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ABSTRACT This paper proposes an iterative learning distributed model predictive control (ILDMPC)
to control the formation of multiple mobile robots under uncertainty. Specifically, we design a general
performance index constructed from the system’s state variables and coupling parameters to replace the
traditional cost function, promoting the system’s control efficiency and the ability to seek the optimal
solution. Furthermore, when dealing with and calculating the robot information, such as state variables
and coupling parameters, information from the previous iteration is employed to construct closed-loop
constraints in the optimization problem. Then, the results of the next iteration are calculated by learning
the previous optimization trajectory and improving the overall system performance. Under the closed-loop
constraints of the optimization problem, we analyze our system’s feasible solution and iterative performance,
demonstrating its effectiveness through several simulation experiments.

INDEX TERMS Iterative learning distributed MPC, general performance index, closed-loop constraints,
model uncertainty.

I. INTRODUCTION
The formation control ofmulti-mobile robots has beenwidely
used in military, production, and service fields [1], [2], [3],
[4]. Compared with a single mobile robot, multiple mobile
robots promote the system’s task completion efficiency, fault
tolerance, and robustness due to their cooperation. Con-
sidering their formation information exchange strategy, the
distributed control strategy stands out due to its strong adapt-
ability, expansibility, and fault tolerance. However, solving
the conformance protocol problem in distributed formation
control is challenging.

To date, researchers have proposed the leader-follower
method [5], [6], the behavior-based method [7], [8], and the
virtual structure method [9], [10] to overcome the confor-
mance protocol problem. Nevertheless, with the introduction
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of model predictive control (MPC), the existing methods for
this problem have been expanded because MPC overcomes
the constraints by adopting optimization theory and the
rolling optimization strategy. Therefore, researchers applied
MPC to the distributed control and suggested the distributed
model predictive control (DMPC) method for the distributed
formation control [11], [12], which discards the strong cou-
pling relationship among the mobile robots. However, multi-
mobile robot setups utilizing DMPC suffer from substantial
uncertainty. It should be noted that when DMPC is used
in formation control, it requires an accurate model, which
in practice is almost impossible. Hence, when studying the
DMPC, the model of the multi-mobile robot system is often
defined precisely, and the model’s uncertainty is ignored.
Nevertheless, this strategy imposes a too-optimistic DMPC
prediction process, which forces the robot information pre-
diction result to deviate from the actual effect and interfere
with the distributed system [13], [14]. Therefore, resolving
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the uncertainty in a distributed system is still challenging.
Moreover, the coupling relationship in traditional DMPC still
suffers from various problems. For instance, if uncertainty
is considered, the impact of imprecise coupling parame-
ters on a single repeating DMPC system is not allowed to
change, degrading the performance of the distributed forma-
tion system.

Although few studies on DMPC formation control settle
the uncertainty, existing studies focus on improving theMPC,
i.e., the core of DMPC, and combining robust control [15],
[16] and adaptive control [17], [18] methods to manage the
influence of uncertainty. While the two approaches tend to
rely on cost functions and model structures, with the devel-
opment of intelligence, the Iterative Learning Control (ILC)
algorithm has gained significance due to its ability to over-
come uncertainty. Indeed, ILC can control the non-linear
dynamic system with high uncertainty by employing a sim-
ple algorithm within a given time range and tracking the
given desired trajectory with high precision [19], [20]. Con-
sidering the advantages of ILC, researchers applied ILC in
MPC and obtained appealing results. Indeed, adding ILC [21]
constrains the optimization problem’s objective as a gen-
eral performance index. Hence, only a simple quadratic cost
term reduces the burden of seeking the optimal solution.
By designing an iterative learning MPC [22] strategy, the
system iteratively learns how to deal with the unknown
polyhedron state constraints. In this strategy, the estimated
constraint set gets ascension by iteration, promoting the
system’s ability to resist uncertainty. In [23], the authors
considered real-time trajectory tracking of a pressure-point
nano-positioning, where the Iterative Learning MPC scheme
accurately tracked the trajectory and overcame the mea-
surement noise and model uncertainty. In [29], the authors
developed a global fast terminal attractor-based flight trajec-
tory tracking control that compensates matched uncertainties.

