(i)k,2
∂w(e)

j,k,1

∂s(i)k,2
∂w(i)

j,k,1

∂s(i)k,2
∂w(j)

j,k,1

∂s(i)k,2
∂w(k)

j,k,1

+ ∂

yl (j)
bk,1

∂s(j)k,2
∂w(e)

j,k,1

∂s(j)k,2
∂w(i)

j,k,1

∂s(j)k,2
∂w(j)

j,k,1

∂s(j)k,2
∂w(k)

j,k,1

+ ∂
yl (k)
bk,1

∂s(k)k,2
∂w(e)

j,k,1

∂s(k)k,2
∂w(i)

j,k,1

∂s(k)k,2
∂w(j)

j,k,1

∂s(k)k,2
∂w(k)

j,k,1

(92)

and then

∂yl
∂wj,k,1

=
1∥∥wj,k,1∥∥

[
2

(
wj,k,1 ⊗ L∗

j,1 ⊗ ∂
yl (i)
bk,1

i

+ ∂
yl (j)
bk,1

j⊗ L∗
(i)

j,1 i⊗ wj,k,1

+ i⊗ L∗
(j)

j,1 j⊗ wj,k,1 ⊗ ∂
yl (j)
bk,1

j⊗ i

+ L∗
(k)

j,1 k ⊗ wj,k,1 ⊗ ∂
yl (j)
bk,1

j

+ ∂
yl (k)
bk,1

k ⊗ L∗
(i)

j,1 i⊗ wj,k,1

+ L∗
(j)

j,1 j⊗ wj,k,1 ⊗ ∂
yl (k)
bk,1

k

+ i⊗ L∗
(k)

j,1 k ⊗ wj,k,1 ⊗ ∂
yl (k)
bk,1

k ⊗ i

)

− ∂
yl
bk,1

⊙
wj,k,1 ⊗ Lj,1 ⊗ w∗

j,k,1∥∥wj,k,1∥∥4 ⊗ λ2q2

]
. (93)

where

λ2 = w(e)2

j,k,1 + w(i)2

j,k,1 − w(j)2

j,k,1 − w(k)2

j,k,1 | λ1 ∈ R,

q2 = w(e)
j,k,1 + w(i)

j,k,1i− w(j)
j,k,1j− w(k)

j,k,1k | q1 ∈ H.

Therefore, the quaternion-version for the derivatives of yl ,
with respect to ∂

yl
bl,2

, ∂
yl
wk,l,2 , ∂

yl
bk,1

and ∂
yl
wj,k,1 , is summarized

as follows:

∂
yl
bl,2

= 8′

l,3(sl,3), (94)

∂ylwk,l,2 =
1∥∥wk,l,2∥∥

[
2

(
wk,l,2 ⊗ L∗

k,2 ⊗ ∂
yl (i)
bl,2

i

+ ∂
yl (j)
bl,2

j⊗ L∗
(i)

k,2 i⊗ wk,l,2

+ i⊗ L∗
(j)

k,2 j⊗ wk,l,2 ⊗ ∂
yl (j)
bl,2

j⊗ i

+ L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ ∂
yl (j)
bl,2

j

108278 VOLUME 11, 2023

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

+ ∂
yl (k)
bl,2

k ⊗ L∗
(i)

k,2 i⊗ wk,l,2

+ L∗
(j)

k,2 j⊗ wk,l,2 ⊗ ∂
yl (k)
bl,2

k

+ i⊗ L∗
(k)

k,2 k ⊗ wk,l,2 ⊗ ∂
yl (k)
bl,2

k ⊗ i

)

− ∂
yl
bl,2

⊙
wk,l,2 ⊗ Lk,2 ⊗ w∗

k,l,2∥∥wk,l,2∥∥4 ⊗ λ1q1

]
, (95)

∂
yl
bk,1

=

 N3∑
l=1

wk,l,2 ⊗ ∂
yl
bl,2

⊗ w∗

k,l,2∥∥wk,l,2∥∥
⊙ 8′

k,2(sk,2), (96)

