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ABSTRACT Due to the deficient knowledge of binocular vision properties, how to effectively evaluate
stereoscopic images still remains a challenging task. Inspired by multichannel processing of human visual
system (HVS), we propose a blind method for stereoscopic image quality assessment (SIQA) by extracting
quality related features in sub-bands of the image. First of all, we introduce the shearlet transform to
decompose the left- and right-view images into multiple sub-bands content with diverse combinations
of scales and orientations, and obtain the combined view based on energy-weighted summation of the
corresponding sub-bands of two eye views. Then, natural scene statistics (NSS) of the original left and right
images are obtained as quality-sensitive features, followed by extracting NSS features of the sub-bands of
left, right and combined views. Moreover, we calculate the gradient similarity between each sub-band pair to
denote the asymmetric distortion and disparity information. Finally, all the extracted features are mapped into
a quality score by support vector regression (SVR). experimental results on multiple benchmark databases
verify the superiority of our method.

INDEX TERMS Blind quality assessment, human visual system, natural scene statistics, shearlet transform,
stereoscopic image.

I. INTRODUCTION
In recent decades, the technology of stereoscopic three
dimensions (3D) imaging has gained tremendous attention
due to its ability of providing more immersive viewing expe-
rience compared to the 2D counterpart. The stereoscopic
method captures two slightly different images which are set
to be respectively viewed by the left and right eyes at the
same time. As a result of the viewing disparity from two
eyes, we may perceive 3D depth by binocular fusion. Along
with the development of 3D image applications, stereoscopic
image quality assessment (SIQA), which is extremely crit-
ical for quality optimization related to 3D image services,
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has attracted widespread research interest. Compared to its
2D counterpart, the task of SIQA is more challenging accord-
ing to the comprehensive viewing integration of an image pair
from the left and right eyes simultaneously [1], [2].

Similar to 2D image quality assessment [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
objective methods of SIQA can be classified as three cate-
gories i.e., full-reference (FR), reduced-reference (RR), and
no-reference (NR). The FR model makes quality assessment
by accessing the full original high-quality reference image
pair for comparison. The RR algorithm computes the score
with limited access to the reference image pair, in order to
reducing the burden of saving or transmitting the redundant
information. And the NRmethod, which is most challenging,
just evaluates the tested image pair without any access to
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original pristine information. As we know, high-quality refer-
ence stereoscopic content is usually unavailable in practical
terms, hence the NRmethod is a much more competitive way
for application.

Stereoscopic image distortion may come from camera arti-
facts, coding compression, channel errors and noise, etc.,
and a stereoscopic pair may be symmetrically or asymmetri-
cally distorted. From previous research, themainly distinctive
inferior Quality of Experience (QoE) caused by stereoscopic
image corruption may be binocular rivalry, wrong depth sen-
sation and visual discomfort and fatigue, which are direct
combining results on human visual system (HVS) from a
different-perspective image pair [20], [21], [22]. Some SIQA
algorithms utilize traditional 2D IQAmethods to evaluate the
image quality of left and right views separately, and then the
two rating values are weighted averaged for the final stereo-
scopic image quality score. This type of method has a clear
idea and is easy to implement, but the performance is barely
satisfactory. To achieve effective results, articles [28], [29]
demonstrate that disparity information, the origination of 3D
depth, should be further considered. Finally, some other kinds
ofmethods fuse the image pair to obtain a cyclopean image by
simulatingHVS integration, and use 2D IQAof the cyclopean
image as ultimate result [30], [31]. However, there lies huge
difficulty of how to combine binocular perception with the
characteristics of stereoscopic images owing to the complex
visual mechanism.

From above, it is known that accurately evaluating 3D
image quality arising from binocular perception poses new
challenges for the community. To correlate SIQA highly
with human subjective evaluation, it makes sense of building
computing models based on well understanding the visual
processing [23], [24], [25]. Binocular image information is
assumed to be processed through two visual routes, dorsal
pathway and ventral pathway, from low-level to high-level
areas in human visual cortex [26]. Furthermore, physiological
studies have shown that human visual cortex has differ-
ent sensitivities to different stimulus frequency, and these
different-frequency stimuli are processed in different chan-
nels of the visual system to achieve the best visual effect
through interaction [52]. To represent the multi-frequency-
channel characteristic of visual procedure, the image wavelet
transform is recognized as a feasible way [53]. However,
the classical wavelet transform is not effective for image
singularity detection due to the scarce direction representa-
tion. Hence, some directional wavelet based methods, such
as curvelet transform [54], contourlet transform [55], shearlet
transform [56], [57], [58], [59], etc., have been proposed
for performance enhancement. mathematically, the shearlet
transform has advantages in better direction selectivity and
smaller compact support compared to the other directional
wavelet based algorithms. As there are two images viewed
the same time, it is significant to consider their integrated
perception. Among numerous binocular combination meth-
ods, energy-based Gain-Control model is commonly utilized

to accurately expresses the integrating behavior of two eyes
watching the stereoscopic image pair [60].
Based on these explorations, we propose a blind (NR)