Besides, RMPC combines the advantages of robust con-
trol and model predictive control, which affords the optimal
control quantity for changing state parameters and solves
the poor robustness problem caused by model uncertainty
and system disturbance in traditional MPC algorithms [30].
Robust model predictive control is generally divided into two
important solution methods, the min-max and the tube-based.
The basic idea of minimax predictive control is similar to the
traditional MPC. However, it differs regarding the optimal
solution of the objective function of robust model predictive
control by minimizing the maximum value, i.e., the min-max
method obtains the optimal control law. The core idea of the
min-maxmethod is to consider that if the system canmaintain
a stable state to achieve control of the controlled object
under the ‘‘worst’’ situation, then the system can still ensure
smooth operation under normal conditions or unexpected sit-
uations [31]. According to the correlation between the control
sequence and the system state, the min-max RMPC can be
divided into two types: open-loop and closed-loop, which
contain the following four types [32]:

(1) Open-loop min-max robust model predictive control
(2) Constant feedback min-max robust model predictive

control
(3) Dynamic feedback min-max robust model predictive

control
(4) Dual-mode enumeration min-max robust model predic-

tive control
The above studies indicate that iterative learning MPC

effectively solves the shortcomings of the MPC-based meth-
ods. Specifically, a control system integrating iterative learn-
ing and MPC is robust, even when influenced by various
bounded disturbances and uncertainties, the system’s iterative
trajectory converges to the desired trajectory. However, in the
distributed MPC field, each mobile robot has its bounded dis-
turbances and uncertainties, and therefore it is challenging to
design the algorithm reasonably while considering all mobile
robots simultaneously.

Considering calculating the robot’s information, ILC is
quite efficient. Indeed, in the Ventilator Flow Tracking Sys-
tem [24], the ILC module collects previous flow information
and evaluates the information for errors through iterative
learning to correct the flow to the expected values. By propos-
ing a learning model involving a predictive controller for
iterative tasks [25], the non-reference controller enhances its
performance by learning from previous iterations. Given the
velocity fluctuation of the power system of semi-submersible
ships [26], the periodic torque ripple of the propulsion motor
is effectively reduced by using the error trend and previ-
ous error information in the ILC algorithm. According to
the above research, ILC exploits more information than the
single-repetition system, and therefore the information of
the previous iteration can be integrated into the problem
formula of the next iteration to increase the system’s per-
formance [27]. Although ILC is widely used, it should be
improved further to enhance the robustness of DMPC. Specif-
ically, to successfully implement the designed algorithm,
it is necessary to analyze the robot information reasonably,
construct the coupling constraint, and apply this constraint to
the iterative learning DMPC.

An alternative method considers a neural network-based
method that combines a fast integral terminal sliding mode
control (FIT-SMC), a robust exact differentiator (RED)
observer, and a feedforward neural network (FFNN) estima-
tor [28]. This method was applied on a multi-DoF anthro-
pomorphic manipulator demonstrating low overshoot and
settling time for all joints.

This paper considers a distributed multi-robot system
where we aim to control the agents’ formation during
their motion. Solving such a control problem is important
as multi-robot systems are extensively used in numerous
domains, and thus controlling their formation is important.
Nevertheless, current methods cannot handle the related
uncertainties despite their importance. Besides, the existing
robust methods that combine ILC and MPC are constrained
to a single platform rather than amulti-platform configuration
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operating in a distributed organization, which is the focus of
this paper. To our knowledge, extending the ILC and MPC
to optimize the distributed multi-robot formation control has
not been investigated yet.

Hence, spurred by the proven capabilities of the ILC and
MPC methods and the poor performance of the existing
DMPC schemes, this paper proposes ILDMPC. Specifically,
this paper’s contributions are as follows:

1) Developing ILDMPC, which combines ILC and
MPC and extends their application for a distributed
multi-robotic formation control.

2) Overcoming the deficiencies of current DMPC
schemes, such as uncertainty and accurate system
model requirements, by exploiting and extending the
ILC strategy into the distributed multi-robotic forma-
tion control domain.

3) Transforming the objective function of the optimization
problem into a general performance index by utilizing
the total relative position state error and synchroniza-
tion path parameter.

4) Exploiting the information from the previous iteration
to construct closed-loop constraints. This optimizes the
results of the next iteration by learning the previous
iteration’s decoupling results and optimization trajec-
tory. Therefore, as the number of iterations increases,
the distributed system’s convergence curve improves,
and the convergence effect is optimized.

The remainder of this paper is organized as follows.
Section II describes the control problem. Section III intro-
duces the proposed iterative learning distributed model pre-
dictive control (ILDMPC), proves the recursive feasibility,
and demonstrates that the iterative performance is improved
as the number of iterations increases under close-loop con-
straints. Section IV presents two simulation examples to
illustrate our algorithm’s effectiveness, and finally, Section V
concludes this work.

II. PROBLEM FORMATION
This study considers a finite number of mobile robots under
distributed formation control. A finite index is set to mark
each mobile robot node as 1, 2, . . . , n, and the relationship
between mobile robot i and j is represented by a weighted
adjacency matrix 3 =

[
aij

]
. If the i-th mobile robot can

obtain the information from the j-th robot, then aij = aji =

1. Otherwise aij = aji = 0. Next, we analyze the rela-
tionship between the two mobile robots (Section II-A) and
obtain the system of mobile robot i by summing the variables
(Section II-B).