∂ylwj,k,1 =
1∥∥wj,k,1∥∥

[
2

(
wj,k,1 ⊗ L∗

j,1 ⊗ ∂
yl (i)
bk,1

i

+ ∂
yl (j)
bk,1

j⊗ L∗
(i)

j,1 i⊗ wj,k,1

+ i⊗ L∗
(j)

j,1 j⊗ wj,k,1 ⊗ ∂
yl (j)
bk,1

j⊗ i

+ L∗
(k)

j,1 k ⊗ wj,k,1 ⊗ ∂
yl (j)
bk,1

j

+ ∂
yl (k)
bk,1

k ⊗ L∗
(i)

j,1 i⊗ wj,k,1

+ L∗
(j)

j,1 j⊗ wj,k,1 ⊗ ∂
yl (k)
bk,1

k

+ i⊗ L∗
(k)

j,1 k ⊗ wj,k,1 ⊗ ∂
yl (k)
bk,1

k ⊗ i

)

− ∂
yl
bk,1

⊙
wj,k,1 ⊗ Lj,1 ⊗ w∗

j,k,1∥∥wj,k,1∥∥4 ⊗ λ2q2

]
. (97)

where

λ1 = w(e)2

k,l,2 + w(i)2

k,l,2 − w(j)2

k,l,2 − w(k)2

k,l,2 | λ1 ∈ R,

q1 = w(e)
k,l,2 + w(i)

k,l,2i− w(j)
k,l,2j− w(k)

k,l,2k | q1 ∈ Hs,

λ2 = w(e)2

j,k,1 + w(i)2

j,k,1 − w(j)2

j,k,1 − w(k)2

j,k,1 | λ2 ∈ R,

q2 = w(e)
j,k,1 + w(i)

j,k,1i− w(j)
j,k,1j− w(k)

j,k,1k | q2 ∈ Hs.

ACKNOWLEDGMENT
F. A. Author thanks CONAHCYT, Mexico, for the financial
support that has given him during the time he has been a
student at the Center for Research and Advanced Studies
(CINVESTAV), National Polytechnic Institute (IPN), to carry
out this work and obtain his Ph.D. degree under Grant
CVU.854352.

REFERENCES
[1] W. K. Pratt, Digital Image Processing, 2nd ed. Hoboken, NJ, USA: Wiley,

1991. [Online]. Available: https://www.worldcat.org/oclc/21763433
[2] A. Jain, Fundamentals of Digital Image Processing (Prentice-Hall

Information and System Sciences Series). Upper Saddle River,
NJ, USA: Prentice-Hall, 1989. [Online]. Available: https://books.
google.com.mx/books?id=GANSAAAAMAAJ

[3] D. Xu, Y. Xia, and D. P. Mandic, ‘‘Optimization in quaternion dynamic
systems: Gradient, hessian, and learning algorithms,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 2, pp. 249–261, Feb. 2016, doi:
10.1109/TNNLS.2015.2440473.

[4] D. Xu, C. Jahanchahi, C. C. Took, and D. P. Mandic, ‘‘Quaternion
derivatives: The GHR calculus,’’ Roy. Soc. Open Sci., vol. 2, no. 8,
p. 150255, 2015, doi: 10.1098/rsos.150255.

[5] D. Xu, L. Zhang, and H. Zhang, ‘‘Learning algorithms in quaternion
neural networks using GHR calculus,’’ Neural Netw. World, vol. 27, no. 3,
pp. 271–282, 2017, doi: 10.14311/NNW.2017.27.014.

[6] S. Singhal and L. Wu, ‘‘Training multilayer perceptrons with the extended
Kalman algorithm,’’ in Proc. Adv. Neural Inf. Process. Syst., Jan. 1989,
pp. 133–140.