method for SIQA by considering unique experience deteri-
oration caused by distortion in the stereoscopic pair. As there
are two images i.e., the left-eye and right-eye images,
are offered for assessment, we first introduce the shearlet
transform to the two images respectively, simulating the
multi-channel processing of human eyes. In each channel,
natural scene statistics (NSS) are calculated as quality related
features of individual images. Then, the left- and right-view
channel content are integrated base on a Gain-Control model.
In an effort to evaluate the binocular perception, we calculate
the NSS features of integrated content of every channel as
well. Considering that the difference between the stereo-
scopic image pair contains the information of disparity and
asymmetric distortion, we also compute the mean of gradient
similarity map in each channel between the stereo pair to
represent the unique 3D properties. Finally, all these features
are fused to predict the quality score by a learned support
vector regression (SVR) [62].
On the whole, the contributions of this paper are listed as

follows:
• We are the first to introduce the shearlet transform to
SIQA and effectively simulate the multi-channel prop-
erty of visual cortex processing stereoscopic images.

• We calculate the NSS in every sub-frequency channel
to extract quality-related features from the individual
images of the stereoscopic pair and integrated content
as well.

• We compute the mean of the gradient similarity map
in each channel between the image pair to indi-
cate the influence caused by asymmetric distortion or
unsatisfying disparity.

The rest of this paper is organized as follows. Section II
reviews related work. In Section III, the proposed method
is detailly represented. Next, our method is experimentally
compared with numerous state-of-the-art (SOTA) quality
assessment methods on multiple databases in section IV.
Finally, the conclusions of this work are drawn in Section V.

II. REALATED WORK
Subjective evaluation needs to build a standard watching
room and recruit some graders. Due to the large amount
of manpower and material resources consumed, subjective
evaluating methods are not suitable for embedding into
real-time image processing systems for viewing optimiza-
tion [18], [19]. However, subjective scores, deemed to be
most accurate of representing viewing experience, can be
regularly used as benchmarks for developing objective eval-
uation algorithms. Towards automatically assessing image
quality, objective 2D IQA has been widely investigated and
many methods have been proposed. Over the years, along
with 3D applications universally involved in daily life, SIQA
has been emerged as a hot research topic.
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In the early stage, SIQA methods are exploited directly
based on traditional 2D algorithms. Campisi et al. [27] Intro-
duced four full-reference or reduced-reference 2D image
quality evaluation methods for SIQA. Specifically, the final
SIQA is derived from combining the left- and right-view
image quality scores, respectively calculated from the same
2D algorithm. You et al. [28] explored the effectiveness of
more than ten 2D methods utilized in SIQA, and made con-
clusion that simply integrating the two scores of one stereo-
scopic pair cannot achieve desirable results. Furthermore,
they indicated the specially disparity information generated
by watching stereoscopic 3D images should be taken into
account for quality evaluation. Benoit et al. [29] employed
the SSIM algorithm to first estimate image quality scores
of the left and right views, respectively, and averaged the
two scores. After that, they computed the disparity score,
combined with the previous averaged one, to acquire the
final quality score. Based on the binocular perception char-
acteristics, Lin et al. [30] integrated the stereoscopic image
pair into one cyclopean image and its score, calculated by
classical 2D IQA methods, is obtained for the final SIQA.
Chen et al. [31] linearly fused the stereoscopic image pair
into a cyclopean image by taking consideration of binocu-
lar rivalry. Khan et al. [35] presented a FR method, which
combined saliency maps, gradient maps and inner gradient
maps with depth perception edges to generate the final SIQA
value. Shao et al. [37], [38] suggested that the combining
weights should be adapted to distinct distortion types and
employed the sparse feature distribution to calculate them.
Liu et al. [39] formed a SIQA model considering the impact
factors of binocular fusion, rivalry, suppression, and reverse
saliency. Yue et al. [40] extracted the naturalness features
of the left, right and cyclopean views, together with the
quantified similarity and difference between the stereoscopic
image pair, for quality prediction through SVR. Shen et al.
firstly generated the cyclopean image, rivalry map, depthmap
and weight map, and then collected three types of features
relating to image distortion, depth perception and binocular
disparity for quality assessment. Jiang et al. [42] Proposed
a unified quality evaluation model for singly and multiply
distorted stereoscopic images by learning visual primitives
based on a supervised dictionary framework to encode qual-
ity related features. Messai et al. [43], [44], [45] created
cyclopean images in the first stage, followed by predicting
scores based on machine learning or convolutional neural
network (CNN). Oh et al. [46] built a deep CNN for blind
SIQA trained through two-step regression, where the first
step is responsible for automatically extracting local features,
and the second part aggregates the local features into global
features. Zhou et al. [47] designed a generic deep learning
approach called StereoQA-Net. It contains two sub-networks
of left and right views, and provides interconnections between
the two networks in certain layers. Xu et al. [48] employed the
encoder-decoder architecture oriented by binocular rivalry to
recover the distorted content and then obtained the perceptual

score by using a regression network to the fusion image.
Sim et al. [49] utilized a pre-trained VGGNet [50] to collect
features for semantic evaluation, and derived handcrafted
features for direct image quality assessment, where these
two evaluation scores are weighted to form an overall score.
Si et al. [51] proposed a hierarchical no-reference stereo-
scopic image quality assessment network simulating human
cortex processing of binocular interaction and fusion.

