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ABSTRACT Emergency evacuation planning is a vital problem that affects building occupants’ safety. The
commonly used static evacuation plans rely on static signs disregarding crowd density changes. Such static
plans often lead to congestion at emergency exits; since many occupants tend to avoid following exit signs
as they feel safer following the crowds exiting the building or following other paths familiar to them. This
paper proposes a smart and adaptable evacuation system that predicts congestion and adapts accordingly to
minimize evacuation time. We introduce a simulation model that mimics occupants’ movement in different
building layouts. The proposed system performs Monte Carlo simulations to forecast possible congestion
locations and guide occupants away from them. Guiding directions are displayed and updated to consider
dynamic environment changes. We evaluated our approach compared to a greedy evacuation method that
relies on static exit signs, showing a significant evacuation time improvement of 21% achieved on average
by our approach.

INDEX TERMS Congestion forecasting, Monte Carlo simulations, smart evacuation.

I. INTRODUCTION
Efficient emergency evacuation protocols are crucial for
complex environments that suffer from crowds, such as hos-
pitals, governmental agencies, and others. In such complex
layouts, the shortest paths are not always the fastest ones
in evacuation scenarios due to possible congestion that is
likely to happen [1], [2]. In addition, occupants are not
expected to be familiar with layout architecture nor aware
of exit locations; thus, some may panic, causing congestion.
Classical evacuation plans in such crowded and complex
environments may lead to congestion causing several casual-
ties. Accordingly, adaptive evacuation protocols that forecast
potential future congestion will help guide occupants to avoid
routes that lead to such congestion. Thus, such adaptive
protocols will significantly decrease the evacuation time and
thus minimize the number of casualties.

Classical pre-determined evacuation plans only consider
the shortest paths to exits, assuming that following such
paths by crowds would lead to the shortest evacuation times.
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However, in real life, especially in large-scale evacuations,
such plans cannot predict possible congestion that may
occur at exits as depicted in Figure 1. Furthermore, such
plans cannot adapt and react efficiently to possible panic
scenarios that may prevent occupants from following the pre-
determined plans. For example, in large-scale evacuations,
panic causes occupants to rush out with crowds and ignore
exit signs, thus causing congestion in specific regions
that cannot be mitigated via pre-determined evacuation
plans. Besides, the heterogeneous population distribution
slows evacuation, as not all exits are efficiently utilized.
Therefore, all of this combined highlights the need to find
an approach that efficiently utilizes the building layout
and exits.

This paper proposes a novel smart evacuation guidance
system that adapts to various real-world scenarios to resolve
congestion and minimize evacuation time. In other words,
our evacuation guidance model predicts future trajectories
of occupants following a Monte Carlo scheme to forecast
possible congestion and generate guiding exit directions via
electronic sign boards that can be updated remotely. It is
worth mentioning that we assume occupants’ locations are
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FIGURE 1. Shortest paths are not always the fastest ones in evacuation
scenarios due to possible congestion.

given via installed tracking and motion capture systems in the
considered environment. All in all, our approach considers
factors of population densities, paths’ physical lengths, and
escape flow rates of exits and thus finds an appropriate
combination of the aforementioned factors in developing
evacuation route plans. The main paper contributions can be
summarized as follows:
• recommending least congested routes to highly dense
populations in large-scale architecturally complex
building layouts,

• performing evacuation planning based on the forecasted
state of the evacuation situation, and

• modeling occupants’ movements.
Furthermore, we evaluated our approach in simulation

using complex environments that mimic real-world scenarios
to ensure the effectiveness of our system. Additionally,
we compared our approach to a classical greedy evacuation
approach that relies on existing static exit signs to highlight
our contribution. Our experiments demonstrate a significant
improvement in reducing evacuation time.

The rest of the paper is organized as follows. Section II
gives a brief on the recent research work concerned with
emergency evacuation modeling. Section III breaks down
and discusses the system framework in detail. Section IV
present three case study experiments and discusses their

results. Section V presents conclusions and makes future
recommendations.