[7] G. Puskorius and L. Feldkamp, ‘‘Parameter-based Kalman filter training:
Theory and implementation,’’ in Kalman Filtering and Neural Networks,
S. S. Haykin, Ed. Hoboken, NJ, USA: Wiley, Mar. 2002, pp. 23–67, doi:
10.1002/0471221546.ch2.

[8] Y. Iiguni, H. Sakai, and H. Tokumaru, ‘‘A real-time learning algorithm
for a multilayered neural network based on the extended Kalman filter,’’
IEEE Trans. Signal Process., vol. 40, no. 4, pp. 959–966, Apr. 1992, doi:
10.1109/78.127966.

[9] H. C. S. Rughooputh and S. D. D. V. Rughooputh, ‘‘Extended Kalman
filter learning algorithm for hyper-complex multilayer neural networks,’’
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), vol. 3, Jul. 1999,
pp. 1824–1828, doi: 10.1109/IJCNN.1999.832656.

[10] N. Matsui, T. Isokawa, H. Kusamichi, F. Peper, and H. Nishimura,
‘‘Quaternion neural network with geometrical operators,’’ J. Intell. Fuzzy
Syst., vol. 15, nos. 3–4, pp. 149–164, Dec. 2004.

[11] H. Kusamichi, T. Isokawa, and N. Matsui, ‘‘A new scheme for color night
vision by quaternion neural network,’’ inProc. 2nd Int. Conf. Auton. Robots
Agents, Palmerston North, New Zealand, Dec. 2004, pp. 101–106.

[12] T. Isokawa, N. Matsui, and H. Nishimura, ‘‘Quaternionic neural networks:
Fundamental properties and applications,’’ in Complex-Valued Neural
Networks: Utilizing High-Dimensional Parameters, vol. 15, nos. 3–4, T.
Nitta, Ed. Hershey, PA, USA: IGI Global, Jan. 2009, pp. 411–439, doi:
10.4018/978-1-60566-214-5.ch016.

[13] C. Perwass, Geometric Algebra With Applications in Engineering (Geom-
etry and Computing), vol. 4. Berlin, Germany: Springer, 2009, pp. 1–385.

[14] J. J. Rodríguez, ‘‘El Álgebra y la Geometría de los Cuaternios y Algunas
de sus Aplicaciones,’’ Bachelor thesis, Universidad de Sonora, División de
Ciencias Exactas y Naturales, Hermosillo, Mexico, 2010.

[15] F. J. Somma, ‘‘Cuaterniones y Ángulos de Euler para Describir Rotaciones
en R3,’’ Bachelor thesis, Universidad Abierta Interamericana, Facultad de
Tecnología Informática, Buenos Aires, Argentina, 2018.

[16] J. Vince, Geometric Algebra: An Algebraic System for Computer Games
and Animation. London, U.K.: Springer, Jan. 2009, doi: 10.1007/978-1-
84882-379-2.

[17] Y. Alagöz, K. Oral, and S. Yüce, ‘‘Split quaternion matrices,’’
Miskolc Math. Notes, vol. 13, no. 2, pp. 223–232, Jun. 2012, doi:
10.18514/MMN.2012.364.

[18] A. R. Smith, ‘‘Color gamut transform pairs,’’ ACM SIGGRAPH Comput.
Graph., vol. 12, pp. 12–19, Aug. 1978, doi: 10.1145/800248.807361.

[19] M. Nørgaard, O. Ravn, N. K. Poulsen, and L. K. Hansen, Neural
Networks for Modelling and Control of Dynamic Systems: A Practitioner’s
Handbook. London, U.K.: Springer, Jan. 2000. [Online]. Available:
https://link.springer.com/book/9781852332273

[20] A. Krizhevsky, V. Nair, and G. Hinton, ‘‘CIFAR-10 (Canadian
institute for advanced research),’’ 2009. [Online]. Available:
http://www.cs.toronto.edu/~kriz/cifar.html

[21] B. Gábor. (2023). Video Input With OpenCV and Similarity Measurement.
Accessed: Apr. 10, 2023. [Online]. Available: https://docs.opencv.org/
4.x/d5/dc4/tutorial_video_input_psnr_ssim.html

[22] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, ‘‘Image qual-
ity assessment: From error visibility to structural similarity,’’ IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004, doi:
10.1109/TIP.2003.819861.