A. TWO MOBILE ROBOTS
Let mobile robots i and j have the position states pi =

[ xpi ypi θpi ]T and pj = [ xpj ypj θpj ]T on their path 0i and
0j, where

(
xp, yp

)
and θp are the robot’s coordinates and

orientation, respectively. The desired relative position state
difference of mobile robot j relative to mobile robot i is

represented as pij =
[
xrij y

r
ij θ

r
ij

]
, where

(
xrij, y

r
ij

)
and θ rij are

the desired coordinates and orientation difference. The linear
and angular velocity of the j-th mobile robot is expressed as[
vj ωj

]
=

[
vi − vrij ωi − ωrij

]
, where vi and ωi represent the

linear and angular velocity of the i-thmobile robot, which can
be obtained from the sensor. vrij andω

r
ij are the desired relative

linear and angular velocity differences between the i-th and
j-th mobile robots, respectively. Then the kinematic models
of these robots are established as follows: ẋpi

ẏpi
θ̇pi

 =

 cos θpi 0
sin θpi 0
0 1

 [
vi
ωi

]
, (1)

 ẋpj
ẏpj
θ̇pj

 =

 cos θpj 0
sin θpj 0
0 1

 [
vi − vrij
ωi − ωrij

]
. (2)

Considering the desired relative position state difference
between the i-th and j-th mobile robot, the relative position
state error can be expressed as: xe,ij

ye,ij
θe,ij

 =

 xij − xrij
yij − yrij
θij − θ rij


=

 cos θpi sin θpi 0
− sin θpi cos θpi 0

0 0 1

  xpi − xpj − xrij
ypi − ypj − yrij
θpi − θpj − θ rij

 . (3)

Taking the derivative on both sides of (3) provides:

ẋe,ij =

(
ωi − ωrij

) (
yij − yrij

)
− vi

+

(
vi − vrij

)
cos

(
θij − θ rij

)
ẏe,ij = −ωi

(
xij − xrij

)
+

(
vi − vrij

)
sin

(
θij − θ rij

)
θ̇e,ij = ωi − ωj − ωrij

(4)

Besides, the path-tracking problem of a mobile robot
can be described as follows. In the initial position
state, an appropriate bounded control input Ue,ij =

f
(
vi − vrij, ωi − ωrij

)
is sought to make the relative posi-

tion state error
[
xe,ij ye,ij θe,ij

]T convergent and bounded.[
xe,ij ye,ij θe,ij

]T should satisfy:

lim
t→∞

[
xe,ij ye,ij θe,ij

]T
= 0.

Let the relative position state error be Xe,ij =[
xe,ij ye,ij θe,ij

]T , and the control input be Ue,ij =[
−vi +

(
vi − vrij

)
cos

(
θij − θ rij

)
ωi − ωj − ωrij

]T
. The lin-

earization equation of the system between the i-th and j-th
mobile robot is obtained from (4) as:

Ẋe,ij = A0iXe,ij + B0iUe,ij, (5)

where A0i =


0

(
ωi − ωrij

)
0

−ωi 0
(
vi − vrij

)
0 0 0

, B0i =

 1 0
0 0
0 1

.
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B. THE SYSTEM OF MOBILE ROBOTS I
Assumption 1: The relationship between any mobile robot

and robot i can be described as presented in Section II-A.
Moreover, considering all mobile robots, the system of
mobile robot i is constructed by accumulating the vari-
ables. By defining the total relative position state error

as Xi =

n∑
j=i,j̸=i

aijXe,ij, the total control input is Ui =

n∑
j=1,j̸=i

aijUe,ij. Therefore, when ignoring the errors, the lin-

earization equation of the system of the i-th mobile robot is:

Ẋi = A0iXi + B0iUi. (6)

Let Xi =
[
xi yi θi

]T , where (xi, yi) and θi are the total
coordinates errors and total orientation errors. For the system
of mobile robot i, its task can be described as follows. Con-
sidering the uncertainty effect, the actual increment will be
different from the ideal value due to the error of the state, and
the non-linear model of the system affected by uncertainty is
described in the following way.

Ẋi = σi (A0iXi + B0iUi)

An appropriate bounded control input is sought in the
initial position state to make the total relative position state
error Xi =

[
xi yi θi

]T convergent and bounded. Therefore,
Xi =

[
xi yi θi

]T should satisfy the following:

lim
t→∞

Xi =
[
xi yi θi

]T
= 0.