II. RELATED WORK
Emergency evacuation modeling has received increasing
attention in the last few years as a replacement for costly and
time-consuming real-life evacuation drills. Recent research
has considered different aspects of emergency evacuation
modeling, such as population movement and architectural
influence on evacuation. Others have considered the impact
of population emotions and behaviors, besides discussing
evacuation route selection and smart evacuation guidance
systems.

Movement modeling approaches differ concerning their
primary focus. For example, microscopic systems model
population movement with a high level of detail, tracking
their spatiotemporal status. Microscopic modeling systems
include approaches that model movements as a result of inter-
nal and external social forces of neighboring occupants [1],
[3], [4], [5], [6]. Additionally, other microscopic methods
model occupants as autonomous and communicating agents
who make decisions based on their characteristics, other
agents, or the environment [7], [8], [9], [10], [11]. More-
over, microscopic methods include models that discretize
space to cellular grids and time to time-steps [12], [13],
[14], [15], [16], [17]. On the other hand, macroscopic
models trade off accuracy for computational complexity.
Common macroscopic methods are network-based models
that discretize environments into networks of nodes and
arcs. Such nodes and arcs have specified capacities and
occupants propagating as flows with a certain speed through
the network [18], [19], [20].

Furthermore, several research studies have investigated
the influence of emotions and behaviors on evacuation [9],
[21], [22]. For instance, emotions such as panic, fear,
stress, and anxiety significantly impact people’s decisions in
emergencies. Additionally, people communicate together and
exchange knowledge during evacuation scenarios, affecting
their decisions. For example, Han and Liu [3] model
occupants’ willingness to follow neighbors who provide
information. Additionally, Liu et al. [23] investigated the
effect of group leaders on evacuation.

Moreover, route selection is a complex decision that
involves many variables, including architectural data accu-
racy, hazard conditions, and population density topography.
Therefore, research studies considered combinations of such
variables to reach a decision [5], [24], [25], [26], [27]. For
instance, Wang et al. [24] rely on a fire dynamics simulator
to model fire development to recommend escape routes.
Besides, Liu et al. [5] compute a fitness function for exits
considering congestion as a factor.

Additionally, architectural design can be a driving factor
in decision-making. Therefore, some researchers considered
the influence of architectural design on evacuation outcomes
concerning the number of rooms, room sizes, exit sizes,
and exit arrangements to give design suggestions [8], [28].
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TABLE 1. Comparison between smart evacuation guidance system features.

FIGURE 2. Sample layout. Red elements represent visual signs, green elements represent
exits, reddish brown elements represent walls and grey elements represent obstacles.

Furthermore, Caliendo et al. [29] considered finding archi-
tecturally non-invasive evacuation plans to preserve existing
architecture, which is crucial for historical buildings [29].

As for smart evacuation guidance systems, they are
relatively novel in research; however, the number of research
studies has significantly increased in the past few years.
Most existing research works employ Internet of Things (IoT)
components to collect data, such as individual locations and
hazard conditions [32], [34], [37], [39], [41], [42]. Then,
this data is used to assess emergencies, develop a suitable
evacuation plan, and display rerouting updates via dynamic
signage systems.

Several smart evacuation approaches focus only on recom-
mending the safest evacuation routes by eliminating routes
associated with hazardous areas and recommending the
best-remaining alternatives. For instance, Samah et al. [30]
propose a modification to Dijkstra’s algorithm so that it

eliminates hazardous nodes to provide the shortest and safest
paths. Then, Cho et al. [31] update directions of dynamic
exit signs to avoid hazard locations. After that, Ferraro and
Settino [35] optimize routes by discretizing layouts as nodes
and weighted edges to avoid fire relying on IoT devices.
Furthermore, Jiang [38] uses the ant colony algorithm to
optimize escape routes by calculating effective lengths of
alternative routes in terms of sensor-monitored fire status,
which is continuously updated and indicated to occupants
through a GIS-based mobile device. Furthermore, Fu and
Liu [40] propose a BIM-based graph network of nodes and
path lines using the work of Fu et al. [43] to represent
paths of any polygon-shaped room correctly. Then, they
determine optimal evacuation routes in terms of length
and accessibility to show recommended and negated sign
directions. Also, Xu et al. [41] add a parameter to the
route selection probability of ant colony algorithm, which
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FIGURE 3. System flow.

