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ABSTRACT Driver monitoring systems (DMS) are a key component of vehicular safety and essential for
the transition from semi-autonomous to fully autonomous driving. Neuromorphic vision systems, based on
event camera technology, provide advanced sensing in motion analysis tasks. In particular, the behaviours
of drivers’ eyes have been studied for the detection of drowsiness and distraction. This research explores the
potential to extend neuromorphic sensing techniques to analyse the entire facial region, detecting yawning
behaviours that give a complimentary indicator of drowsiness. A second proof of concept for the use of event
cameras to detect the fastening or unfastening of a seatbelt is also developed. Synthetic training datasets are
derived from RGB and Near-Infrared (NIR) video from both private and public datasets using a video-to-
event converter and used to train, validate, and test a convolutional neural network (CNN)with a self-attention
module and a recurrent head for both yawning and seatbelt tasks. For yawn detection, respective F1-scores
of 95.3% and 90.4% were achieved on synthetic events from our test set and the ‘‘YawDD’’ dataset. For
seatbelt fastness detection, 100% accuracy was achieved on unseen test sets of both synthetic and real events.
These results demonstrate the feasibility to add yawn detection and seatbelt fastness detection components
to neuromorphic DMS.

INDEX TERMS Driver monitoring, drowsiness detection, event camera, computer vision, CNN, LSTM,
neuromorphic sensing, seatbelt, yawn.

I. INTRODUCTION
Drowsy driving is one of the leading causes of motor
accidents globally, increasing a driver’s risk of an accident
by a factor of 5 or more compared to when they are alert [1].
In the past decade, a great deal of study has been dedicated
to the development of level 5 autonomy, or completely
autonomous driving [2], [3], [4], [5], [6]. Until we reach
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this level, monitoring the driver for signs of drowsiness
and other unsafe driving behaviours can save many lives in
non-autonomous and the semi-autonomous vehicles of today.
To this end, DMS utilising various technologies have been
proposed. One of these systems proposed by Khan et al. [7]
employs an RGB camera in an IoT-based automated system
to monitor drivers and detect drowsiness. While their work
and others [8] discusses blink behavior as an indicator of
drowsiness, a frame rate of at least 100 frames per second
(FPS) is required for accurate blink detection [9], which is
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beyond the capabilities of the 30-60 FPS cameras typically
found in current DMS.

The introduction of neuromorphic vision sensors promises
a new era for DMS, by addressing a number of the hardware
limitations of conventional RGB and near-infrared (NIR) sys-
tems, including low frame rate, power consumption, and low-
light performance. The neuromorphic vision sensors used in
event cameras are designed to mimic the visual-processing
abilities of living objects by only gathering the relevant data
from an observed scene. Instead of using a conventional
shutter-based technique to capture an image, they report an
event anytime a pixel in the sensor detects a change in
brightness above a certain threshold. Each event is defined by
four parameters: the timestamp, the x and y coordinates of the
pixel that reported the event, and the polarity, which indicates
whether an increase or decrease in brightness caused the
event. As events are typically only generated by motion or
changes in lighting, event cameras are extremely useful in
motion analysis tasks.

These modifications also enable event cameras to offer a
wider dynamic range, higher temporal resolution, and lower
power consumption than conventional cameras. Events are
recorded with an accuracy of one microsecond and can
provide equivalent frame rates exceeding 10,000 FPS [10].
These properties, and the parameters that can be modified
to control the output event streams [11] for operation
in various lighting conditions, make the event cameras
highly suited to the various requirements of DMS. This
has already been demonstrated by Ryan et al. [12]. with an
event-based DMS capable of real-time face and eye tracking,
and blink detection as indicator of drowsiness. This could
be combined with other symptoms of tiredness, such as
yawns, for more accurate predictions of driver exhaustion
levels.

