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ABSTRACT Cybersickness is a growing concern in the field of virtual reality (VR). It is characterized
by symptoms, such as headache, sweating, disorientation, and nausea. These symptoms can considerably
hinder the users’ immersive experience in VR environments, leading to a pressing need for effective
solutions to combat cybersickness. In this study, we aim to tackle cybersickness by presenting a novel
high-frequency approach for detecting the timing at which users experience cybersickness. Our approach
uses 1-, 5-, or 10-s time-series eye-related indices processed by deep learning algorithms to predict
cybersickness severity. In five-fold cross-validation, we achieved 71.09% accuracy in classifying four
classes of cybersickness severity when individuals were not distinguished. Furthermore, with individualized
cross-validation, we achieved an accuracy of up to approximately 80%. Our approach outperforms other
cybersickness prediction studies as it provides the highest frequency in predicting cybersickness. It is
anticipated that our approach will be valuable not only for immediate evaluation by researchers investigating
cybersickness mitigation but also for early detection and notification of users experiencing cybersickness
symptoms. By predicting cybersickness, our approach has the potential to promote the future advancement
of VR technology.

INDEX TERMS Cybersickness, deep learning, eye-related indices, high-frequency prediction, virtual reality.

I. INTRODUCTION
As we enter the digital age, virtual reality (VR) technology,
once perceived only in science fiction, is gradually perme-
ating our daily lives. However, many VR experiences can
cause discomforting symptoms such as eye strain, headache,
sweating, disorientation, and nausea, which resemble those of
motion sickness [1]. These side effects are generally referred
to as ‘‘cybersickness (CS)’’ or ‘‘VR sickness,’’ and they
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persist in the general use of VR devices such as head-mounted
displays (HMDs), hindering immersion [2]. Once a user
experiences CS, it becomes a psychological barrier for he/she
to wear an HMD again. This is a serious problem. Studies
have shown that more than half of the users have experienced
CS in VR environments [3], [4]. Thus, CS is a major obstacle
in the advancement of VR technology and deserves further
study on methods for suppressing or preventing it during VR
immersion.

It is crucial to develop a method for detecting CS in
advance to confirm the effectiveness of countermeasures
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against it. High-frequency CS detection techniques can
contribute to the development of automatic CS suppression
technology during VR experiences [5] and enable immediate
evaluation of the experience. For instance, the VR content can
be programmatically changed from bodily active motion to
a relaxed experience when CS is detected in the user. This
can prevent an increase in CS severity and overcome the
psychological barrier of users. Therefore, a model that can
predict the CS severity of users with high frequency and high
accuracy is required.

In this study, we considered a method of predicting
the occurrence of CS with high frequency using deep
learning (DL) techniques by regarding time-series eye-related
indices as features. Eye movements are the manifestations
of the human visual system and exhibit temporal variations.
Therefore, we posit that capturing the significant attributes
of these temporal changes can be effectively achieved by
treating them, as time-series data. Currently, eye-related
indices data can be simply collected from sensors built into
HMDs, which efficiently contribute to the development of
VR technologies.

Our study offers several valuable contributions to the
field of VR technology, primarily aiming at the capability
to predict CS severity at a higher frequency than previous
studies. We described the potential of employing time-series
eye-related indices and DL models to achieve this objective.
Furthermore, we demonstrated the feasibility of training DL
models for each individual to achieve individual-specific
CS prediction, which is crucial in addressing individual
differences and enhancing users’ overall VR experience.
These findings suggest that our approach is promising
in addressing CS challenges in the development of VR
technology.

II. RELATED WORK
This section discusses related studies and is divided into
three subsections. Each subsection provides a comprehensive
discussion of the current state and challenges in CS pre-
diction, focusing on the relationship between physiological
and eye-related indices and CS, the application of machine
learning (ML) and DL for CS prediction, and the aspect of
high-frequency prediction.

A. PHYSIOLOGICAL INDICES AND CYBERSICKNESS
PREDICTION
Numerous preceding studies have unveiled noteworthy
associations between physiological signals, including gas-
tric tachyarrhythmia [4], electroencephalogram (EEG) sig-
nals [4], [6], [7], [8], [9], heart rate (HR) [4], [7], [10],
[11], breathing rate (BR) [7], [12], galvanic skin response
(GSR) [7], [13], and CS, as well as simulator sickness
and motion sickness. These observations underscore that
alterations in the operations of the central and autonomic
nervous systems accompany CS.

Furthermore, there are some studies that have been
conducted using ML/DL to predict the occurrence and

severity of CS based on objective data from multiple
physiological indices [6], [7], [14], [15], [16], [17], [18].
Kim et al. [6] used EEG data obtained from over 200 subjects
as a feature and worked on the classification tasks of 5-level
CS severity obtained as subjective evaluations at the end of
each content. The total data was divided into 80% train data,
10% validation data, and 10% test data, and learning was
performed using convolutional neural networks (CNNs) and
long short-term memory (LSTM). As a result, a maximum
test accuracy of 89.16% (standard deviation (SD) = 1.87) was
achieved. Islam et al. [7] collected HR, BR, and GSR data as
features from 31 participants and predicted the current and
2-min future severity of CS using a support vector machine
(SVM), CNNs, and LSTM. The fast motion sickness scale
(FMS) [19] was used for CS evaluation and was divided into
three severity classes based on the distribution of evaluations.
As a result, their proposed CNN-LSTM classifier model
achieved an accuracy of 97.44% for predicting current CS
severity and 87.38% for predicting future CS severity. Garcia-
Agundez et al. [14] collected electrocardiogram (ECG),
EEG, respiratory data, skin conductivity data, and relevant
game parameters, such as avatar linear and angular speed,
acceleration, headmovements, and on-screen collisions, from
66 participants, and predicted the severity of CS using SVM,
K-nearest neighbors, and artificial neural networks. The
simulator sickness questionnaire (SSQ) [20] score obtained
before and after the experiment was used for CS evaluation.
A maximum classification accuracy of 82% was achieved for
binary classification and 56% for ternary classification.