Although the substantial success of above methods has
been made, it is still a challenging topic for ameliorating
SIQA performance. Currently, deep learning techniques have
been widely used in numerous researching fields of image
processing, and have shown huge potential of enhancing
SIQA. The further development of deep learning methods
for SIQA is yet severely hindered by insufficient labeled
data available for training an ideal model. Comparatively,
traditional SIQA methods can meet needs with a relative
very small tagged dataset, and requires extremely less com-
putational power. As human eyes have highly complex and
comprehensive procedure of perceiving stereoscopic images,
how to manually pick up features correlated well with QoE
can be difficult. To effectively represent IQA, extracting
quality related features based on well understanding visual
characteristics is recognized as a necessity. Also, the two
images of a stereoscopic image pair may be distorted asym-
metrically, simple quality pooling metrics of the left and
right views, such as averaging two scores, are obviously
not practical. From the above, we can find that the exiting
traditional SIQA algorithms either may not fully consider
the distortion characteristics of stereoscopic images, or may
neglect delving into the specific visualmechanics of watching
3D image pairs. Towards building a more effective model for
SIQA, we first introduce the shearlet transform to SIQA, sim-
ulating the multi-channel information process of the cortex.
And then, viewing integration are made to mimic binocular
vision based on channel content, followed by NSS features
of the image pair and channel content of the left image, right
image, and integrated view obtained. Finally, channel-based
similarity comparisons are conducted between the image
pair to inspect the asymmetric distortion or unsatisfying
disparity.

III. PROPOESED METHOD
The flowchart of our algorithm is shown in Fig. 1. The
luminance maps of the left- and right-view images are first
decomposed through shearlet transform, respectively. Then,
NSS features of the decomposed images and the original
images, which can indicate the left and right images quality
individually, are extracted. To measure the combining effects
of two eyes, the two images’ channel contents are integrated
in every channel, and NSS features are calculated in all
these synthesized channels. Next, considering the disparity
information and asymmetric image distortion, we compute
similarity related features. Finally, all these features are fed
into SVR for predicting scores of SIQA.
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FIGURE 1. Flowchart of the proposed method.

A. SHEARLET TRANSFORM
It is known that HVS performs multiscale and multidi-
rectional [49]. The wavelet transform [50], simulating the
multi-channel characteristic, has been used effectively in
IQA. However, the wavelet can only provide three direc-
tions in each scale, which is not sufficient for representing
anisotropic features, such as curves in pictures. Towards rep-
resentingmore directions, various approaches of post wavelet
analysis have been proposed, including the curvelet trans-
form [51], the contourlet transform [52] and the shearlet
transform [53], [54], [55], [56], etc. The shearlet tansform
is built based on affine transformation of scaling, shearing
and translation, drawing on the successful experience of the
curvelet and contourlet transforms. Owing to the mathemat-
ical properties of multiscale, multidirection and anisotropy,
the shearlet transform can be employed to well simulate the
multi-channel processing mechanism of HVS.

The two-dimensional shearlet transform is defined by

SH f (α, β, ℓ) =< f , ψα,β,ℓ > (1)

where f ∈ L2(R2) is a function to be transformed, α ∈

R>0, β ∈ R, and ℓ ∈ R2 denote scaling, shearing and trans-
lation parameters, respectively. ψ ∈ L2(R2) is the generating
function, and the shearlet ψα,β,ℓ can be represented by

ψα,β,ℓ = α−
3
4ψ

(
A−1B−1 (X − ℓ)

)
(2)

with

A =

(
α 0

0 α
1
2

)
,B =

(
1 β
0 1

)
(3)

Therefore, the shearlets are diversified with the anisotropic
scaling and shearing, having the ability of optimally covering
the multidimensional singularities.

FIGURE 2. The separation of cone-adapted shearlet system in
frequency-domain.

To reduce the number of applying the shearlet matrix, the
cone-adapted shearlet system is practically adopted, in which
the Fourier-domain is separated into two horizontal (Cone 1
and Cone 2 in Fig. 2), two vertical (Cone 3 and Cone 4
in Fig. 2) and a low-frequency (LF in Fig. 2) zones. ψ , ψ̂ are
introduced as the generating functions of the horizontal and
vertical zones, respectively, and φ as the scale function of
low-frequency zone. Then, the cone-adapted shearlets are
given as

ψα,β,ℓ = α−
3
4ψ

(
A−1B−1 (X − ℓ)

)
(4)

ψ̂α,β,ℓ = α−
3
4 ψ̂

(
Â−1B−T (X − ℓ)

)
(5)

φℓ = φ (X − ℓ) (6)

with

Â =

(
α

1
2 0
0 α

)
(7)

where α ∈ (0, 1], |β| ≤ 1 + α
1
2 and ℓ ∈ R2.