takes fire conditions into consideration to penalize hazardous
paths and avoid them. Additionally, Berceanu et al. [42]
propose a decentralized agent-based model that uses a
guidance control system, which weights paths according to
fire conditions to compute the shortest and safest paths using
Dijkstra’s algorithm. However, such strategies turn out to
be a greedy shortest-path strategy after making hazardous
areas inaccessible. Accordingly, path planning strategies have
the most significant effect on evacuation efficiency for such
approaches.

Additionally, some approaches consider other decision
model parameters rather than focusing only on path length.
For instance, Bernardini et al. [33] adopt a microscopic
approach that accounts for crowd density besides recom-
mending the shortest path. They wait until any region
across the recommended route reaches its full capacity to
eliminate that route and recommend another one. Thus, this
approach, even though it considers crowd density, also tends
to follow a greedy scheme that does not foresee upcoming
congestion, which turns such an approach to finding the
shortest path among the available routes. Furthermore, they
only consider a low occupancy scenario whose full capacity
is only 800 occupants, unlike the high occupancy scenario
of about 10,000 occupants, as in our case. It is worth
mentioning that microscopic approaches fit better to low
occupancy scenarios [10], [23], [25], [39]. On the other
hand, Nguyen et al. [36] adopt a macroscopic approach that
accounts for crowd density by representing the evacuation

building as a network of cross-connected floor sub-graphs
where they weight edges according to route length, capac-
ity, density, and hazard conditions. Edges representing
route segments are weighted individually, assembled, and
evaluated globally to attain the shortest routes. However,
as discussed earlier, such a macroscopical representation
misses the movement details of the occupants. Therefore,
comparing this network-based approach or any macroscopic
approach in general with our microscopic approach would
not be fair or realistic since macroscopic approaches do not
account for delays due to congestion or obstacles. Moreover,
Balboa et al. [39] consider pre-evacuation delays due to
the time needed for perception and collecting belongings
before starting evacuation. They run stochastic simulations
following the work of Cuesta et al. [44] to estimate evacu-
ation time for alternative routes based on hazard locations
and dynamically update sign directions accordingly. Hence,
they introduce a decision model that eliminates hazardous
routes and calculates total evacuation time as the sum of
pre-evacuation and route travel times. Thus, this method
also turns out to be a greedy shortest-path strategy after
eliminating hazardous routes.

As opposed to the current smart evacuation systems that
cannot foresee and resolve setbacks during the evacuation
process, this paper proposes a novel efficient approach
that forecasts evacuation congestion based on microscopic
simulation level. In other words, our approach recommends
the actual fastest routes for evacuation, not just the shortest
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routes in terms of path length as in the case of greedy
approaches. Our approach performsMonte Carlo simulations
to forecast occupants’ future positions and plan accordingly
to avoid congestion. Furthermore, we update evacuation
route plans based on our periodic predictions and guide
the occupants via dynamic signage. Additionally, We model
dense crowds in architecturally complex environments to
overcome the lack of such a combination in microscopic
approaches. In other words, our approach models occupants’
movements in a microscopic scheme to retain necessary
congestion details; however, we perform routing decisions
on a macroscopic level to scale up to complex environments.
In Table 1, we compare the features of the discussed smart
evacuation guidance systems and our proposed approach. Our
approach performs congestion forecasting without relying on
guiding personnel or mobile devices, i.e., mobile devices for
guiding occupants. Additionally, our approach periodically
updates the recommended routes based on congestion status.

III. SMART EVACUATION ADAPTABLE SYSTEM
FRAMEWORK
In this section, we introduce our novel Monte-Carlo-based
smart evacuation guidance system. Our model relies on
forecasting occupants’ movement, then, based on such
forecasts, it generates guidance decisions that are used to
simulate experimental evacuations, as shown in Figure 3.
In this section, we first define howwemodel evacuation envi-
ronments and occupants’ movements. After that, we discuss
how we perform congestion forecasting. Then, we show how
we calculate the effective routes recommended to occupants
during evacuation execution.