Although the aforementioned studies demonstrated the
effectiveness of using physiological indices to evaluate CS,
the use of external sensors may lead to problems, such as
restricting HMD users movement and interaction in a VR
environment.

B. EYE-RELATED INDICES AND CYBERSICKNESS
PREDICTION
Considering the problems outlined above arising from the use
of external sensors, several recent studies have investigated
the relationship between eye-related indices and CS [21],
[22], [23].

Lopes et al. [21] demonstrated that the pupil position and
eye blink pattern were substantially different between the
sickness and non-sickness groups. Participants with the sick
condition had a higher blink rate and count, and the data
of the sickness group were considerably smaller in terms of
the spread of the distribution than those of the non-sickness
group. Chang et al. [22] described that the fixation time and
the distance between the eye gaze and the object-position
sequence are highly correlated with CS. When viewing a
roller coaster video in a VR space, participants who gazed
further away from the track tended to demonstrate a lower
level of CS. According to Nam et al. [23], the varying pattern
of CS was reflected in the center gaze ratio and scan-path
length. Besides, other studies suggest that pupil diameter [24]
and optokinetic-after-nystagmus [25] are correlated with CS.
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Some studies have predicted the severity of CS using
ML/DL models with eye-related indices as objective data.
Islam et al. [26] used eye and head tracking and stereo-image
data from 30 participants to classify four levels of CS severity.
The evaluation of CS severity was based on self-reported
evaluations based on FMS collected every 30 s during VR
gameplay. As a result, their proposed deep fusion approach
achieved an accuracy of 87.7% for predicting CS. When
only the eye-related indices (pupil diameter, gaze direction,
and convergence distance) were used as features, an accu-
racy of 80.7% was achieved. Chang et al. [22] developed
a regression model to predict the severity of CS using
eye-related indices obtained from 26 participants. The SSQ
score obtained before and after the experiment was used for
CS evaluation. As a result, their model could explain 34.8%of
the total variance of CS, indicating a substantial improvement
over the study performed by Wibirama et al. [27], which
could explain only 4.2% of the total variance.

These studies have demonstrated the relationship between
eye-related indices and CS utilizing diverse methods
of employing ML/DL models to predict CS and yield
promising results. Inspired by these findings, we also
attempted to predict CS using eye-related indices and DL
techniques.

C. HIGH-FREQUENCY CYBERSICKNESS PREDICTION
The above previous studies have demonstrated the effective-
ness of methods for predicting CS using ML/DL. However,
most of the measures used for CS severity in these studies
were post-hoc evaluations using the SSQ or FMS. There are
very few studies that consider high-frequency CS prediction
during VR immersion. There are studies (Islam et al. [26])
that evaluate CS in VR immersion; however, their approach
requires at least 30 s of historical data. Based on this back-
ground, our study considers approaches for predicting the
occurrence and severity of CS employing eye-related indices
with higher frequency for early CS detection. By considering
eye-related indices along with exploring high-frequency
prediction methods, our study aims to advance the CS
prediction field in a VR environment.

III. EXPERIMENTAL DESIGN
A. PARTICIPANTS
Thirty participants (26 males and 4 females) aged between
21 and 39 years (mean age = 23.57; SD = 4.26) were
recruited for the study. One participant who experienced
severe CS symptoms could not complete all experimental
tests. None of the participants suffered from vertigo, epilepsy,
or any other condition that could be aggravated by wearing
an immersive HMD. All participants had a normal naked-eye
or corrected-to-normal vision with contact lenses. Written
informed consent was obtained from all participants prior to
the experiment. The participants could terminate the experi-
ment at any time. The study was approved by the Research
Ethics Committee of Tokyo Metropolitan University.

B. MATERIALS
The VR headset used in this study was the HTC Vive Pro Eye
with Tobii® eye-tracking technology. The maximum sam-
pling frequency of eye-related indices is 120 Hz. However,
a flicker problem had occurred when obtaining eye-related
indices at this frequency; thus, the eye-tracking frequency
was reduced to 50 Hz. The HMD screen is a dual organic
light-emitting diode screen with a resolution of 1440 ×

1600 pixels per eye. The field of viewing angle is 110◦ with
a refresh rate of 90 Hz. Audio can be played through the
integrated Vive headphones. The personal computer (PC)
used was equipped with an Intel Core i7-11800H CPU
running at 2.30 GHz, 16 GB RAM, and an NVIDIA GeForce
RTX 3070 GPU.

As CS-inducing scenes, we selected a car video and a roller
coaster video. The car video included movements such as
sudden deceleration, sudden reversals, sudden acceleration,
swerving, and meandering driving. A VR camera was
installed in the front passenger seat of a left-hand-drive car to
provide a clear view of the surrounding scenery (Fig. 1(a)).
The roller coaster video included rotations and diagonal
movements of the cart. A VR camera was placed on the
first cart of the train, giving a user a front-line experience
(Fig. 1(b)). In the other video (Fig. 1(c)), hereafter called
the non-sickness video, a user was ‘‘seated’’ beside a quiet
lake, which was intended to induce a calm, relaxed sensation.
No sickness-reducing technology was applied to these VR
videos. All experiments were conducted through Steam VR
and Unity 3D, and eye-related indices were collected using
the VIVE Eye and Facial Tracking SDK (SRanipal SDK)
provided by HTC.