96390 VOLUME 11, 2023



D. Wan et al.: Blind Quality Assessment of Stereoscopic Images Considering Binocular Perception

FIGURE 3. Three stereoscopic image pairs of the same content on Waterloo IVC Image Quality database
Phase II. (a) is the pristine pair, the left view of (b) is JPEG compressed, and both images of (C) are
distorted by JPEG compression.

In [61], it is demonstrated that compactly supported gen-
erators ψ , ψ̂ and φ can be obtained. And, as regards sparsely
representing a 2D image, the N-term optimal approximation
error of using shearlets follows

LN = N−2(logN)3 (8)

which is better than the performance of the wavelet transform
andwhere N denotes the number of the largest shearlet coeffi-
cients involved. Afterwards, Lim proposed a discrete shearlet
system, i.e., the discrete nonseparable shearlet transform
(DNST), based on compactly supported shearlets [56]. DNST
is competent in offering local and directional selectivity, and
sparsely encoding 2D or 3D data. Therefore, we employ
DNST to imitate the multi-channel processing of HVS view-
ing stereoscopic images.

B. NSS FEATURES OF INDIVIDUAL IMAGES
When viewing stereoscopic content, two images are simul-
taneously displayed to our left and right eyes, respectively.

Fig. 3 shows three stereoscopic image pairs of the same
content fromWaterloo IVC Image Quality database Phase II.
Here, (a) is a reference image pair, the left one of (b), the
both images of (c) are compressed by JPEG, and the right
image of (b) is identical with the right image of (a). The
individual left- and right-view MOS values of (a), (b) and
(c) are 95.47 and 95.47, 27.79 and 95.47, and 27.79 and
27.79, respectively. And, the final 3D quality scores of (a),
(b) and (c) are 93.22, 38.01, and 21.19, respectively. Hence,
it’s easy to spot that the individual quality of the left or
right view affects the overall experience. In previous research
work, NSS were frequently introduced for 2D IQA [33], [34].
To evaluate the naturalness of images, we first calculate the
values by the mean subtraction and divisive normalization
(MSCN) as defined below

L̂ (x, y) =
L (x, y)− µL (x, y)
σL (x, y)+ 1

(9)
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FIGURE 4. The MSCN distributions of the luminance maps of Fig.3. The left and right distributions of
(a) correspond to the left- and right-view images of Fig.3 (a), respectively. And, (b) and (c) represent the
Fig. 3 (b) and Fig. 3 (c) similarly.

with

µL (x, y) =

m=M∑
m=−M

n=N∑
n=−N

wm,nL (x + m, y+ n) (10)

σL (x, y) =√√√√ m=M∑
m=−M

n=N∑
n=−N

wm,n [L (x + m, y+ n)− µL (x, y)]2 (11)

where L (x, y) means the luminance value of an image,
µL (x, y) is the local mean and σL (x, y) is the local standard
deviation of the luminance map, and wm,n is the weight value
of a circularly symmetric 2D (2M + 1)× (2N + 1) Gaussian
kernel. Here, we setM = 7, N = 7.
Fig. 4 shows the MSCN distributions of the six individual

images of Fig. 3. The distributions of the luminance of the
pristine images, such as the both of Fig. 3 (a) and the right
one of Fig. 3 (b), are Gaussian-like. However, the shapes of

the other luminance distributions significantly deviate from
Gaussian appearance. we can utilize a generalized Gaussian
distribution (GGD) to fit the MSCN distribution, and the
shape and scale parameters of the GGD model are able
to represent the quality. The model can be mathematically
expressed by

f
(
x, ϑ,ϒ2

)
=

ϑ

2β0(1
/
ϑ)

exp

[
−

(
|x|
ς

)ϑ]
(12)

with

ς = ϒ

√
0(1

/
ϑ)

0(3
/
ϑ)

(13)

0 (ϑ) =

∫
∞

0
t(ϑ−1)e−tdt, ϑ > 0 (14)

where parameters ϑ and ς respectively signify the shape and
scale of the distribution, and 0 (ϑ) is a gamma function.
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FIGURE 5. The MSCN distributions of sub-band responses, decomposed by DNST. (a) corresponds to the left
image of Fig. 3 (b), and (b) are the responses of the left image of Fig. 3 (a).

FIGURE 6. The sub-band MSCN distributions of combined vision. (a) , (b) and (c) correspond to Fig. 3(a),
Fig. 3(b) and Fig. 3(c).