Drowsiness detection is critical when considering driver
safety, however there are few measures as simple and effec-
tive as the seatbelt. The risk of injury to a belted passenger
is 65% lower than that of an unbelted passenger [13], and in
the United States, seatbelt use was shown to reduce mortality
by 72% [14]. Existing seatbelt alert systems that rely on
under-seat pressure sensors are easily spoofed, and provide
no assurance of if the seatbelt is correctly fastened. This
makes seatbelt fastness detection another desirable feature
of camera-based DMS. Systems that can recognise seatbelt
use, even from surveillance footage outside the car, have been
made possible with deep learning approaches [15]. These
techniques typically use RGB or NIR frames, often with
some form of edge detection pre-processing [16], however,
a correctly calibrated event camera can similarly isolate edges
and other scene elements without additional processing [11].
DMS that already utilise event cameras could incorpo-
rate seatbelt fastness detection with no added hardware
costs.

This research expands on our previous work of developing
a proof-of-concept event-based yawn detection system [17]
and combines it with a seatbelt fastness detection algorithm.

Large datasets of synthetic events were simulated for
developing these algorithms, and a set of real events was
collected for testing in addition to publicly available data.
The network architecture designed for both tasks combines
a CNN backbone with self-attention module and a recurrent
head. Highly accurate models with very low inference times
were achieved, allowing real-time operation of both yawn
detection and seatbelt fastness detection.

The remainder of this paper is organised as follows:
Section II examines related research in the spaces of
yawn detection, seatbelt detection, and event based DMS.
In Section III we outline our network architecture, followed
by the datasets, event processing, and training details for
both yawn detection and seatbelt state detection tasks.
In Section IV we present our results and compare them to
others in literature. Section VI contains our final conclusions
of the work and its implications.

II. RELATED WORK
In this section we discuss the current literature related
to the two safety features developed in this work. Yawn
detection is a key indicator of driver drowsiness and the
detection of seatbelt is an important component of passenger
safety. By implementing and validating these two safety
features this work demonstrates the general feasibility of
replacing a conventional RGB or NIR based DMS that
employs conventional computer vision algorithms with a
fully neuromorphic DMS.

A. YAWN DETECTION
Driver drowsiness is a critical factor in road accidents, and
various studies have explored yawning as a key indicator for
detecting drowsiness. Abtahi et al. propose a real-time system
using face and mouth detection for accurate yawning mea-
surement and drowsiness detection [18]. Omidyeganeh et al.
present a computer vision-based system that significantly
improves yawning detection rates by using a modified imple-
mentation of the Viola-Jones algorithm and backprojection
theory [19]. Knapik and Cyganek introduce a novel approach
utilising thermal imaging for driver fatigue recognition based
on yawning, demonstrating high efficacy in both laboratory
and real car environment [20]. Yang et al. propose a subtle
facial action recognition method for yawning detection,
utilising a 3D deep learning network and a keyframe
selection algorithm to distinguish yawning from similar
facial actions [21]. Liu et al. design a multimodal fatigue
detection system that combines eye and yawn information,
achieving a high accuracy rate of up to 95% in detecting
drowsiness [22]. Kumari et al. develop a real-time drowsiness
and yawn detection system using Python and the Dlib model,
based on eye closure and yawn frequency, to minimise
fatigue-related vehicle accidents [1]. Dehankar et al. propose
a non-invasive driver drowsiness and yawning detection
system using computer vision techniques and a Raspberry
Pi microcontroller, achieving rapid fatigue detection within
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a few seconds [23]. Alshaqaqi et al. introduce a driver
drowsiness detection system that computes the eye aspect
ratio and lip distance to determine drowsiness and yawning,
aiming to reduce accidents caused by driver fatigue [24].
Melvin et al. propose a novel approach based on facial
motion identification using convolutional neural networks,
addressing challenges in accurate yawning recognition in
real-world driving conditions [25]. These studies collectively
contribute to the development of effective driver drowsiness
detection systems by leveraging yawning as a prominent
indicator, aiming to enhance transportation safety and
mitigate accidents caused by drowsy driving.

To the best of the authors’ knowledge, there is only one
prior study that focuses directly on event-based driver yawn
detection [17]. This work, in part, serves as an extension
of that study, aiming to further explore the potential of
neuromorphic sensing techniques for yawn detection in driver
drowsiness. Our research utilises a neuromorphic vision
system, leveraging event camera technology, to analyse the
entire facial region and capture yawning behaviours. This
provide a complementary indicator of tiredness to enhance.
A dataset comprising 952 video clips and corresponding
neuromorphic image frames is constructed and used for
training and testing a CNNwith self-attention and a recurrent
head.