C. PROCEDURE
In this experiment, we presented two conditions. Each
condition involved only one of the sickness videos (either
car or roller coaster video) to induce CS in the participants.
We deemed it unethical to have participants view both
sickness videos in a single condition. For transparency and
consistency, all participants experienced both conditions,
which consisted of the following sequences:

• Condition 1: Non-sickness video → Car video → Non-
sickness video

• Condition 2: Non-sickness video → Roller coaster
video → Non-sickness video

As illustrated in Fig. 2, each sickness video was preceded
and followed by a non-sickness video. The sickness videos
were approximately 5-min long, while the non-sickness video
was 1-min long. Participants sat on a chair and viewed a
combination of the prepared videos. After viewing one set
of scenes, they were allowed to rest until their CS symptoms
subsided before experiencing the other condition (Fig. 2).
To reduce the order effect, the two conditions were presented
in a counterbalanced way across the participants.

In all videos, the participants could freely change their
field-of-view. Eye tracking was also calibrated before the
start of the experiment. During the video experience, the
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FIGURE 1. Screenshots of three experimental scenes in virtual environment: (a) car video, (b) roller coaster video, and (c) non-sickness
video. The left image shows the appearance of the experimental environment, the middle image shows the scene from the perspective of
the subject, and the right image is a single shot that captures the environment around the subject.

FIGURE 2. Procedure of the user data measurement.

FIGURE 3. Illustration of the coordinate-segmentation method using the
HTC Vive controller trackpad for 4-level CS evaluation.

participants subjectively indicated one of the four levels of CS
severity by placing their thumb at the appropriate position on
the trackpad of the HTC Vive controller (2018), as depicted
in Fig. 3. The trackpad is equipped with a sensor that allows
continuous recording by simply placing a finger on it (no
forceful pushing or clicking was required). Analogous to the
SSQ crafted as a subjective assessment tool for simulator
sickness, we assessed four degrees of CS severity: None,
Slight, Moderate, and Severe. Data on CS severity were
recorded continuously at a sampling rate of 50 Hz. Each
participant completed the entire experiment in approximately
1 h.

D. EYE-RELATED INDICES
As part of this study, we examined various eye-related indices
to assess their potential as indicators for gauging the severity
of CS. Among these indices, pupil diameter emerged as a
notable candidate. Fluctuations in pupil diameter are widely
recognized to be influenced by a range of factors, including
emotional states [28], [29], and fatigue [30]–conditions
frequently associated with CS experiences [1], [31], [32].
Therefore, variations in pupil diameter provide significant
insights in this context. Nonetheless, we have taken into
consideration that pupil diameter constitutes just among
several contributing factors. Our approach comprehensively
integrates an array of eye-related indices to aptly predict the
severity of CS. We collected a total of 11 features from five
types of eye-related indices as follows:

• Normalized pupil positions of both eyes (four features
of x and y axes for both eyes)

• Pupil diameters of both eyes [mm] (two features)
• Gaze deviation from the center of the screen (one
feature)

• Angular velocity of eye gaze at 0.02-s intervals [deg/s]
(one feature)

• Gaze origin position [mm] (three features of x, y, and z
axes)

As shown in Fig. 4 (right), the gaze deviation from the
center of screen dxy is defined in the HTC Vive Pro Eye
coordinate system utilizing the x-direction gaze vector xb,
the y-direction gaze vector yb, and the center of screen
coordinates (xo, yo) = (0,0):

dxy =

√
(xb − xo)2 + (yb − yo)2 (1)

95828 VOLUME 11, 2023



S. Shimada et al.: High-Frequency Cybersickness Prediction Using Deep Learning Techniques

FIGURE 4. (Left) Coordinate system of HTC Vive Pro Eye, and (right) a diagram showing gaze origin position and normalized gaze direction
vector.

The center of screen coordinates refers to the system
origin situated at the center of the two lenses of the
HMD (Fig. 4), while the gaze origin position represents
the central coordinate of the straight line connecting the
central coordinates of both corneas (Fig. 4 (right)). The
pupil positions of both eyes and the gaze direction
vector are automatically provided as normalized values
according to the HTC Vive Pro Eye specifications. All
data were recorded in the right-handed coordinate system
(Fig. 4 (left)).

These eye-related indices were then individually nor-
malized using the following equation for subsequent DL
applications:

xnormi =
xrawi − µ

σ
(2)

Here, x represents time-series data, µ represents the mean
of x, σ represents the standard deviation of x, xrawi
represents the ith data point of x, and xnormi represents the
data after normalization. We adopted the methodology of
individual normalization and integrated learning processes
that accommodate temporal characteristics. This approach
was used to alleviate the influence of static factors such as
gender and age on eye-related indices [33]. The process of
normalization has enabled us to mitigate these effects and
regard them as inherent noise within the measured data.
A noteworthy and pragmatic advantage of this methodology
is its ability to obviate the necessity for distinguishing among
VR participants, thereby simplifying the implementation
process.