It has been verified that natural scenes’ sub-band responses
of wavelet transform are apt to follow heavy-tailed distri-
bution, which can be parameterized by GGD. Inspired by
this, we decompose the luminance by DNST and sub-band
MSCN distributions are shown in Fig. 5. One luminance
map is decomposed into 17 sub-bands, and the Fig. 5(a) and
Fig. 5(b) present the sub-band MSCN distributions of the left
images of Fig. 3(b) and Fig. 3(a), respectively. We can see
that the sub-band distributions of Fig. 3(b), distorted by JPEG
compression, appear more centralized to zero than that of
the pristine image of Fig. 3(a). hence, we yet employ GGD
to obtain statistical features of the sub-bands to represent
image quality. Altogether, 72 features attributed to Class FI
are gotten in this part.

C. NSS OF COMBINED VISION
As we know, HVS will combine the views of two eyes to
obtain the final visual experience. Accordingly, it is essential
to evaluate the combining effects. Due to the various visual
sensitivity of sub-bands, we consider to combine the content
in each sub-band, instead of just integrating two views to
generate a cyclopean image. In each sub-band, we fuse the
left-view luminance map with the corresponding right-view

one by

C (x, y) = WL (x, y)× IL (x, y)+WR (x, y)

× IR((x + d (x, y) , y) (15)

with

WL (x, y) =
CL (x, y)

CL (x, y)+ CR((x + d (x, y)) , y)
(16)

WL (x, y) =
CR((x + d (x, y)) , y)

CL (x, y)+ CR((x + d (x, y)) , y)
(17)

CL (x, y) = |IL (x, y)|2 (18)

CR (x, y) = |IR(x, y)|2 (19)

where, IL and IR are the sub-band luminance maps of left
and right images, respectively, WL and WR are their relevant
weighted values, d presents the disparity map of two images,
and CL and CR are the energies.
TheMSCN distributions of the combined 17 sub-bands are

illustrated in Fig. 6. Fig. 6 (a), Fig. 6 (b) and Fig. 6 (c) show
the combined luminance distributions of Fig. 3 (a), Fig. 3 (a)
and Fig. 3 (c), respectively. We can find those distributions
are distinct for images of different MOS values. Therefore,
we also introduce GGD to each sub-band for feature extrac-
tion, and obtain 34 features grouped as FC .
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D. SIMILARITY FEATURES BETWEEN TWO VIEWS
Two images of a pair may asymmetrically suffer differ-
ent types or degrees of distortion. In Fig. 3(b), albeit the
high-quality right image, the overall 3D quality score of
38.01 is not gratifying induced by the low-quality left image.
Furthermore, the disparity in the content presented between
two eyes can generate depth perception, which is critical for
stereoscopic vision. To catch the specific influence caused
by the difference between the left- and right-view images,
we calculate the gradient similarity in each sub-band of
DNST. The gradient map of a left sub-band and the corre-
sponding right sub-band can be calculated by

GL (x, y)

=

√
(IL (x, y) ∗ gh (x, y))2 + (IL (x, y) ∗ gv (x, y))2 (20)

GR (x, y)

=

√
(IR (x, y) ∗ gh (x, y))2 + (IR (x, y) ∗ gv (x, y))2 (21)

with

gh (x, y) =

 −1 0 +1
−2 0 +2
−1 0 +1

 , gv (x, y) =

 +1 +2 +1
0 0 0

−1 −2 −1


(22)

where IL is the luminance map of a left sub-band, IR is
the luminance map of the corresponding right sub-band, and
gh (x, y) and gv (x, y) denote the horizontal and vertical filter
kernels of Sobel filter. Next, the gradient similarity in a
sub-band is expressed as

SIMG (x, y) =
2GL (x, y)GR (x, y)+ ε

G2
L (x, y)+ G2

R (x, y)+ ε
(23)

where ε is a small constant to avoid instability of the
equation. In each sub-band, the mean value of the gradient
similarity map is computed as a feature, totally 17 features
classified as FS .

E. IMAGE QUALITY EVALUATION
Based on the above explorations, we have obtained
123 quality-related features. The next step is to map these
features to the associatedMOS values through learning a pre-
diction metric. There are several learning methods have been
proposed, such as K -Nearest Neighbor (KNN) [63], Random
Forest (RF) [64], SVR [62], Neural Network (NN) [65],
etc. Practically, SVR is extensively applied as a learning
method [40], [44], [46] to predict the quality score for SIQA
due to the fast implementation and high accuracy. Here,
we adopt LIBSVM package [66] to learn a SVR model.
SVR [62] is formulated as

min
w,b,ζ ζ ′

1
2
| |w| |

2
2 + λ

�∑
i=1

(ζi + ζ ′
i )

s.t. wtφ (Xi)+ b− yi ≤ η + ζ i

yi − wtφ (Xi)− b ≤ η + ζ ′
i

ζi, ζ
′
i ≥ 0, i = 1, 2, · · · , � (24)

where Xi is the ith input feature vector, yi is the associated
quality score. K

(
xi, xj

)
= φ (Xi)Tφ

(
Xj

)
is the kernel func-

tion, and φ (Xi) maps Xi into a higher dimension. In our
method, a widely used radial basis function kernel (RBF) is
employed, which is defined as:

K
(
Xi,Xj

)
= exp

(
−P

∣∣∣∣Xi − Xj
∣∣∣∣2) (25)

where P is the kernel parameter. Then, 80% of a specific
image dataset are used for training a model, and the other
20% remainder for testing.