Event-based yawn detection offers several advantages,
including the ability to capture micro-facial movements
that indicate the onset of yawning. By focusing on spe-
cific yawn events, rather than continuous monitoring, this
approach reduces computational requirements and enhances
the accuracy of detection. Additionally, event-based yawn
detection enables the identification of subtle variations in
yawning patterns, allowing for a more refined analysis of
driver drowsiness levels. This innovative approach holds
great potential in improving the effectiveness and efficiency
of driver drowsiness monitoring systems, ultimately con-
tributing to enhanced road safety.

B. SEATBELT DETECTION
Seatbelt detection is a crucial task in the automotive industry
to ensure driver and occupant safety. Current technology
primarily focuses on buckling detection, but proper seatbelt
routing detection to ensure the seatbelt is safely routed
through the body to protect the wearer, remains a challenge.

Baltaxe et al. [26] addressed the problem of marker-less
vision-based detection of improper seatbelt routing. They
trained deep neural networks using a large database of images
and achieved high accuracy in classifying seatbelt routing
scenarios. This work contributes to improving automotive
safety by reducing injuries caused by improperly routed
seatbelts. Chun et al. [27] proposed NADS-Net, a light archi-
tecture for driver and seatbelt detection using convolutional
neural networks. Their architecture, based on the feature
pyramid network backbone, showed optimal performance for
driver/passenger state detection tasks.

Authors in [16] presented a classification model for driver
seatbelt status detection based on image analysis from a
vehicle’s in-cabin camera. They utilised a YOLO neural
network and a two-step approach to detect the main part
of the belt and its corner. The model achieved accurate
classification of belt fastness, including cases where the belt
is fastened behind the human body. Naik et al. [28] proposed
a technique using convolutional neural networks (CNN) to
detect driver’s seatbelt usage. Their ConvNet achieved higher
accuracy compared to other classification algorithms and
demonstrated the potential for reducing accidents caused by
non-compliance with seatbelt usage.

Authors in [29] focused on the automatic vertical height
adjustment of incorrectly fastened seatbelts using deep
learning. They evaluated three CNN architectures and
found that DenseNet121 achieved the highest classification
accuracy. Their proposed system provides a solution for
ensuring correct seatbelt positioning, thereby enhancing
driver and passenger safety in fleet vehicles. Hosseini
and Fathi [15] proposed a deep learning-based system for
detecting vehicle occupancy and driver’s seatbelt status. Their
method employed a combination of pre-trained ResNet34 and
power mean transformation layers, achieving high accuracy
in detecting occupants and seatbelt violations. The proposed
system demonstrates promising performance compared to
state-of-the-art methods.

Madake et al. [30] addressed seatbelt detection for
assisted driving scenarios. They proposed a real-time system
using a combination of FAST key point detection, BRIEF
method, and Decision Trees. Their algorithm showed high
classification accuracy, considering practical constraints such
as dynamic environments, illumination variations, and low-
quality images. Authors in [31] presented an efficient
and lightweight model for seatbelt detection on mobile
devices. They pruned the SSD MobileNet V2 model and
utilised the LSD linear segment detection multipoint fitting
algorithm to enhance detection performance. Their model
outperformed existing methods, demonstrating its practical-
ity for mobile-based seatbelt detection. Upadhyay et al. [32]
proposed a real-time seatbelt detection system using the
YOLO deep learning model. They emphasised the impor-
tance of monitoring seatbelt fastening in automobiles and
addressed the limitations of existing algorithms. Their
YOLO-based model achieved accurate seatbelt detection,
contributing to automotive safety by ensuring proper seatbelt
usage.