Furthermore, missing intervals in eye-related indices due
to factors such as blinking were interpolated using a linear
interpolation method based on data with and without missing
values. Overall, we obtained approximately 42,000 data
points for each participant who completed the experiment,
comprising eye-related indices and CS severity data based

on a sampling rate of 50 Hz for the full VR viewing time of
14 min per participant.

IV. DEEP LEARNING MODEL
In this study, we aimed to achieve highly accurate
prediction of CS occurrence and severity utilizing the
attention-based long short-term memory fully convolutional
network (ALSTM-FCN)-based DL model proposed by
Karim et al. [34]. The ALSTM-FCN model is a variation
of the LSTM-FCN model that incorporates an attention
mechanism. Besides, classification methods based on FCN
and LSTM-FCNmodels are more accurate than conventional
methods [34], [35].

A. TEMPORAL CONVOLUTIONAL NETWORKS (TCN)
We extracted eye-related indices as features using temporal
convolutional networks (TCNs) in FCNs. A TCN is a CNN
variant for sequence modeling that uses time-series data as
input. As stated in Lea et al. [36], let Xt ∈ RF0 be the input
feature vector of length F0 in time step t for 1 ≤ t ≤ T .
Each sequence may have a specific time T , and the number
of time steps in each layer l is denoted as Tl . The true label
for each frame is given by yt ∈ {1, ...,C}, whereC represents
the number of classes.

For each convolutional layer, we applied a set of
one-dimensional filters that capture changes in input signals.
The filters for each layer l are parameterized by tensor
W (l)

∈ RFl×d×Fl−1 and biases bl ∈ RFl , where d represents
the filter duration. In the same layer, the ith component
of the unnormalized activation Ê (l)

t ∈ RFl is a function of the
incoming normalized activation matrix E (l−1)

∈ RFl−1×Tl−1

from the previous layer [36]

Ê (l)
i,t = f

(
b(l)i +

d∑
t ′=1

〈
W (l)
i,t ′,.,E

(l−1)
.t+d−t ′

〉)
(3)
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FIGURE 5. Schematic of the internal structure of the LSTM unit.

for each time t , where f (·) denotes the rectified linear unit
(ReLU) function.

A basic convolution block consists of a convolution layer,
followed by a normalization process and the ReLU activation
function. Overall, the FCN model is composed of three
convolutional blocks and a global average pooling (GAP)
layer [37] applied after the final convolutional block.

B. LONG SHORT-TERM MEMORY (LSTM)
LSTM is a type of recurrent neural network (RNN) architec-
ture designed to handle the problem of vanishing gradients
in traditional RNNs [38]. LSTM has an internal memory cell
that can retain information for longer periods, allowing the
network to better handle time-dependent sequences. Fig. 5
shows a schematic of the LSTM unit. The LSTM unit is
composed of three gates and a memory cell to store long-term
information: which input gate it , forget gate ft , output gate
ot , and memory cell ct , respectively. The calculation process
of LSTM is outlined below. Here, x represents the input to
the unit, h represents the output of the unit, b represents the
biases,W represents the weights, and ⊙ denotes the element-
wise product. In addition, the subscripts of weights (W ) and
biases (b) indicate which weight or bias is by the first and
second letters.

The input gate it and the input data gt are calculated
using two activation functions (σ : sigmoid function; tanh:
hyperbolic tangent function), as expressed in Eqs. (4) and (5).

it = σ (Wxixt + bxi +Whiht−1 + bhi) (4)

gt = tanh(Wxgxt +Whght−1 + bg) (5)

The forget gate ft decides which information to preserve and
which to discard, and it is controlled by the sigmoid function,
as expressed in Eq. (6).

ft = σ (Wxf xt + bxf +Whf ht−1 + bhf ) (6)

The state of the memory cell ct at time step t is given by
Eq. (7), and it is the sum of the input gate it multiplied by
the input data gt and the forget gate ft multiplied by the state
of the memory cell ct−1 from the previous time step.

ct = ft ⊙ ct−1 + it ⊙ gt (7)

The output gate ot and the output ht are calculated using two
activation functions, as expressed in Eqs. (8) and (9).

ot = σ (Wxoxt + bxo +Whoht−1 + bho) (8)

ht = ot ⊙ tanh(ct ) (9)

Note that the input gate it and input data gt of LSTM are
different and that the input gate it determines the addition of
new information to the memory cell. The input gate it is a
combination of input data xt and previous output ht−1.

C. ATTENTION MECHANISM
The attention mechanism is a DL technique for extracting
important information from multiple input sequences and
combining them to generate an output sequence. The atten-
tion concept was introduced by Bahdanau et al. [39]. The
attention mechanism incorporates contextual information
from input sequences. The output element ai is determined
by a sequence of annotations (h1, h2, . . . , hn), where n
represents the maximum length of an input sequence. Each
annotation hi contains information about the entire input
sequence, with a strong focus on parts surrounding the ith
element of the input sequence. ai can be calculated using
Eq. (10).

ai =

n∑
j=1

Wijhj (10)

Here, Wij represents the weights of each annotation hj.
The attention weights are calculated using a dot product
between the annotations, and the softmax function is used to
normalize the results. This can bemathematically represented
as follows:

Wij =
exp(hTi hj)∑n
k=1 exp(h

T
i hk )

(11)

where hi and hj denote the ith and jth annotations, respectively,
and T represents the transpose of the vector.

D. ALSTM-FCN MODEL
The architecture of the ALSTM-FCN model consists of
two parts: an LSTM network with an attention mechanism
and an FCN, as discussed in previous sub-subsections. The
ALSTM-FCN model used in this study is depicted in Fig. 6.