IV. EXPERIMENTAL RESULTS
A. DATABASES AND EVALUATION CRITERIA
1) DATABASES
We evaluate the performance of the proposed SIQA on four
major databases, such as LIVE 3D Phase I [61], LIVE 3D
Phase II [31], Waterloo IVC SIQA database Phase I [62] and
Waterloo IVC SIQA database Phase II [62].

LIVE 3D Phase I: The database consists of 20 refer-
ence image pairs and 365 distorted image pairs, which are
created by inducing Gaussian White Noise (GN), Gaussian
Blur (GB), Raleigh Fast Fading (FF), JPEG, or JPEG 2000
(JP2k) to pristine pairs. And of the all 365 distorted pairs,
there are 45 for GB, and 80 pairs each for FF, JPEG and
JP2K. Besides, the subjective scores are provided in the
term of Differential Mean Opinion Score (DMOS), ranging
from 0 to 80.

LIVE 3D Phase II: 8 reference image pairs and 60 dis-
torted image pairs, along with their corresponding DMOS
values ranging in [9, 0], are offered in this database. The
distortion types are the same as LIVE 3D Phase I. However,
unlike LIVE 3D Phase I, one image pair may be asymmet-
rically corrupted by different distortion levels in LIVE 3D
Phase II, which is more consistent with realistic factors and
increases the difficulty for SIQA. Totally, there are 120 sym-
metric and 240 asymmetric image pairs.

Waterloo IVC SIQA database Phase I: The database is
created from 6 pristine stereoscopic image pairs by introduc-
ing three types of distortions, including GN, BB, and JPEG,
in four levels. Altogether, there are 252 asymmetrically and
78 symmetrically distorted image pairs with their correspond-
ing MOS values on a scale of 0 to 100.

Waterloo IVC SIQA database Phase II: Compared
toWaterloo IVC SIQA database Phase I, this database
employs more diverse image content and contains 10 refer-
ence image pairs. And, the pristine pairs are corrupted by the
same types and degrees of distortions as Waterloo IVC SIQA
database Phase I. As a result, there are totally 460 distorted
stereoscopic image pairs with MOS values from 0 to 100.

2) EVALUATION CRITERIA
To avoid bias, the train-test process of our learning method
is repeatedly executed 1000 times and the median values
are obtained as the final results. In each of the 1000 trials,
the whole database is randomly partitioned into two parts
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TABLE 1. Comparison results on the LIVE 3D Phase I and LIVE 3D Phase II databases. The best results are bolded.

TABLE 2. Performance comparison on the waterloo IVC SIQA database Phase I AND II. The best metrics are marked in bold.

corresponding to image content: 80% samples as the training
set, and the remaining 20% as the testing set.

And then, we adopt three commonly used criteria for
performance evaluation, such as Root Mean Squared Error
(RMSE), Pearson Linear Correlation Coefficient (PLCC)
and Spearman Rank Order Correlation Coefficient (SRCC),
which are all recommended by the Video Quality Experts
Group (VQEG) [69]. RMSE, PLCC and SRCC are used
to respectively denote the consistency, accuracy, and mono-
tonicity between objective and subjective values.

The PLCC and SRCC range from 0 to 1, and higher PLCC
and SRCC but lower RMSEmean better performance. Before
calculating PLCC and RMSE, it is necessary to remove
the nonlinearity of objective scores by a logistic regression,
which is defined as:

O = a1

[
1
2

−
1

1 + ea2(Op−a3)

]
+ a4Op+a5 (26)

where Op is the input objective prediction score, and a1,
a2, a3, a4 and a5 are the parameters to be fitted by nonlinear
regression.

B. PERFORMANCE
To conduct performance evaluation, we make experimental
comparisons between the proposed method and some state-
of-the-art (SOTA) methods, including SSIM [3], VSI [32],
NIQE [9], BRISQUE [9], Benoit’s method [29], Khan’s
method [35], StereoQUE [36], Chen’s method [31], Yue’s
method [40], Messai’s method, and Sim’s method [49]. For
2D IQA methods, such as SSIM, VSI, NIQE and BRIQUE,

the average score of the left- and right-view images is taken
to be the predicted score of a stereopair. The other competing
algorithms are specifically designed for SIQA, and Messai’s
method, as well as Sim’s method, extracted deep features.

The comparison results on the LIVE 3D Phase I and LIVE
3D Phase II databases are shown in TABLE 1. And, TABLE 2
demonstrates the results on the Waterloo IVC SIQA database
Phase I and Waterloo IVC SIQA database Phase II. From the
data in the two table, we can get that: First of all, the 2D
IQA methods i.e., SSIM, VSI, NIQE and BRISQUE, cannot
obtain satisfactory performance on SIQA, which may be
caused by ignoring the depth information of the stereoscopic
images. But we also see an interesting phenomenon that 3D
algorithm, such as Benoit’s metric, is inferior to BRISQUE
method on the two databases. This indicates the individual
quality evaluation of the left- and right-view images is yet
significant for SIQA. Finally, our indices can nearly all be
ranked into top three on the four databases of the two labo-
ratories, with the exception of the SRCC value on Waterloo
IVC SIQA database Phase I. Furthermore, the comprehensive
performance, by integratedly considering PLCC, SRCC and
RMSE values, of the proposed method outperform all the
other competing methods except Sim’s algorithm.