Although there are many prior research works relating
to seat belt detection, we believe that this work is the first
to explore the potential of event cameras to monitor and
verify seatbelt state and fastening activity. More specifi-
cally we are interested in the potential for neuromorphic
sensing to better evaluate the correct completion of the
fastening/unfastening process. Due to potential differences
in how event cameras features can be leveraged for the
prediction of fastening/unfastening actions against a station-
ary fastened/unfastened seatbelt, this paper investigates them
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FIGURE 1. Overview of methodology structure.

as two distinct tasks to inform which method should be
prioritised.

III. METHODOLOGY
In this section we present the details on our network design,
our collection of video datasets and the subsequent generation
of synthetic events, followed by the tailored preprocessing of
our event data for our different tasks, and finally the training
details of our various models. Fig. 1 gives an overview of
this section’s structure. All of the data used in this paper
was collected with informed consent and in compliance with
ethical guidelines.

A. NETWORK ARCHITECTURE
The possible manifestations of yawns are frequently oversim-
plified in yawn-detection literature, where mouth openness
is often assumed to be the only relevant feature. This is
unreliable when assessed over individual frames or short time
windows, as there is a risk of false positive predictions when
the mouth is open for speech or laughter. An additional flaw,
which is extremely challenging to solve in these systems,
is not handling the common case where a person reflexively
covers their mouth with their hand when yawning. Some
approaches also monitor the openness of the eyes, but
there is little consideration of other possible cues that often
accompany a yawn, such as the hand over the mouth or large
stretches of the upper body and arms. For this reason, our
proposed yawn detector does not use facial landmarks or
other deliberately programmed features to make a prediction.
Instead, we rely on CNN components to learn the relevant
features from the full input images, with a recurrent structure
that can track how these features change over time in a
yawn.

Similar principles can be applied when designing a
network to predict seatbelt state. When viewing an individual
frame from a video of someone buckling their seatbelt, there
is no information on the direction of motion or previous
states, and so it can be easily confused with an unbuckling
action, whereas a sequence of frames makes is much easier
to identify. Additionally, a fastened seatbelt does not typically
undergo a lot of motion when the wearer is sitting still. For
event cameras this can result in moments with very little
information on the seatbelt. By extending the input sequence,
we provide more time to gather information on the seatbelt to
obtin for a more reliable prediction.

FIGURE 2. Our proposed network for yawn and seatbelt detection.

Fig. 2 gives a high-level overview of the model architecture
designed for this paper. The MobileNetV2 network is used
for feature extraction of the input frames. In their paper,
Sandler et al. [33] demonstrate the impressive performance
of MobileNetV2 as a feature extractor with an efficient,
lightweight architecture. The model we used was pretrained
on the ImageNet dataset [34]. After this initial feature
extraction, batch normalisation and channel reduction by
2D convolution are applied to prepare the features for a
self-attention module. Recent years have seen self-attention
introduced to many CNN tasks for its ability to contextualise
and apply a weighting to input features, with only a
small computational cost. The self-attention module in our
proposed network is implemented according to [35]. Fig. 3
gives the expanded diagram of this module.

When the attended feature maps are generated for every
frame of the input sequence, they are stacked and passed
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FIGURE 3. An expanded diagram of the self-attention module by [35].

to the recurrent head of the network. This is comprised of
a 2 stacked bi-directional LSTM layers [36]. The LSTM’s
ability to retain information over a longer temporal range
aligns with our needs, as both yawns and seatbelt state can
be more accurately predicted over longer sequences. This
also grants flexibility for inputs of different lengths, which
can prove particularly useful when creating frames from a
sequence of event data, as there is a vast range of possible
representations which can vary the number of frames. For
each frame sequence, the final output of the LSTM layers is
flattened and passed to a fully connected layer to generate
the output prediction. A dropout step was added before this
fully connected layer to address potential overfitting on the
training data.