The model has two LSTM layers stacked on top of each
other. The first LSTM layer has 256 units and is followed by
a‘‘Layer Normalization (LN)’’ layer [40], which normalizes
the output of the LSTM layer. The output of this layer is
passed to a Dropout layer with a dropout rate of 0.2. This
means that during training, 20% of the activations in the
output of the first LSTM layer will be set to zero. This is
done to prevent overfitting by randomly dropping out some
activations. Themodel is forced to learnmultiple independent
representations of the same input, enhancing the robustness
of the model to unseen data. The second LSTM layer has
128 units, followed by a LN layer, an Attention layer, and a
Dropout layer with a dropout rate of 0.2. The Attention layer

95830 VOLUME 11, 2023



S. Shimada et al.: High-Frequency Cybersickness Prediction Using Deep Learning Techniques

FIGURE 6. Configuration diagram of ALSTM-FCN model used in the experiment.

is used to weigh the importance of each timestep in the LSTM
output and generate a weighted sum of the LSTM output.

Similarly, FCN layers are also defined. The FCN layers
are defined using a series of one-dimensional convolutional
(Conv1D) layers. The first Conv1D layer has 128 filters of
size 8, the second Conv1D layer has 256 filters of size 5,
and the third Conv1D layer has 128 filters of size 3. Each
Conv1D layer is followed by a LN layer and an activation
layer with the ReLU activation function. This function is used
to introduce nonlinearity into the model and allow the model
to learn more complex representations of the data. The output
of the last Conv1D layer is passed through a one-dimensional
GAP layer. This layer takes the average of the values of the
last Conv1D layer along the temporal axis. This is used to
reduce the number of parameters in the model and to make
the model more robust to variations in input sequences.

The output of the LSTM and FCN layers are concatenated
and passed through a Dense layer with the softmax activation.
The Dense layer has the same number of units as the number
of classes in the output. The final output is a probability
distribution over the classes.

V. CYBERSICKNESS PREDICTION USING DEEP LEARNING
A. EVALUATION METHODS
In this analysis, we conducted two evaluations to verify the
feasibility of high-frequency CS prediction:

• Five-fold cross-validation using all data obtained from
all subjects.

• Five-fold cross-validation on individual data, repeated
for all subjects.

The k-fold cross-validation is a method for evaluating the
performance of ML models. It involves dividing a dataset
into k equally sized folds, training the model on k-1 of the
folds, and evaluating it on the remaining one. This process is
repeated k times, with each fold serving as the test set once.
This method helps reduce the variance in model performance

estimates and provides a better understanding of how the
model will perform on unseen data [41]. The cross-validation
using all data was conducted to verify the feasibility of
high-frequency CS prediction with a high generalization
ability suitable for all data. The cross-validation experiment
on individual data was conducted to develop individual
learning models and verify the feasibility of high-frequency
CS prediction suitable for each individual.

The ALSTM-FCN model was used as the training model.
For comparison purposes, a simple LSTM (sLSTM) model
(with 128 units), the FCN model (only the FCN part of
ALSTM-FCN), and the LSTM-FCN model (the same model
as ALSTM-FCN without the Attention layer) were also used.
We used n-second (n = 1, 5, and 10) time-series eye-related
indices as features for each learning. To the best of our
knowledge, no study has verified the possibility of predicting
CS faster than the prediction interval of 30 s by Islam et al.
using eye-related indices [26]. The ground truth label was
based on the evaluation of CS recorded 0.5 s after the last
time-series eye-related indices for each n [s]. This time
value considers the delay in evaluating the CS of a subject,
as demonstrated by Nalivaiko et al. [11].

In this analysis, we performed a 4-level severity classi-
fication task for CS prediction, with the categories being
0 (none), 1 (slight), 2 (moderate), and 3 (severe), as well
as a binary classification task for CS occurrence, dividing
into the non-sickness group (0 and 1) and sickness group
(2 and 3). The accuracy, precision, and recall metrics were
used to evaluate the obtained DL models calculated from the
following equations and confusion matrix (Fig. 7):

accuracy =
TP + FN

TP + TN + FP + FN
(12)

precision =
TP

TP + FP
(13)

recall =
TP

TP + FN
(14)
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TABLE 1. Results from a 4-level classification of CS severity through a five-fold cross-validation approach, using data from all participants. The ‘‘n-value’’
denotes the duration in seconds of the time-series data used as features.

FIGURE 7. Confusion matrix of predicted labels and actual labels.

B. HYPERPARAMETER AND LOSS FUNCTION
The number of units for the two LSTM layers was
determined through hyperparameter tuning using data from
all subjects, whereas the parameters for the Conv1D layers
were configured in accordance with the model proposed by
Karim et al. [34]. To counteract overfitting, early stopping
was implemented with a patience value of 10 during
model training. The model was compiled using the Adam
optimizer [42] with 300 epochs and a batch size of 128.
The Adam optimizer iteratively adjusts the parameters of
the model during training to minimize the loss function,
which is computed iteratively, thereby enhancing model
performance. Additionally, distinct loss functions were used
for the multiclass and binary classification tasks. For the
multiclass classification task, categorical cross entropy was
used as the loss function:

Lcategorical = −

C∑
i=1

ti ∗ log(yi) (15)

In this context, C denotes the overall count of classes; ti
represents the true label for class i, presented as a one-hot
encoded vector; and yi is the predicted probability for class
i, calculated by the model. For the binary classification task,
we used binary cross entropy as the loss function:

Lbinary = −(t ∗ log(y) + (1 − t) ∗ log(1 − y)) (16)

where t represents the true label, and y denotes the predicted
probability for the positive class.