Through the zero-order hold, system (6) is discretized as:

Xi(k + 1) = AiXi(k) + BiUi(k), (7)

where Ai = eA0i1t ,Bi =
∫ 1t
0 eA0isB0ids, and 1t is the

sampling period. A polyhedron set 6i is defined to describe
the errors during discretization and the system uncertainty,
satisfying:

6i =
{[
Ai Bi

]
|
[
Ai Bi

]
=

[
Ai Bi

]
δi

}
,

where δi is the uncertainty weight matrix, with the uncertainty
weight threshold determined by the user. The uncertainty
matrix in this paper is defined as:

δi = diag
{
λ1I , λ2I

}
, λs ∈ [−0.5, 0.5], s = 1, 2.

By adding the bounded external interference di(k) ∈ R3×3,
the system of the mobile robot i becomes:

Xi(k + 1) = 6i

[
Xi(k)
Ui(k)

]
+ di(k). (8)

III. ILDMPC CONTROLLER DESIGN AND SYSTEM
ANALYSIS
A. ITERATIVE LEARNING DISTRIBUTED MPC CONTROLLER
DESIGN
In the formation system, before each sampling, the informa-
tion of each mobile robot will be exchanged to establish the
relative position state error Xe,ij between the mobile robots.

Although the coordinates and orientation of each robot are
obtained, different robots use the same variables to describe
their position state. This clearly and easily describes their
position-state difference and constructs the coupling prob-
lem between the mobile robots. Therefore, a synchronous
path parameter ρi is applied to describe the path 0i =[
x0i(ρi) y0i(ρi) θ0i(ρi)

]
of the i-th mobile robot, which is

a function of the control input and the linear and angular
velocities:

ρi(k + 1) = ρi(k) + CiUi(k) + Di
[
vi ωi

]T
. (9)

where Ci and Di are the weight matrices in the linear for-
mula that are heuristically determined. This synchronous path
parameter is used to form the coupling parameter in the
system. Although it has an independent linear relationship,
it is also associated with the position state by the control
input. In the control process, the path of the j-th mobile
robot is guaranteed by controlling the path parameter dif-
ference between it and the i-th mobile robot to converge to
the expected value. The path parameter difference (coupling
parameter) is defined as ρij = ρi−ρj, and the expected value
is ρrij. The formation shape is guaranteed by applying this
definition to all mobile robots.

In traditional DMPC, the cost function, which comprises
state variables, control inputs, and coupling parameters,
is used to solve quadratic programming problems. The tra-
ditional cost function is:

Ji(k) =

k+M−1∑
t=k

(
∥XMPCi(t|k)∥2Si + ∥UMPCi(t|k)∥2Qi

+

n∑
j=1,j̸=i

aij
∣∣∣ρMPCi(t|k) − ρMPCj(t|k) − ρrij

∣∣∣2
wij

 .

where Si, Qi, and wij are the weight matrices, XMPCi, ρMPCi,
andUMPCi represent the total position state error, path param-
eter, and the total control input calculated in DMPC, and M
is the predictive horizon, when M + k > T . We consider
M = T − k .

In the ILDMPC, only the state variables and the coupling
parameter are applied to construct the general performance
index, and the result trajectories of the previous iteration
are used to construct the close-loop constraints to solve the
optimization problem. The cost function changes enhance the
optimization process and reduce the computational burden
when dealing with the coupling and optimal problems. For
the q-th iteration and at time T, the optimization problem is:

min Jqi (k) =

k+M−1∑
t=k

ψ
q
i

(
XMPCiq(t|k), ρMPCiq(t|k)

)
=

k+M−1∑
t=k

∥∥XMPCiq(t|k)∥∥2 +

n∑
j=1,j̸=i

aij
∣∣ρMPCiq(t|k)
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−ρ
q
MPCj(t|k) − ρrij

∣∣∣2)
min Jqi (k) =

k+M−1∑
t=k

ψ
q
i

(
XMPCiq(t|k), ρMPCiq(t|k)

)
=

k+M−1∑
t=k

∥∥XMPCiq(t|k)∥∥2 +

n∑
j=1,j̸=i

aij
∣∣ρMPCiq(t|k)

−ρ
q
MPCj(t|k) − ρrij

∣∣∣2)
s.t. (8), (9)

XMPCiq(k|k) = Xqi (k)

ρMPCi
q(k|k) = ρ

q
i (k)

XMPCiq(k +M |k) = Xq−1
i (k +M )

ρMPCi
q(k +M |k) = ρ

q−1
i (k +M ) .

s.t. (8), (9)

XMPCiq(k|k) = Xqi (k)

ρMPCi
q(k|k) = ρ

q
i (k)

XMPCiq(k +M |k) = Xq−1
i (k +M )

ρMPCi
q(k +M |k) = ρ

q−1
i (k +M ) . (10)

where XMPCiq, ρMPCiq, and UMPCiq represent the total posi-
tion state error, path parameter, and the total control input
calculated by the iterative learningMPC controller of the q-th
iteration.
Fig. 1 illustrates the schematic block diagram of the iter-

ative learning distributed MPC. Each mobile robot has the
same internal structure, and robots j1 and j2 communi-
cate with robot i. The communication content includes the
robot’s position state and synchronization path parameter.
It should be noted that amemorymodule in the robot structure
stores the state variables and synchronization path parameters
calculated during each iteration. The required robot infor-
mation is extracted from the memory module to construct
the closed-loop constraint and optimization problem in the
iterative calculation. After the machines interact, the optimal
control input is obtained through rolling optimization, which
will be applied to the robotic system. After receiving the
formation task, the robots conduct finite iterations for the dis-
tributed system and then output their final control sequences
to act on their plants.
The rolling optimization involves scroll optimization.