B. YAWN DETECTION—DATASETS
A non-public industry dataset for driver drowsiness was
collected by recording participants in a driving simulator
at fixed times over a 24hr period. These participants were
required to not consume any stimulants 12 hours prior or
throughout the acquisition. They were also required to stay
awake from the start time of 8AM until the acquisition was
completed. The recordings used for yawn detection took
place at 5PM, 2AM, and 5AM. Each of these recordings
contains one hour of video captured with a Logitech Brio
camera positioned behind the steering wheel. The audio of
each session was also recorded and later annotated by a team
within Xperi with the start time and duration of all yawns. The
yawn audio annotations can be mapped to the RGB frames
as all of the frames are timestamped, however, because of
differences between the audible and visible cues of yawns,
we cannot map frame-precise labels. For example, many
yawns are mostly silent for while the mouth is opening and
only become audible for a large exhale at the end. Using these
audio timestamps will only label the frames for the audible
portion. Variations in individual yawns causes an irregular
misalignment between the audio annotations and desired
frame annotations.With no feasible method to achieve frame-
wise labels, the dataset and network were designed to assign
a single label to a sequence of frames, denoting if a yawn
occurred anywhere in the clip. The yawn audio labels have
a mean duration of 4.03s with a standard deviation of 2.26s
and a maximum of 9.63s. The timestamps of each yawn
sample were extended to 10s and the frames over this new

duration were extracted to create each sample in our RGB
video yawn dataset. This duration guarantees that the entire
yawn was captured in the frames, despite the misalignment of
the audible and visible yawn components. A set of non-yawn
sequences was created by adding a 10s offset to the end
of each yawn sequence and saving another 10s of frames,
provided that these frames did not collide with a subsequent
yawn sequence. The video was specified to be collected
at 30 frames per second giving an expected 300 frames in
each sample, however, the frame rate was typically lower in
the AM sessions due to an increased exposure time for the
darker scenes. In the final set of RGB yawn sequences, 48.6%
had fewer than the 300 frames. The frame counts of these
shorter sequences only have a mean and standard deviation
of 203.63 frames and 48.52 frames respectively.

The public YawDD dataset [37] was also used for testing
our yawn detector. This dataset is comprised of videos taken
from both the dashboard and rear-view mirror of a car. The
rear-view mirror videos were not included in our experiments
as our proposed system uses a camera behind the steering
wheel, making the camera position of the dashboard videos
more appropriate for testing.

C. YAWN DETECTION—EVENT SIMULATION AND
PRE-PROCESSING
A frequent blocker in neuromorphic vision research is a lack
of large-scale public datasets. This has led to the development
of event simulators such as V2E [38]. This enables the
synthesis of realistic events from RGB video using the
differences between successive frames. By including each
frame’s timestamp at simulation time, we can ensure the
simulated events are distributed over the time span of the
source frame pair. This is particularly important in our
yawn dataset where the framerate slows as the scene gets
darker. The RGB frames were cropped to a 500 × 500 area
containing the face before simulation. Our event data are
initially saved as lists of individual events in text format but
to use this data in CNNs and other image-based systems,
it must first be represented in a 2D array or frame. This
is typically achieved by accumulating a group of events
and summing the positive and negative events at each pixel
location to create a 2D frame [10]. When transforming an
event recording into frames with this technique, the decision
of how many events should be accumulated per frame must
be carefully considered. The two most common approaches
are to accumulate events over a fixed duration or accumulate a
fixed number of events for each frame. The former method of
grouping the events by a fixed duration is useful in tasks that
could benefit from the temporal information in a sequence
of frames as the generated frames will have fixed time
spacing, much like conventional video formats. However, this
approach is prone to generating frames with few events if
there is little motion in the scene over the fixed duration.
The alternative approach of forming each frame from a fixed
number of events gives some assurance of aminimum amount
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FIGURE 4. Sample event frames from a yawn sequence where the mouth is always visible.

FIGURE 5. Sample event frames from yawn sequences where the mouth is covered by a hand while yawning.

of spatial information in each frame, at the loss of much of
this temporal information.