A. ENVIRONMENT AND MOVEMENT MODELING
We consider single-storey buildings for this work, where we
model them as grid maps similar to the sample layout shown
in Figure 2, with annotated locations of exits (green elements)
and guiding visual signs (red elements). Furthermore, wemap
each grid cell to the closest guiding sign since it affects the
evacuation decision of people occupying that cell. Besides,
we assume that a multi-object tracking system is deployed on
the property’s existing surveillance cameras, which provide
our evacuation system with occupants’ locations.

We simulate occupants’ movement on that grid map in
discrete time steps. Each occupant occupies some grid cells
according to their size. Furthermore, occupants can move in
any of the eight possible directions (Moore’s neighborhood),
as shown in Figure 4, as long as such cells have no obstacles
or have enough space for that occupant. Furthermore, each
occupant has a separate evacuation velocity that governs their
motion across their individual paths at each time step. Such
a velocity may differ according to the occupant’s gender and
age. Additionally, occupants who enter a congested path slow
down or stop moving until there is space for them to move.
Moreover, our forecasting module recommends for each
occupant the fastest route according to their current location.

In the rest of this section, we show how the forecasting
module calculates the fastest routes.

B. MOTION FORECASTING
We perform Monte Carlo simulations of occupants’ evac-
uation behavior as they move across the grid map to
forecast population density distribution as time proceeds
during evacuation. The forecasted density distribution will
manifest possible congestion locations. Therefore, we sample
an average evacuation speed ve from a normal distribution,
to be adopted by all occupants during the forecasting phase
to mimic reality as much as possible, as shown in Equation 1:

ve ∼ N (µe, σe), (1)

where µe and σe refer to the average evacuation speed and its
standard deviation, respectively.

Although adopting an average speed for all occupants
adds more uncertainty to the prediction results, it mimics
available information during real evacuation scenarios since it
is not realistic to track the individual speeds of the occupants
during evacuation and perform predictions based on them.
Note that we consider this unified average velocity only for
the forecasting purpose to have a realistic model; however,
we assign an individual velocity for each occupant during
simulating the evacuation execution, as we will show in
Section III-D.
Additionally, we model occupants’ adherence to following

recommended evacuation directions of our guidance system
using a normal distribution to sample the percentage of
committed occupants, as shown in Algorithm 1. Then,
we uniformly sample the occupants’ behavior based on that
sampled percentage, i.e., determine the committed occupants
in our forecast based on uniform selection among the pool
of occupants based on the sampled percentage. To perform
conservative forecasting, we assume that most occupants
will follow a greedy strategy heading toward the closest exit
regardless of the guiding signals. Accordingly, we simulate
occupants’ motion along their selected routes according to the
sampled average evacuation speed for a specific forecasting
horizon to predict their future locations.

C. EFFECTIVE PATHS
At the end of each forecasting horizon, we utilize the
forecasted locations of occupants to recommend efficient
paths for the occupants in evacuation execution. For each
occupant, based on their location, we calculate an effective
path length of all possible paths leading to a possible exit
of the building storey, instead of the known physical path
lengths. Then, we recommend the path with the least effective
length. The effective path length l∗ corresponds to weighting
the physical path length lp with a congestion factor fc,
to account for possible delays due to congestion, as follows:

l∗ = fc × lp. (2)

We compute the congestion factor for each path considering
path occupancy based on the predicted population density
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FIGURE 4. Moore’s neighborhood.

and exit flow rate along that specific path. The intuition
behind such a factor relies on the fact that travel time through
congestion will significantly increase as it becomes governed
by exit flow rate instead of evacuation speed, especially
for highly dense crowds. In other words, we assume that
occupants will walk a distance denoted by le on a path of
length lp, where lp ≥ le, following an evacuation velocity
ve until they encounter congestion. Then, for the rest of the
path length, i.e., lp− le, occupants slow down as enforced by
the exit flow rate. Therefore, we assume that path travel time
is a summation of travel time for free walking and travel time
through congestion. Each travel time is considered separately
in order to avoid duplication, as follows:

t∗ =
le
ve
+

occ
flow

, (3)

where t∗ denotes total evacuation time, while occ represents
the number of occupants flowing along that path, and flow
corresponds to the exit flow rate of the occupants along
that path. Furthermore, we empirically assume that the free
walking distance is a proportional fraction of the physical
path length relative to occupants’ density, as follows:

le = lp−density× lp. (4)