Indeed, the classic optimal control theory is usually for a
certain and invariant global optimization goal, where solving
an optimization problem offline to obtain a globally optimal
solution can be regarded as ‘‘offline optimization’’ and ‘‘one-
time online implementation’’. Conversely, MPC does not use
a constant global optimization goal but Rolling (usually finite
time domain) optimization goals. Thus, at every moment
(within time steps), MPC solves the optimization problem of
finite dimensionality. At the next moment, the ‘‘window’’ of
optimizing the time domain continues to move forward while
keeping the length of the optimized time domain constant.

FIGURE 1. Schematic block diagram of ILDMPC.

The same optimization process is repeated online, consti-
tuting MPC’s ‘‘rolling optimization.’’ At its core, it is the
process of repeatedly performing the optimal solution at dif-
ferent moments according to the set objective function and
the established constraints and controlling the vehicle system
more accurately and reducing the tracking error with the
advancement of time and the change of state information.

The rolling optimization process predicts the future state
variables at every time step using (8) and (9), and the
closed-loop constraint is constructed using the results of the
last iteration or the initial information. Given this constraint,
the iterative learning MPC controller solves the convex opti-
mization problem online, so the system can obtain the optimal
control sequence when considering the uncertainty and exter-
nal interference. After solving this optimization problem,
Uq∗
i (k) = UMPCiq(k|k) and the optimal solution is applied

to the controlled object.
It should be noted that although our method relies on

DMPC, it has two major differences.
1) Traditional DMPC trades computation time for global

optimality, resulting in steady-state errors in the system.
Therefore, this study iteratively reduces the feasible domain
constraints of DMPC to obtain a more accurate optimal solu-
tion sequence. This strategy improves the accuracy of the
system’s dynamic response process for a certain path point
and reduces the total optimization cost.

2) Traditional DMPC does not involve any methods or
preventive measures to deal with uncertainty. Opposing, our
method uses an iterative strategy to refer to the results affected
by uncertainty from the previous calculation used for the next
solution, offering the system a certain number of correction
opportunities and indirectly avoiding the direct impact of sev-
eral uncertainty factors on the system.The related iterations
are stopped if the number of iterations reaches a preset upper
limit or the overall transient performance metric converges to
a fixed value.

B. SYSTEM ANALYSIS
Next, we analyze the algorithm for each mobile robot. At the
beginning of the iteration, two feasible data sets X0

i , ρ
0
i are
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available for the iterative calculations. The values at time T
are defined as X0

Ti and ρ
0
Ti. Each iteration considers the same

task Xqi = X0
Ti, ρ

q
i = ρ0Ti.

Theorem 1: When the solutions of the optimization prob-
lem are feasible in the q-1-th iteration, the solutions of the
q-th iteration optimization problem are feasible.

PROOF: The XMPCiq and ρMPCi
q calculated by

ILDMPC are expressed as follows:

XMPCiq(k + 1|k), . . . , XMPCiq(k +M |k)

ρMPCi
q(k + 1|k), . . . , ρMPCiq(k +M |k).

According to the precious definition of the prediction hori-
zon, XMPCiq and ρMPCiq are calculated from the solutions
UMPCiq, and the optimization problem is divided into two
cases:

IfM + k ≤ T , we notice that

XMPCiq(k +M |k) = Xq−1
i (k +M )

ρMPCi
q(k +M |k) = ρ

q−1
i (k +M ),

with the feasible solutions in the q-1-th iteration,Xq−1
i (k+M )

and ρq−1
i (k +M ) being feasible. In this case, the final result

XMPCiq(k+M |k) and ρMPCiq(k+M |k) is feasible. Therefore
the solutions UMPCiq to the optimization problem in the q-th
iteration are feasible.

IfM + k > T ,M = T − k , so there isM + k = T .