We hypothesise that the fixed duration method is more
applicable for yawn detection. This yields frames at fixed
rate, much like a conventional camera’s output, and the
temporal information carried in a sequence of these frames
can be useful when identifying yawns from other actions such
as speech, due to differences in the rate of mouth motion. The
choice of this event frame duration should be informed by
the requirements of the underlying task. Accumulating events
over a long period risks an aliasing effect, where speech
frames could appear as one long mouth open sequence if
insufficiently sampled. On the other hand, using too short a
period can yield many frames with low spatial information.
For our final yawn dataset, each frame is generated by
accumulating events over a duration of 0.1s, resulting in
frame sequences of 100 frames at 10FPS. This reduction from
the 30FPS of the source data has 3 primary justifications:
(1) A higher frame frequency is unnecessary to distinguish
a yawn from speech. (2) With fewer than 300 frames in many
RGB sequences, accumulating an equal or greater number of
event frames would require an additional interpolation step,
otherwise a freezing effect occurs in the event videos due
to several frames showing the same motion. (3) A reduction
from 300 to 100 frames for each sample carries a significant
speedup to network training. The event frames’ pixel values
are clipped to ±10 and then normalised between 0,255. The
37 subjects in our simulated event yawn dataset were split into
three sets for training, validation, and testing. The breakdown

TABLE 1. Distribution of our event yawn dataset partitions.

of each set is shown in Table 1. There is no overlap of subjects
between the three sets. Sample event frames from two yawn
sequences are shown in Fig. 4 and Fig. 5 The former has the
mouth fully visible throughout, but the latter shows the mouth
covered by the subject’s hand.

The YawDD dash videos were converted from 30FPS RGB
video to 10FPS event video following the same process as our
custom yawn dataset. The start and stop frames of the yawns
were annotated and 100 frame sequences were extracted with
the yawn frames centered. Non-yawn sequences were also
saved from the frames between yawns. This totaled to 12,300
synthetic event frames, containing 78 yawn sequences and
45 non-yawn sequences.

D. YAWN DETECTION—TRAINING DETAILS
The yawn training sequences were augmented to achieve bet-
ter generalisation. This includes rotating 50% of sequences
within ±10◦, mirroring about a vertical axis, and cropping to
squares of randomised size and position (within some limits
to ensure the full face is still visible). The augmentations
were only randomised between sequences, so each frame in a
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sequence had identical transformations applied. All frames
were downsampled to 256 × 256 using pixel area relation
before input to the network. The network was trained for
100 epochs with a batch size of 5. The initial learning rate
of 10−4 was halved every 10 epochs. Binary cross entropy
loss was calculated between the predicted and actual labels of
each sequence in the validation set. The dropout probability
was set to 0.1.

E. SEATBELT STATE DETECTION—DATASETS
Another non-public in-cabin industry dataset was used
for our seatbelt detection algorithm. Using a near-infrared
(NIR) camera in the rear-view mirror position of a car,
various subjects were recorded fastening and unfastening
their seatbelts repeatedly. The video frames were labelled by
the following classes:

1) The subject’s seatbelt is fastened.
2) The subject’s seatbelt is unfastened.
3) The subject is fastening their seatbelt.
4) The subject is unfastening their seatbelt.

The wide field of view lens of the camera captured both
the driver and passenger seat. Both seats were given distinct
labels of the seatbelt state. These videos were split into crops
of the driver’s seat and crops of the passenger seat, and
the passenger seat crops were mirrored horizontally to have
similar perspective and seatbelt direction to the driver’s seat
crops. The network then has a simpler task predicting on
the cropped images rather than requiring both seats to be
considered separate features. Knowing the camera position is
fixed, the same cropping and mirroring can be carried out as
required at inference. In this paper, the term ‘‘static classes’’
refers to 0 and 1, and ‘‘transition classes’’ refers to 2 and 3.

F. SEATBELT STATE DETECTION—EVENT SIMULATION AND
PRE-PROCESSING
The seatbelt state classification task poses unique challenges
in choosing an approach to accumulate frames, as the
seatbelt is relatively stationary once fastened/unfastened and
generates few events, but the fastening/unfastening actions
generate a comparatively huge number of events. Both
previously described methods (fixed duration and fixed
event count) were tested, but neither were fully suitable.
It proved too difficult to find a fixed duration large enough
to keep a stationary seatbelt sufficiently visible without
significantly reducing the number of frames for capturiung
the fastening/unfastening actions. Alternatively, using a fixed
event count was also unreliable in keeping the seatbelt visible
as there is no guarantee that the events contain relevant
information. The event count was often saturated by unrelated
movements such as head motion or the background changing
outside the car window. Specifying a number of events large
enough to keep the seatbelt visible in all of these cases is
impractical, as just one frame can span a huge time period
when the rate of events is low.