In TABLE 3 and TABLE 4, the comparison results of
different distortions on the LIVE 3D Phase I and LIVE 3D
Phase II databases are presented. From the table, the pro-
posed method has maximum number of ranked in the top
three. From data comparison, our method inferiorly assesses
the JPEG distortion with PLCC = 0.754, but the PLCC of
assessing the GB distortion can reach 0.970. the performance
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TABLE 3. PLCC performance of different distortions on the LIVE 3D Phase I and LIVE 3D Phase II Databases. We bold the best results.

TABLE 4. SRCC performance of different distortions on the LIVE 3D Phase I and LIVE 3D Phase II Databases. The best ones are bolded.

TABLE 5. SRCC performance on symmetrically and asymmetrically
distorted images on the LIVE 3D Phase II database.

gap means our method has room for upgrading in terms of
JPEG compression. However, we can see Sim’s metric per-
form outstanding on almost every distortion type except the
JPEG distortion. Especially notable is that both the PLCC and
SRCC values of Sim’s method for JPEG distortion on LIVE
3D Phase II are minimum among those of all the methods.

How to evaluate asymmetric distortion is a challenging
task for SIQA. We do comparative experiments on the LIVE
3D Phase II database. As we can see from TABLE 5, the
proposed method has the biggest SRCC value of 0.923 on
symmetric distortions, and has the second biggest SRCC of
0.875, merely below the SRCC value of Messai’s method,
on asymmetric distortions. Our method also represents the
SRCC index on asymmetrically distorted images is close to

TABLE 6. Comparison results of the different combination of feature
groups.

that on symmetrically distorted images with a small gap of
5.2%, but the gap between the two distortions of Benoit’s
algorithm can even reach 22.0%. From these comparative
results, our method shows the competing power in evaluating
asymmetric distortions as well as in assessment of symmetric
distortions.

C. ABLATION ANALYSIS
As introduced in Section III, our method fully considers
HVS processing of Stereoscopic images, and extracts three
types of features for SIQA based on multi-scale and multi-
direction decomposition by shearlet transform. The NSS
features of individual images, FI , are extracted for evaluating
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FIGURE 7. Performance results with different training data percentage. (a) shows the PLCC and SRCC values on the LIVE 3D
Phase I database and (b) demonstrates the corresponding results on the LIVE 3D Phase II database.

2D image quality. Meanwhile, the NSS features of synthe-
sized sub-bands, FC , are used to assess the integrated visual
quality between two eyes. We also calculate the similarity
features, FS , to measure the disparity information or asym-
metric distortion. In order to configure the contribution of
each feature group, we implement different combinations of
features for ablation analysis. the ablation results are shown
in TABLE 5, and it is evident that the combinations can
boost the performance. For instance, the PLCC of combining
FC and FS is 0.904, about 14% higher than that of only
applying FC , and the combination of all three categories of
features obtains the highest PLCC value of 0.928 on the LIVE
3D Phase I. And, the other three columns of indices in the
table show the similar property as well. accordingly, we can
infer the three feature groups complement each other and
combining them all are desirable.

Since the proposed method is a train-test metric, it is
necessary to figure out how to divide a database into training
and testing sets. We make experiments by increasing the
percentage of training set from 10% to 90%, and 1000 non-
overlap random splits and tests are done for each percentage
to obtainmedian results. From the trend lines in Fig. 7, we can
see the performance gradually improved with the increased
size of training set. Yet, the 90% of training set has flat rises
in terms of both PLCC and SRCC values on the both LIVE
databases. To avoid potential overfitting due to excessive
percentage of training data, we employ 80% of all data for
training and the remaining 20% for testing as in [40].
As mentioned above, the will-be-evaluated images firstly

require multi-scale and multi-direction shearlet decomposi-
tion, which imitates HVS processing. The number of scales
and orientations may have influence on the performance.
To explore the correlations between the number settings and
quality values, we do experiments by setting the decomposing
modes shown in TABLE 7. the SRCC performance and mean
computational times of one image are shown on Fig. 8. The
SRCC value of ST3 is slightly smaller than the SRCC values
of ST4 and ST5, but the average time consumption of ST3 is

TABLE 7. Different settings of the shearlet decomposition. The first
number within a pair of brackets indicates the number of orientations for
the first scale, the second number corresponds to the second scale, and
so on.