XMPCiq(k +M |k) = Xq−1
i (k +M ) = Xq−1

i (T )

= Xq−2
i (T ) = . . . = XqT0

ρMPCi
q(k +M |k) = ρ

q−1
i (k +M ) = ρ

q−1
i (T )

= ρ
q−2
i (T ) = . . . = ρ

q
T0,

where X0
Ti and ρ

0
Ti are feasible values given before the iter-

ation at time T. So the final results XMPCiq(k + M |k) and
ρMPCi

q(k + M |k) are feasible, proving that the solutions
UMPCiq to the optimization problem in the q-th iteration are
feasible.
Theorem 2: The iteration performance is defined as the

sum of all Xqi and ρqi − ρ
q
j errors at time T:

8
q
i =

T∑
t=0

9
q
i

(
XMPCiq (t|k) , ρMPCiq (t|k)

)
where ρqj is obtained from the j-th mobile robot through a
Bluetooth or wireless network, so ρqj can be treated as known.
In ILDMPC, the iteration performance improves for each
mobile robot i as the number of iterations increases.

PROOF:For the time T, the iteration performance can be
analyzed from two cases:
If M + k ≤ T , Jqi (k) should satisfy the following

relationship:

Jqi (k + 1)

≤

k+M∑
t=k+1

9
q
i (XMPCi

q(t|k), ρMPCiq(t|k))

= Jqi (k) +9
q
i (XMPCi

q(k +M |k), ρMPCiq(k +M |k))

−9
q
i (XMPCi

q(k|k), ρMPCiq(k|k))

= Jqi (k) +9
q
i (X

q−1
i (k +M |k), ρq−1

i (k +M |k))

−9
q
i (XMPCi

q(k), ρMPCiq(k)). (11)

When summing (11) from k= 0 to k = T −M , the result
is as follows:

Jqi (T +M − 1) − Jqi (0)

≤

T∑
m=Nk

9
q
i (X

q
i (m), ρ

q
i (m))

−

T−M∑
n=0

9
q
i (XMPCi

q(n), ρMPCiq(n)). (12)

If M + k > T , take M = T − k , and Jqi (k) should satisfy
the following relationship:

Jqi (k + 1) ≤

T∑
t=k+1

9
q
i (XMPCi

q(t|k), ρMPCiq(t|k))

= Jqi (k) −9
q
i (XMPCi

q(k|k), ρMPCiq(k|k)). (13)

When summing (13) from k = T −M + 1 to k = T − 1,
the result is as follows:

Jqi (T ) − Jqi (T −M + 1)

≤ −

T−1∑
n=T−M+1

9
q
i (XMPCi

q(n), ρMPCiq(n)). (14)

At moment T , Jqi (T ) = 9
q
i (X

q
i (T ), ρ

q
i (T )). By combin-

ing (12) and (14), we obtain the following:

Jqi (T ) − Jqi (0) = 9
q
i (X

q
i (T ), ρ

q
i (T )) − Jqi (0)

≤

T∑
m=M

9
q
i (X

q
i (m), ρ

q
i (m))

−

T−M∑
n=0

9
q
i (XMPCi

q(n), ρMPCiq(n))

−

T−1∑
n=T−M+1

9
q
i (XMPCi

q(n), ρMPCiq(n))

=

T∑
m=M

9
q
i (X

q−1
i (m), ρq−1

MPCi(m))

−

T−1∑
m=0

9
q
i (XMPCi

q(m), ρMPCiq(m)), (15)

After the transfer, there is:

8
q
i = 9

q
i (XMPCi

q(T ), ρMPCiq(T ))

+

T−1∑
n=0

9
q
i (XMPCi

q(n), ρMPCiq(n)) ≤ Jqi (0), (16)

VOLUME 11, 2023 120039



W. Shang et al.: Formation Control of Multiple Mobile Robots Based on ILDMPC

FIGURE 2. Communication topology.

Besides Jqi (0) should satisfy Jqi (0) ≤

M−1∑
m=0

9
q
i (X

q−1
i (m),

ρ
q−1
i (m)). Therefore (16) is expressed as follows:

8
q
i ≤ Jqi (0) +

T∑
m=M

9
q
i (X

q−1
i (m), ρq−1

i (m))

=

M−1∑
m=0

9
q
i (X

q−1
i (m), ρq−1

i (m))

+

T∑
m=M

9
q
i (X

q−1
i (m), ρq−1

i (m))

= 8
q−1
i . (17)

Remark 1: Theorem 1 analyzes the feasibility of the
algorithm solution, and theorem 2 proves that the controller’s
performance after each iteration is better than in the previous
iteration. Therefore, the algorithm provides feasible Xi and ρi
and converges them to the control target during the iteration
process. Furthermore, if theory 1 and theory 2 hold for each
mobile robot, they hold for the distributed formation system.

IV. SIMULATION RESULTS
This section evaluates the formation control of five robots
using the proposed ILDMPC method on two simulated sce-
narios. In the second scenario, we challenge ILDMPC against
RMPC to demonstrate our method’s effectiveness. It should
be noted that we only compare our method against RMPC
as, to our knowledge, existing methods are not open-source
and thus were unavailable during our trials. Furthermore,
implementing these methods based on the corresponding
papers might lead to a code that underperforms compared to
its original implementation, affecting the performance eval-
uation trials. Hence, we compare our scheme only against
RMPC.