[23] (2023). OpenCV: Open Source Computer Vision. Histogram
Comparison. Accessed: Apr. 10, 2023. [Online]. Available:
https://docs.opencv.org/3.4/d8/dc8/tutorial_histogram_comparison.html

[24] J. Warburton, ‘‘Scarlet macaw,’’ [Image] from 500px by the Archive
Team (detail page). This file is licensed under the Creative Commons
Attribution 3.0 Unported license, May 2012. Accessed: Apr. 10, 2023.
[Online]. Available: https://commons.wikimedia.org/wiki/File:Scarlet_
Macaw_(17275987).jpeg

[25] K. Kissel, ‘‘June’s multi-colored eyes,’’ [Image] from flick.com. This file
is licensed under the Creative Commons Attribution 2.0 Generic license,
Feb. 2012. Accessed: Apr. 10, 2023. [Online]. Available: https://commons.
wikimedia.org/wiki/File:June_odd-eyed-cat_cropped.jpg

VOLUME 11, 2023 108279

http://dx.doi.org/10.1109/TNNLS.2015.2440473
http://dx.doi.org/10.1098/rsos.150255
http://dx.doi.org/10.14311/NNW.2017.27.014
http://dx.doi.org/10.1002/0471221546.ch2
http://dx.doi.org/10.1109/78.127966
http://dx.doi.org/10.1109/IJCNN.1999.832656
http://dx.doi.org/10.4018/978-1-60566-214-5.ch016
http://dx.doi.org/10.1007/978-1-84882-379-2
http://dx.doi.org/10.1007/978-1-84882-379-2
http://dx.doi.org/10.18514/MMN.2012.364
http://dx.doi.org/10.1145/800248.807361
http://dx.doi.org/10.1109/TIP.2003.819861

E. de J. Dávila-Meza, E. J. Bayro-Corrochano: Quaternion and Split QNNs

[26] C. J. Balboa, ‘‘Red-eyed tree frog (agalychnis callidryas),’’ [Image] this
work has been released into the public domain by its author, Carey-
jamesbalboa at English Wikipedia. This applies worldwide, Aug. 2007.
Accessed: Apr. 10, 2023. [Online]. Available: https://commons.wikimedia.
org/wiki/File:Red_eyed_tree_frog_edit2.jpg

[27] D. Baeza, ‘‘Acuario 033,’’ [Image] this file is licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license,
Jun. 2014. Accessed: Jul. 10, 2023. [Online]. Available: https://commons.
wikimedia.org/wiki/File:Acuario_033.JPG

[28] N. More, ‘‘Camping in tent alone under the sky in night with dog
(2) 10,’’ [Image] this file is licensed under the Creative Commons
Attribution-Share Alike 4.0 International license, Sep. 2020.
Accessed: Jul. 10, 2023. [Online]. Available: https://commons.wikimedia.
org/wiki/File:Camping_in_tent_alone_under_the_sky_in_night_with_
dog_(2)_10.jpg

[29] Blümchenkäfer, ‘‘Cat in the dark,’’ [Image] this file is licensed
under the Creative Commons Attribution-Share Alike 4.0 International
license, Jan. 2021. Accessed: Jul. 10, 2023. [Online]. Available:
https://commons.wikimedia.org/wiki/File:Cat_in_the_dark.jpg

[30] K. Varma, ‘‘Leopard at night DSC 9503,’’ [Image] this file is licensed
under the Creative Commons Attribution-Share Alike 4.0 Interna-
tional license, Mar. 2005. Accessed: Jul. 10, 2023. [Online]. Avail-
able: https://commons.wikimedia.org/wiki/File:Leopard_at_night_DSC_
9503.jpg