A customised approach was developed for the final
iteration of the seatbelt dataset. Each frame was required

to reach a minimum number of events, but only within a
rectangle bounding the subject’s torso to minimise frames
generated from irrelevant motion in the scene. Additionally,
each frame was required to span a minimum duration of
200ms to prevent the generation of a proportionally huge
number of transition frames, which have amuch higher rate of
events over the torso region than the static classes. This can
also be thought of as capping the frame rate to 5FPS. This
hybrid approach produced frames with much more reliable
seatbelt visibility, as demonstrated in Fig. 6 where the fixed
counts/duration were specified so each method generates
75 frames of the same ‘‘Seatbelt Fastened’’ clip. In the full
75 frames, the seatbelt was visible in (a) 27%, (b) 71%,
and (c) 93%.

The events used to create Fig. 6 are from a set of real events
that were collected for testing of the network. A Prophesee
EVK4 event camera was mounted beside the rear-viewmirror
of a driving simulator and focused on the driver’s seat.
Subjects were asked to fasten and unfasten their seatbelt at
random intervals throughout each recording. These videos
were labelled manually with the same 4 classes as the NIR
dataset, but with the start and stop of each class defined by
event timestamps instead of frames. This initial test dataset
was limited to 6 subjects to validate this proof-of-concept
use case. Table 2 gives breakdown of the final event seatbelt
dataset by class.

G. SEATBELT STATE DETECTION—TRAINING DETAILS
For seatbelt state detection, four distinct models were
developed with our same network structure:

1) SEATBELT ON VS. SEATBELT OFF (STATIC CLASSES)
A binary classifier trained on just the static classes to directly
assess the potential to predict on event data with little seatbelt
motion.

2) FASTENING VS. UNFASTENING CLIPS (TRANSITION
CLASSES)
A binary classifier trained on just the transition classes to
assess if predicting the changing state of the seatbelt is more
reliable than using the static seatbelt in event data.

3) COMBINED STATIC CLASSES VS. COMBINED TRANSITION
CLASSES
In a real-world deployment of a seatbelt state detector, all
4 classes must be handled. This necessitates another binary
model for a preliminary filtering to determine if an input
sequence of frames should be passed to the static model (1)
or transition model (2) to refine the prediction.

4) 4-CLASS MODEL
Trained with all 4 classes of our synthetic seatbelt dataset
to handle all states in a single model. The classes are all
considered independently by this network, so each frame
sequence is predicted as containing only one class, and the
previous state does not inform new predictions.
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TABLE 2. Breakdown of seatbelt dataset partitions.

FIGURE 6. A ‘‘Seatbelt fastened’’ clip that was converted from events to
frames using (a) a fixed time period, (b) a fixed event count, and (c) a
fixed event count over the torso region with a minimum duration, so that
each method yields 75 frames total. Of these 75 frames, the seatbelt was
visible in (a) 27%, (b) 71%, and (c) 93%.

All 4 seatbelt models were trained with the same param-
eters. A fixed sequence length of 10 frames per sample was
chosen. A longer sequence gives more robust predictions, but
reduces the number of samples for developing the network.
These samples were also augmented by random cropping
but ensuring the torso is visible, before downsampling to
256 × 256. The binary model was trained with a batch
size of 15 sequences and the learning rate of 10−4 was
halved every 5 epochs. The dropout probability was set
to 0.2.

IV. RESULTS
A. YAWN DETECTION
The 10 epochs with the lowest validation loss were tested on
(a) our test set and (b) the simulated YawDD dash set. The
best model with determined by the highest mean F1 score on
both sets. The precision, recall, and F1 score of this model
on each dataset partition are listed in Table 3. Running on
an NVIDIA GeForce RTX 2080Ti GPU, an Intel i7-9700K
CPU, and 32GB of RAM, the average inference times were
measured at 0.44s per 100 frame sequence. Each of these

TABLE 3. Results of our best yawn detection model tested on all of our
synthetic event sets.