Regarding the robotic setup, the neighbor robot of robot i is
the communication object with robot i, with Fig. 2 presenting
the corresponding oriented communication topology graph.
The vertex array is defined as:

[
Robot1 Robot2 Robot3 Robot4 Robot5

]
,

the adjacency matrix is:
0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 1 0 1
1 0 0 1 0

 .

A. SIMULATION 1
In this simulation, the lane-changing path is considered the
formation shape of the five mobile robots. The path func-
tion is:

0 =

{
x0 = −ρ

y0 = −2/
1 + e−2(ρ−2)

.

The path parameter differences of the five mobile robots
are ρr12 = −10, ρr23 = −10, ρr34 = 15, ρr45 = −10, ρr51 =

15, and the path error between the i-th and j-th mobile robot
is x0ij(ρrij) = −ρrij and y0ij = 2. Two groups of feasible
data1 are used as the values of the state error Xi and the
path parameter ρi of each mobile robot for the initial iteration
learning. The initial values Xq

i (0) before each iteration are:

Xq1 (0) =
[
−0.2 0.5 0.25

]T
,

Xq2 (0) =
[
0.1 0.03 0.15

]T
,

Xq3 (0) =
[
0.15 −0.02 0.1

]T
,

Xq4 (0) =
[
0.15 −0.02 0.1

]T
,

Xq5 (0) =
[
0.15 −0.02 0.1

]T
.

We set the sampling period to 1t = 0.1s, and the coef-
ficients are set to Ci = Di =

[
−0.2 0.1

]
. Each robot’s

angle and line speed are ωri = 1 and vri = 1, respectively.
The uncertainty weight matrix δi is set as diag{-0.3I,0.5I}.
The system performs 10 iterations, each lasting T =20s.
During each iteration, every mobile robot moves along ρ1 =

10, ρ2 = 20, ρ3 = 30, ρ4 = 15, ρ5 = 25. The bounded
external disturbance of each mobile robot is as follows:

d1(k) =

 ( 0.2
2k+1 +

2
1000 ) cos(0.1k)

( 0.2
k+1 +

2
1000 ) sin(0.1k)

( 0.1
k+1 +

1
1000 ) cos(0.2k)


d2(k) =

 ( 0.1
2k+1 +

1
1000 ) cos(0.1k)

( 0.2
k+1 +

2
1000 ) sin(0.1k)

( 0.1
2k+1 +

1
1000 ) cos(0.2k)


d3(k) =

 ( 0.1
2k+1 +

1
1000 ) cos(0.1k)

( 0.15k+1 +
1

1000 ) sin(0.1k)
( 0.2
k+1 +

2
1000 ) cos(0.2k)


d4(k) =

 ( 0.2
2k+1 +

2
1000 ) cos(0.1k)

( 0.15k+1 +
2

1000 ) sin(0.1k)
( 0.1
k+1 +

1
1000 ) cos(0.2k)


d5(k) =

 ( 0.1
2k+1 +

1
1000 ) cos(0.1k)

( 0.2
k+1 +

2
1000 ) sin(0.1k)

( 0.1
k+1 +

1
1000 ) cos(0.2k)


1The data can be provided by contacting the corresponding author.
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FIGURE 3. State error Xi of each mobile robot (a)-(e) denoting robot 1-5, respectively.

Fig. 3 presents the state error Xi of each mobile robot
in the iterative process, highlighting that the convergence
curve improves as the number of iterations increases. More-
over, Fig. 4 compares ILDMPC and RMPC. Specifically,

Fig 4 compares the state quantity obtained by the tenth
iteration with the RDMPC result under the same initial
conditions. The comparative results infer that ILDMPC
enhances the convergence speed of the system because of its
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FIGURE 4. Comparing ILDMPC and RMPC per mobile robot (a)-(e) denoting robot 1-5, respectively.

learning ability and ameliorates the overshoot effect in the
convergence process.

Fig. 5 illustrates the results of the path parameter differ-
ence tracking on the desired values. This figure reveals that
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FIGURE 5. Path parameter differences.

FIGURE 6. Total transient performance indicators over 10 iterations.

as the number of iterations increases, the iterative learning
algorithm effectively reduces the tracking error and promotes
tracking accuracy. The total transient performance is defined

as
n∑
i=1

T∑
k=0

9
q
i (Xi(k), ρi(k)). Besides, Fig. 6 illustrates the total

transient performance, highlighting the ability of Xi and ρi of
the formation system to track the control target. The figure
demonstrates that the total transient performance decreases
along the learning process, and the total transient perfor-
mance converges to a fixed value of 0.9515. Fig. 7 depicts the
computing speed of the controller, where the execution time
of the 10th iteration is compared against the robust control.
The results infer that the cost function improvement and
constraints increase the computing speed by at least 4 times.
Finally, Fig. 8 presents the actual path of each robot following
the desired path, suggesting that the mobile robots keep their
queue shape and track the desired path well.