C. EVALUATION OF MODELS FOR ALL SUBJECTS
In this section, the results of five-fold cross-validation using
all data obtained from 27 of the 30 participants in the
experiment are presented. The data from three participants
were excluded: the data of two participants could not be
obtained due to PC issues; one participant retired from
the experiment and could not complete it. We conducted
two classification tasks for CS: 4-level classification for the
severity of CS, and binary classification for the occurrence of
CS.

For the 4-level classification task, the accuracy, preci-
sion, and recall values of the four models (ALSTM-FCN,
LSTM-FCN, sLSTM, and FCN) obtained from five-fold
cross-validation for n-second time-series eye-related indices
are summarized in Table 1. The confusion matrix between
predicted and actual labels using the ALSTM-FCN model
is shown in Fig. 8. The ALSTM-FCN model achieved an
accuracy of 71.09% when using 1-second time-series eye-
related indices as features, with high precision (81.75%) and
recall (88.21%) values for CS severity of 0 (none). However,
this model struggled to distinguish between severity levels 1
(slight), 2 (moderate), and 3 (severe).

For the binary classification task, the accuracy, precision,
and recall values of the four models obtained from five-
fold cross-validation for n-second time-series eye-related
indices are summarized in Table 2. The confusion matrix
between predicted and actual labels using the ALSTM-FCN
model is depicted in Fig. 9. In the case of the ALSTM-FCN
and sLSTM model, an accuracy of approximately 82% was
achieved, regardless of the value of n used. However, the
precision and recall values for the sickness group are lower
than those for the non-sickness group, with a difference
of up to 58.2% in recall values observed when using the
ALSTM-FCN model with an n-value of 10.

D. EVALUATION OF MODELS FOR EACH SUBJECT
In this analysis, we conducted five-fold cross-validation
on individual data to develop individual DL models and
investigate whether we can perform high-frequency CS
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TABLE 2. Results from a binary classification of CS occurrence through a five-fold cross-validation approach, using data from all participants. The
‘‘n-value’’ denotes the duration in seconds of the time-series data used as features.

FIGURE 8. Illustration of the confusion matrix of the 4-level classification of CS severity, established through a five-fold cross-validation approach using
the ALSTM-FCN model. The analysis is conducted using data from all participants (%). Subcaptions denoting the duration in seconds of the time-series
data used as features are as follows: (a) 1 [s], (b) 5 [s], (c) 10 [s].

FIGURE 9. Illustration of the confusion matrix of the binary classification of CS occurrence, established through a five-fold cross-validation approach
using the ALSTM-FCN model. The analysis is conducted using data from all participants (%). Subcaptions denoting the duration in seconds of the
time-series data used as features are as follows: (a) 1 [s], (b) 5 [s], (c) 10 [s].

TABLE 3. Results from a 4-level classification analysis of CS severity, established through a five-fold cross-validation methodology for each individual
participant. The ‘‘n-value’’ denotes the duration in seconds of the time-series data used as features.
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TABLE 4. Results from a binary classification analysis of CS occurrence, established through a five-fold cross-validation methodology for each individual
participant. The ‘‘n-value’’ denotes the duration in seconds of the time-series data used as features.

FIGURE 10. Illustration of the confusion matrix of the 4-level classification of CS severity, established through a five-fold cross-validation approach using
the ALSTM-FCN model for each individual participant (%). Subcaptions denoting the duration in seconds of the time-series data used as features are as
follows: (a) 1 [s], (b) 5 [s], (c) 10 [s].

FIGURE 11. Illustration of the confusion matrix of the binary classification of CS occurrence, established through a five-fold cross-validation approach
using the ALSTM-FCN model for each individual participant (%). Subcaptions denoting the duration in seconds of the time-series data used as features
are as follows: (a) 1 [s], (b) 5 [s], (c) 10 [s].

prediction suitable for each individual. The data analyzed
are from 25 of the 30 participants obtained from the user
study. The data from five participants were excluded: the
data of two participants could not be obtained because of
PC issues, one participant retired from the experiment and
could not complete it, and the remaining two participants did
not reach a severity level of 2 or 3 for CS throughout the
experiment. This cross-validation was performed on the data
of all 25 participants. We conducted two classification tasks
for CS: 4-level classification for the severity of CS, and binary
classification for the occurrence of CS, as described in the
previous section.

For the 4-level classification task, the accuracy, preci-
sion, and recall values of the four models (ALSTM-FCN,

LSTM-FCN, sLSTM, and FCN) obtained from five-fold
cross-validation for n-second time-series eye-related indices
are summarized in Table 3. The confusion matrix between
predicted and actual labels using the ALSTM-FCN model
is depicted in Fig. 10. The ALSTM-FCN model achieved
an accuracy of 81.16% when using 5-second time-series
eye-related indices as features.

For the binary classification task, the accuracy, precision,
and recall values of the four models obtained from five-
fold cross-validation for n-second time-series eye-related
indices are summarized in Table 4. The confusion matrix
between predicted and actual labels using the ALSTM-FCN
model is depicted in Fig. 11. The maximum accuracy of
the ALSTM-FCN model was above 90%. Similarly, the
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non-sickness group obtained precision and recall values of
over 90%. This reveals the high classification capabilities of
this model.