[31] A. Kumar, ‘‘Stained glass paintings at Sagrada Familia, Barcelona
(Ank Kumar) 05,’’ [Image] this file is licensed under the Creative
Commons Attribution-Share Alike 4.0 International license, Sep. 2014,
Accessed: Jul. 10, 2023. [Online]. Available: https://commons.wikimedia.
org/wiki/File:Stained_Glass_paintings_at_Sagrada_Familia,_Barcelona_
(_Ank_Kumar)_05.jpg

[32] M. Meraji, ‘‘Tbilisi City—Urban Photos—Georgia Tourism 11,’’
[Image] this file is licensed under the Creative Commons Attribution-
Share Alike 3.0 Unported license, Oct. 2017. Accessed: Jul. 10, 2023.
[Online]. Available: https://commons.wikimedia.org/wiki/File:Tbilisi_
City_-_Urban_Photos_-_Georgia_Tourism_11.jpg

[33] K. Varma, ‘‘Tiger in the night DSC 5138,’’ [Image] this file is licensed
under the Creative Commons Attribution-Share Alike 4.0 International
license, Jul. 2005. Accessed: Jul. 10, 2023. [Online]. Available:
https://commons.wikimedia.org/wiki/File:Tiger_in_the_night_DSC_
5138.jpg

[34] P. Rads, ‘‘Tungsten light,’’ [Image] this file is licensed under the
Creative Commons Attribution-Share Alike 4.0 International license,
Apr. 2017. Accessed: Jul. 10, 2023. [Online]. Available: https://commons.
wikimedia.org/wiki/File:Tungsten_light.jpg

EDUARDO DE JESÚS DÁVILA-MEZA was born
in Guadalajara, Mexico, in 1994. He received the
B.Sc. degree in mechatronics engineering from the
University of Guadalajara, Guadalajara, in 2017,
and the M.Sc. degree from the Center of Research
and Advanced Studies (CINVESTAV), National
Polytechnic Institute (IPN), Guadalajara Campus,
Zapopan, Mexico, in 2019, where he is currently
pursuing the Ph.D. degree. His main research
interests include the application of artificial neural

networks, convolutional neural networks, and computer vision oriented to
the detection and recognition of objects, and medical image processing.

EDUARDO JOSE BAYRO-CORROCHANO
(Senior Member, IEEE) received the Ph.D. degree
in systems engineering from the University of
Wales, Cardiff, in 1994. From 1995 to 1999,
he was a Researcher and a Lecturer with
the Institute of Computer Science, Christian
Albrechts University ofKiel, Germany, onClifford
geometric algebra applications to cognitive
systems. From 2007 to 2008, he was a DFG
Mercator Gastprofessor with the KIT, Technische

Hochschule, Karlsruhe, Germany. From 2014 to 2015, he was a Visiting
Full Professor with the Media Laboratory, MIT, Boston, MA, USA.
He is currently a Full Professor of geometric cybernetics with the
Department of Electrical Engineering and Computer Science, CINVESTAV,
IPN, Campus Guadalajara, Jalisco, Mexico. He is the author of seven
Springer-Verlag books and has published more than 230 refereed journal
articles, book chapters, and conference papers. He is a fellow of the
International Association of Pattern Recognition Society and the Asian
Artificial Intelligence Association. He was the General Chair of ICPR2016,
in December, Cancun, Mexico, and the IEEE/RAS Humanoids 2016,
in November, Cancun. He was an Associate Editor of the IEEE TRANSACTIONS

ON NEURAL NETWORKS AND LEARNING SYSTEMS, Journal of Mathematical
Imaging and Vision, and Journal of Pattern Recognition. He is an Associate
Editor of the Journal of Robotics and an Editor of the ICRA Conference.

108280 VOLUME 11, 2023