B. SIMULATION 2
In this simulation, the five mobile robots aim to preserve the
formation of concentric circles andmove half an arc. The path

FIGURE 7. Computing speed of the controller.

FIGURE 8. Path of each robot.

function is expressed as a polar coordinate equation:

0 =

{
x0 = r0 cos(ρ)
y0 = r0 sin(ρ)

The path parameter differences of five mobile robots are
ρr12 = ρr23 = ρr34 = ρr45 = ρr51 = 0. The path error
between the i-th and j-thmobile robots is expressed as r0ij =

−0.25 and r01 = 0.25. Two groups of feasible data are used
as the values of the state error Xi and the path parameter ρi
of each mobile robot for the initial learning of iteration. The
initial values Xq

i (0) of the mobile robots before each iteration
are as follows:

Xq1 (0) =
[
0.5 0.2 0.25

]T
,

Xq2 (0) =
[
−0.1 0.2 0.05

]T
,

Xq3 (0) =
[
0.05 −0.2 0.3

]T
,

Xq4 (0) =
[
−0.15 −0.1 0.15

]T
,

Xq5 (0) =
[
−0.15 −0.2 0.15

]T
.

We chose a sampling period of 1t = 0.1s, and the
coefficients are set to Ci = Di =

[
0 pi/200

]
. Each

robot’s angle and linear speed are ωri = pi/200 and
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FIGURE 9. State error Xi of each mobile robot (a)-(e) denoting robot 1-5, respectively.

vri = r0iωri , respectively. The uncertainty weight matrix
δi is set as diag{0.5I,-0.5I}. The system conducts 10 itera-
tions, each lasting T=20s, during which each mobile robot
moves along ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = 0.

The bounded external disturbance of each mobile robot is
the same as in simulation 1. Moreover, it should be noted
that simulation 2 resets the system’s uncertainty weight
matrix.
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FIGURE 10. Comparing ILDMPC and RMPC per mobile robot (a)-(e) denoting robot 1-5, respectively.

Fig. 9 expresses the state error Xi of each mobile robot in
the iterative process, demonstrating similar results to simu-
lation 1. Indeed, the system forces the state variables to con-
verge even under uncertainty. Fig. 10 compares ILDMPC and

RMPC, highlighting that the mitigation effect of ILDMPC on
overshoot is more obvious than in simulation 1. Moreover,
Fig. 11 presents the results of path parameter differences
tracking on the desired values. This figure demonstrates that
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FIGURE 11. Path parameter differences.

FIGURE 12. Total transient performance indicators over 10 iterations.

FIGURE 13. Computing speed of the controller.

as the number of iterations increased, the tracking accuracy
significantly improved compared to simulation 1. The main
reason is that the path parameters are set to be consistent,
which is more conducive to applying the algorithm. Besides,

FIGURE 14. Path of each robot.

Fig. 12 illustrates the total transient performance, which illus-
trates the ability of Xi and ρi of the formation system to track
the control target. The total transient performance converges
to a fixed value of 1.08076. Fig. 13 depicts the comput-
ing speed of the controller, where the calculation speed is
increased by at least 4 times. Finally, Fig. 14 illustrates the
actual path of each robot following the desired path, i.e.,
the mobile robots move half an arc synchronously and track
the desired paths well.

V. CONCLUSION
This paper designs an iterative learning distributed predictive
model controller for multiple robots under model uncertain-
ties. Specifically, in the optimization problem, the proposed
method considers the total relative position state error and
coupling parameter to construct the general performance
index and replace the traditional cost function. This strat-
egy improves the system’s efficiency and ability to find the
optimal solution. The closed-loop constraints are based on
historical information when dealing with and calculating
the robot information, such as total relative position error
and coupling parameters. Therefore, during each iteration,
the system learns the information obtained in the previous
iteration and continuously improves the results of the next
iteration. Overall, this strategy improves the convergence
curve and convergence effect. Through extensive analysis,
it is proven that our method seeks feasible solutions to the
optimization problem and thus improves the system’s itera-
tive performance as the number of iterations increases under
the close-loop constraints. Our algorithm’s effectiveness is
demonstrated through two groups of simulation experiments.

Nevertheless, the proposed method iteratively updates the
system model and establishes non-repetitive constraints, lim-
iting its effectiveness. Hence, future studies will aim to over-
come these limitations. Furthermore, future studies will focus
on overcoming our method’s design difficulties by updat-
ing the system model iteratively and iteratively establishing
distinct constraints.
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