FIGURE 8. SRCC values and mean computational times of the varying
decomposing modes on the Waterloo-IVC PHASE-I database.

substantially lower than those of both ST4 and ST5. Specif-
ically, the average times of ST4 and ST5 are respectively
150.7% and 53.4% higher than this of ST3. Hence, we adopt
ST3 in our method for the consideration of balancing effec-
tiveness and efficiency.

D. CROSS-DATASET EVALUATION
To evaluate the generalization ability of our method, sev-
eral cross-dataset experiments are conducted. We train the
proposed method on LIVE 3D PHASE-I or Waterloo-IVC
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TABLE 8. Cross data-set performance evaluation.

PHASE-I database, and test on the other three databases,
respectively. The indices on TABLE 8 show superior gen-
eralization performance, with the lowest PLCC and SRCC
values both bigger than 0.7. Besides, we can find that closer
relationship between the training and testing datasets obtains
better results. For example, training on LIVE 3D PHASE-I
performs best on predicting LIVE 3D PHASE-II database,
and the same outcome can be discovered on using Waterloo-
IVC PHASE-I database as training set.

E. FURTHER DISCUSSION
we have developed an effective SIQA algorithm based on
shearlet decomposition mimicking the multi-channel pro-
cessing of HVS. After the decomposition, features extracted
from the sub-bands and the original stereoscopic pairs are uti-
lized to represent the quality through SVR. The Experimental
results show the competitiveness of our algorithm compared
to the other state-of-the-art methods. Albeit the advantages
our method presents, there are some aspects deserve to be
concerned as follows:

1) As seen from TABLE 1 and TABLE 2, Sim’s method
almost performs best in all the criteria. since Sim’s
method is deep-learning based, it has a comparatively
large and complex network to effectively represent
quality-related features. Instead of directly learning a
network model, Sim’s method applies two identical
parallel pre-trainedDNNs to extract 4096 semantic fea-
tures from a stereoscopic pair, and yet the authors noted
the possible overfitting tendency due to the relatively
too small sizes of databases on cross-database experi-
ments. Also, it’s interesting to find both the PLCC and
SRCC values of Sim are smallest on JPEG distortion
on the Waterloo IVC SIQA database Phase II from
TABLE 3 and TABLE 4. Therefore, our work is still of
considerable actual value. In the future work, the pri-
mary task should be developing a large-scale database
for SIQA based on deep neural network (DNN).

2) All the experiments are done on a laptop with a i5 CPU
@ 2.5GHz and an 8GB RAM. The operating system is
Windows 10 and working software isMATLAB 2016b.
Limited by computing power, our method spends about
12 seconds on each stereopair of the Waterloo-IVC
PHASE-I database. Among all the working steps of
the proposed method, the shearlet decomposition con-
sumes the biggest part of time, more than 10 sec-
onds. It is known that shearlet decomposition can be

done in a parallel manner, and introducing advanced
hardware that supports parallel computing may further
reduce the time spent. On the other hand, we can see
even the SRCC of ST1 can offer a desirable value,
slightly smaller than 0.9. Hence, we also can reduce
the time consumption through the reduction of scales
and orientations, at the expense of comparatively small
decrease in performance.

3) Our method extracts NSS features in the sub-bands
of left-view, right-view and combined images, and
the effectiveness of these features have been validated
in TABLE 5. Nevertheless, we can see from TABLE 3
and 4 that the performance on each type of distortion is
inconsistent. Specially, the results on JPEG distortion
are worst, all indices near 0.8, compared to the data on
the other distortions. This indicates those NSS features
may lean to accurately represent some certain types
of distortions. To boost the performance, some hand-
picked features, such as structure and texture features,
can be added for tries.

4) We mimic the multi-channel property of HVS based on
shearlet decomposition for SIQA. And, the two-view
image pair is integrated by a simple sub-band based
energy weighting. Since the processing mechanism
of HVS is quite sophisticated, the study of it is still
on the initial stage. Hence, the simulation method
should maintain amelioration for better evaluating
SIQA with the deeper understanding of the HVS pro-
cessing. Another solution to precisely simulating the
multi-channel processing is that we can apply a DNN
to simulate a channel and interconnect all channels
for combination. The parameters of those branch net-
works can be automatically set by training on the SIQA
database. This multi-branch DNN will be inevitably
fulfilled at the expense of costing massively more com-
puting resources.

V. CONCLUSION
Considering the binocular characteristics of HVS, we pro-
pose a new blind quality assessment method for evaluating
stereoscopic 3D image pairs. Firstly, the individual left- and
right-view images are decomposed into multi-channel con-
tent based on shearlet transform to simulate the HVS process-
ing. The NSS statistics of the sub-bands and the original ones
from individual left and right images are calculated as quality-
related features. After that, we combine the sub-band pairs
based on energy weighting and extract the NSS features of
integrated sub-bands as well. Then, we calculate the gradient
similarity between the image pair in each sub-band to denote
the asymmetric distortion and disparity information. Finally,
SVR is applied to fuse all the extracted features into the
subjective score. The experimental results demonstrate the
outperformance of our method compared to the state-of-art
SIQA metrics on the benchmark databases.
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