Overall, in both the 4-value classification and binary
classification tasks, the ALSTM-FCN model outperformed
the other models in terms of accuracy, precision, and recall.
Moreover, the best results were achieved when 5-second
time-series eye-related indices were used as features.

VI. DISCUSSION
In this study, our endeavor was to achieve a high-frequency
prediction of the onset and intensity of CS through the usage
of time-series eye-related indices and DL techniques. The
ensuing content is organized into two distinct subsections.
The first focuses on the discussion of prediction outcomes
concerning CS, whereas the second entails a comparison of
various DL models used for the purpose of CS prediction.

A. PREDICTION RESULTS OF CYBERSICKNESS
According to the CS prediction results of the ALSTM-FCN
model and data obtained from all subjects, without distin-
guishing individuals, the accuracy values of 71.09% and
83.57% were obtained for the 4-level classification of CS
severity and the binary classification of CS occurrence or
absence, respectively. Islam’s et al. [26] deep fusion approach
achieved an accuracy of 80.7% using time-series eye-related
indices in the 4-level classification of CS severity every 30 s.
Although our approach is inferior, in terms of accuracy,
to their results, we have demonstrated that it is possible to
predict CS severity with higher frequency using time-series
eye-related indices every 1 s.

Our greatest contribution is high-frequency CS prediction.
Conversely, in terms of precision, and recall, the CS severity
detection performance was biased in our approach, similar
to Islam et al. [26]. In particular, our approach struggled to
classify people with higher CS severity compared with those
with lower CS severity. According to the confusion matrix,
as the severity of CS increases, the proportion of the actual
labels decreases in distribution. This shows that the biased
distribution of the actual labels may have affected the
results. Moreover, individual differences in the evaluations
of the participants could have influenced the results. These
results may highlight the limitations of relying on subjective
evaluations of CS.

It is not possible to directly compare our results with
previous studies. This is because the physiological indices
used as features, the evaluation methods of CS (during
or after immersion in VR), the length of the time-series
data used as features, and the number of classes in the
classification are different among previous studies. However,
we compared our results with those of previous studies
from the perspective of the use of sensors integrated into
HMDs and external sensors (Table 5). Kim et al. [6] used
EEG data as features and predicted the 5-level severity
of CS with 89.16% accuracy. Garcia-Agundez et al. [14]
used ECG, EEG, respiratory data, skin conductivity data,

and relevant game parameters, such as avatar linear, and
angular speed, acceleration, head movements, and on-screen
collisions, as features and obtained 82% accuracy in binary
classification and 56% accuracy in ternary classification.
Chang et al. [22] used multiple eye-related indices, such
as the fixation time and the distance between the eye gaze
and object-position sequence as features. Their model could
explain 34.8% of the total variance of CS. Islam et al. [7] used
HR, BR, and GSR in the preceding 2-min as features and
predicted the ternary severity of CS with 97.44% accuracy.
Islam et al. [26] used multiple eye-related indices, such as
pupil diameter, gaze direction, and convergence distance,
as features. Their approach predicted the 4-level severity of
CS with 80.7% accuracy. Our approach is superior to these
previous studies in terms of high-frequency CS prediction.

In addition, we investigated the feasibility of training
individual DL models for each participant and performing
high-frequency prediction of CS occurrence and severity that
is tailored to each participant. As a result, we achieved an
accuracy of approximately 80% in the 4-level classification
of CS severity and approximately 90% in the binary classifi-
cation of CS occurrence. These findings indicate that the use
of time-series eye-related indices and DL for high-frequency
CS prediction is effective. This could be a valuable approach
for addressing the issue of CS in the future advancements
of VR technology. In addition, we demonstrated that it is
possible to develop CS prediction models for each individual,
which is expected to be an important concept for considering
individual differences when using VR technology.

B. COMPARISON OF DEEP LEARNING MODELS FOR
CYBERSICKNESS PREDICTION
We used four distinct DL models, namely, ALSTM-FCN,
LSTM-FCN, sLSTM, and FCN, for the prediction of CS.
Notably, the model exclusively relying on FCN exhibited
the least accurate outcomes across all analyses. The LSTM
and TCN are harnessed to integrate temporal sequencing
within the learning process. The LSTM incorporates a
gating mechanism that governs the retention or forgetting
of information, allowing it to sequentially process data
points [38]. On the other hand, TCN functions as a feature
extraction module in an FCN branch. As a convolutional
network, TCN effectively extracts and processes localized
features within specific time windows [36]. Consequently,
LSTM is adept at capturing intricate temporal features and
long-term dependencies, whereas TCN excels at discerning
broader patterns. Given the superior accuracy achieved
by models incorporating LSTM (LSTM-FCN and sLSTM)
compared to those solely using FCN coupled with these
distinctive algorithmic attributes, it is posited that intricate
severity-dependent patterns of change exist within eye-
related indices. The capacity of LSTM to effectively learn and
comprehend these intricate patterns is believed to underlie the
observed results.

Additionally, the ALSTM-FCN model, incorporating
an attention mechanism, generally outperformed the
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TABLE 5. Comparative analysis of CS prediction outcomes between previous studies and our proposed approach.

LSTM-FCN model in terms of accuracy. Attention is a
mechanism that enables models to prioritize significant
segments of time-series data by evaluating the importance of
each time point within the data and subsequently emphasizing
the most crucial time points [39]. This mechanism is believed
to have facilitated themodel’s ability to concentrate on pivotal
aspects of the time-series eye-related indices, resulting in the
highest performance among the tested models.