TABLE 4. Comparison of yawn detection methods by performance on
YawDD dataset.

TABLE 5. Results of our model tested on all of our event seatbelt test
datasets.

sequences corresponds to 10s of data, granting a large cushion
for real-time inference with more limited hardware.

Our method is compared to several other yawn detection
methods in Table 4 by their results on the YawDD dataset.
We have achieved a high level of performance, surpassing
these methods with no YawDD data present in the training
or validation sets.

The attended feature maps output by the self-attention
module can be resized to visualise the areas that are
more heavily weighted by the network in each frame. The
visualisations in Fig. 7 demonstrate how our network sees
the face, and in particular the mouth, as the most important
features for yawn detection, even when the mouth is covered
by a hand as in Fig. 7 (a).

B. SEATBELT DETECTION
The performance of each seatbelt model is given in Table 5 by
macro-averaged F1 score on both the synthetic and real test
sets. The binary static model (1) proved the most capable,
correctly predicting the seatbelt on/off state in all unseen
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FIGURE 7. Visualised attention maps of yawn frames generated from
(a) our test set and (b) the simulated YawDD dataset.

FIGURE 8. Visualised attention maps of seatbelt frames generated from
real events in the test set.

test sequences, both real and synthetic. The binary transition
model (2) also achieved perfect accuracy on the simulated
test set, but the noticeable difference in performance on
the real data indicates overfitting on the synthetic events.
These results indicate that the resting state of the seatbelt
is more reliable for prediction than tracking the transition
states. To select which of these two model to used for an
input frame sequence in a practical DMS, a model, the third
binary model (3) is needed. This was surprisingly the lowest
performing of all models, despite having an objectively
easier task than the 4-class model (4), which uses exactly
the same data but categorizes them more precisely. This
result, combined with high training accuracy on model (3),
reveals more overfitting to be the cause of the lower
performance. Both models (3) and (4) are fed full videos and

so must precisely select the frames from the continuous
sequence where the state changes (e.g. from ‘‘fastening’’
to ‘‘fastened’’), while models (1) and (2) are given discrete
sequences and do not need such a fine demarcation of states,
which contributes to the difference in accuracy.

We again visualise the attended feature maps to verify the
network has learned to find appropriate features in the input
frames. Fig. 8 gives a sample of this on 2 sequences from the
real event set, and depicts the networks tendency to heavily
weight the regions containing the seatbelt.

V. CONCLUSION
In this article we provide proof of concept methods for both
yawn detection and seatbelt state detection with event cam-
eras using lightweight deep learning models. This includes
further evidence of the efficacy of synthetic event data in
developing neuromorphic algorithms that can generalize to
real data. Recent months have seen neuromorphic research
trend away from frame-based approaches in favour of sparse
representations, but this paper demonstrates how frames
can efficiently compress event data for tasks with lesser
time requirements. Our yawn detection algorithm offers
superior performance to typical keypoint-based methods by
accounting for associated motions of the upper body and
handling the frequent cases where the mouth is occluded by
a hand. Event cameras are typically employed for their fast
response times and motion analysis qualities, but with the
models developed for continuous monitoring of the seatbelt
- even while stationary for long periods - we demonstrate
how event data can be manipulated to satisfy a diverse set of
requirements for assorted tasks. The proposed neuromorphic
event-based algorithms for detecting yawns and seatbelt state
fill a research gap and offers promising potential for advanced
driver-assistance systems and intelligent safety features.

A. FUTURE WORK
Future work will seek to improve the seatbelt algorithms
by considering the fixed order of states. In particular,
the 4 class model should weight future predictions based
on the current predicted state. For example, given the
current state is ‘‘seatbelt fastened’’, the network should
have the knowledge that ‘‘unfastening’’ must follow. Further
collection of real event data and sourcingmore public datasets
of seatbelt states and yawns are planned to greatly expand our
research. Additionally, the deployment of these models will
be investigated within the limitations of embedded hardware
typically found in DMS. All models in this article use the
same architecture, granting scope for extremely efficient
deployment.
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