In conclusion, our analysis indicates that models relying
solely on FCN are inadequate for predicting CS, especially
in task settings such as the one in this study. Conversely,
the algorithmic attributes of LSTM and the incorporation of
the attention mechanism prove more effective in utilizing
eye-related indices as features for predicting CS, as evidenced
by the observed results.

VII. LIMITATIONS
Our proposed approach improved the performance of high-
frequency prediction; however, some limitations need to be
mentioned.

A. IMBALANCED SAMPLE SIZE
A key limitation of our study pertains to the uneven sample
distribution, in gender and age. Among the 30 participants,
26 were male, whereas only 4 were female. Moreover,
the age distribution leans toward a younger demographic,
as evidenced by a mean age of 23.57 and a standard deviation
of 4.26.

A previous study has suggested that there may be gender
differences in the effects of HMDs on CS [3]. For instance,
several large studies (sample sizes ranging from 160 to 837)
reported that females experience greater CS than males [43],

[44], [45]. Furthermore, a study focusing on eye-related
indices found significant differences between males and
females. Namely, the study found that females tend to
exhibit more exploratory gaze behavior, as indicated by larger
saccade amplitudes and longer scan paths and inspect images
faster than males due to a shorter ratio of fixation durations
to saccade durations [46]. In another study, as discussed by
Cantoni et al. [33], it was highlighted that pupil diameter is
recognized to vary depending on factors such as gender and
age.

As a consequence, the imbalanced sample that favors
male participants and a younger demographic might have
introduced potential biases in the outcomes of our study.
However, we effectively mitigated these effects through the
individually normalized methodology adopted in this study.
Nevertheless, ensuring a more equitable representation of
both genders and various age groups among the participants
would be prudent in subsequent investigations.

B. NON-INTERACTIVE STUDY DESIGN AND SUBJECTIVE
EVALUATION
The second limitation of our study is that it focused solely
on non-interactive cases in which users passively view
VR video content. Previous studies on predicting CS have
focused on various cases, such as cases in which users
passively view VR videos without interaction [7], [22], cases
in which users actively engage in interactions in the VR
environment [21], [47], [48], and cases that encompass both
types of scenarios [17], [26]. Additionally, a crucial factor
that we did not account for in our study is the type of
controller used. Prior research has indicated that the choice
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of controller can impact the extent of CS experienced in
interactive scenarios [49].

Therefore, our findings may not apply to a range of
scenarios that involve user interaction with VR content, and
further investigation is needed to determine the applicability
of our approach in these cases. Additionally, our study relied
on subjective self-reporting to measure CS severity, which
may be influenced by individual differences. To address this,
future studies should include objective measures, such as
physiological data, to supplement self-reported data.

VIII. APPLICATION AND FUTURE WORK
Our study investigated the high-frequency prediction of
CS and explored its potential via offline simulations using
ML/DL techniques. For practical use and real applications,
we propose the development of a system capable of real-time
generation of predictions covering CS severity for new
participants as they immerse themselves in VR environments.
This system would rely on recorded physiological data, such
as eye-related indices, to make predictions, thereby allowing
for the assessment of CS severity and the adjustment of VR
environments to mitigate the effects of CS.

We believe that combining our high-frequency CS predic-
tion approach with methods to mitigate CSwould be effective
to provide high quality of VR experience. For example, the
use of a visual field-of-view restrictor has been proposed to
mitigate CS severity [50], [51], [52], [53]. It has also been
suggested that image manipulation strategies, such as image
blurring techniques, have a significant effect on mitigating
CS [54], [55], [56]. Implementing a system that combines
our high-frequency CS prediction method and CS mitigation
methods can have considerable implications for the VR
industry, enhancing user experience and ensuring a safer and
more comfortable environment for users.

It is crucial to note that our study is limited to offline
simulations for high-frequency prediction and does not
include the construction of a real-time, high-frequency
prediction system. Therefore, future studies in the field of CS
should focus on the development and implementation of such
a prediction system, which will not only contribute to a better
understanding of CS but also lead to practical solutions that
can be employed across various VR applications, improving
the overall user experience in VR environments.

IX. CONCLUSION
In this study, we presented an approach for predicting
the occurrence and severity of CS with higher frequency
than in previous studies. Based on our approach, the
ALSTM-FCN model achieved an accuracy of 71.09% for the
4-level classification of CS severity with high frequency and
83.57% for the binary classification of CS occurrence using
data obtained from all participants without distinguishing
individuals. We also examined whether we could develop
DL models for each participant and perform high-frequency
CS predictions suitable for each participant. The results
indicate that a CS prediction model that corresponds to

individual differences can be developed, with approximately
80% accuracy for the 4-level classification of CS severity and
approximately 90% accuracy for the binary classification of
CS occurrence.

We employed the time-series eye-related indices taken
every 1-, 5-, and 10-s as features, and our approach is the
fastest to predict CS to the best of our knowledge. Although
it may be challenging due to limited processing power based
on PC specifications, we believe that CS can be predicted
with high frequency using the same approach, asmanyHMDs
released in recent years have built-in eye-tracking sensors.
For the future development of VR, we further highlight the
importance of combining our high-frequency CS prediction
approach with methods to mitigate CS, particularly when CS
is detected.

Subsequently, we plan to conduct user studies to achieve
more accurate high-frequency CS prediction by incorporating
more factors related to video content, such as avatar
movement in VR space, the distance between objects in VR
space, and line of sight as features. In addition, we plan
to develop real-time and high-frequency prediction systems
that are not restricted to offline simulations, thereby further
enhancing the practical application of our approach.
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