Moreover, we assume that path evacuation time can be
alternatively considered as a function of the sought conges-
tion factor, path physical length, and evacuation velocity,
as follows:

t∗ = fc ×
lp
ve
. (5)

Therefore, considering Eq. 3, Eq. 4 and Eq. 5, we can derive
the congestion factor as follows:

fc = 1−density+
ve
lp
×

occ
flow

. (6)

D. SIMULATED EVACUATION
We rely on simulation to evaluate the evacuation performance
based on the recommended directions since real-world drills
are costly and cannot be extensively performed. Occupants
start moving according to a speed sampled from a normal
distribution. In this evaluation phase, we sample an individual
speed for each occupant based on their gender and age

Algorithm 1 Forescasting of Occupants’ Future Locations
Input: Occupants, Routesrecommended , Routesgreedy
Output: Occupants
1: Adherence% ∼ N (µadherence, σadherence)
2: for o ∈ Occupants do
3: X ∼ U (0, 1)
4: if (X ≤ Adherence%) then
5: ComplyingOccupuants.append(o)
6: end if
7: end for
8: for t = 0 to ForecastingHorizon do
9: for o ∈ Occupants do

10: if (o ∈ ComplyingOccupuants) then
11: o← move(ve,Routesrecommended (o))
12: else
13: o← move(ve,Routesgreedy(o))
14: end if
15: end for
16: end for

following the work of Chu et al. [45]. In this evaluation
phase, as opposed to the forecasting phase, having a specific
velocity for each occupant is more realistic. Furthermore,
unlike the forecasting phase, we assume that most occupants
follow the guiding signals, compared to those who may panic
and follow a greedy strategy heading toward the closest exit
regardless of the guiding signals. We simulate occupants’
motion and their compliance with the recommended routes,
as shown in Algorithm 1, except that there is no forecasting
horizon.

IV. EXPERIMENTAL RESULTS
We evaluated our model on complex environments in simu-
lations since large-scale real-life evacuation drills would be
costly, difficult to organize, time-consuming, inflexible, and,
most importantly, they would risk the safety of participants.
In this section, we explore the simulation environments
used, besides discussing our experimental settings and
assumptions. Additionally, we discuss the evaluation metrics
used to evaluate our model. Finally, we illustrate our findings
and analyze our model’s performance.

A. SIMULATION ENVIRONMENTS
We used three case studies to validate the performance
of our model in recommending evacuation guidance plans.
All three case studies take place in hospitals, as they are
considered architecturally complex buildings occupied by
large numbers of staff members, patients, and visitors who
may not be familiar with such environments’ floor plans.
The adopted case studies are the ground floors of RIAU
University Hospital in Pekanbaru, Indonesia (Figure 5);
Mongar Regional Referral Hospital in Mongar, Bhutan
(Figure 6); and Hospital General Benito Juarez inMichoacán,
Mexico (Figure 7). We represent the environments’ maps
as cellular grids with a resolution of 30 cm. Additionally,
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FIGURE 5. RIAU University Hospital layout emphasizing exit locations.

FIGURE 6. Mongar Regional Referral Hospital layout emphasizing exit locations.

we model occupants as squares of 60 cm in length. RIAU
University Hospital’s layout has a 5694 m2 free area and
seven exits, while Mongar Regional Referral Hospital has

a 2557 m2 free area and three exits. However, Hospital
General Benito Juarez has a 3950 m2 free area and five
exits.
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FIGURE 7. Hospital General Benito Juarez layout emphasizing exit locations.

TABLE 2. Average evacuation time of 50 simulation runs on RIAU
University Hospital and improvement percentage compared to greedy
evacuation.

B. EXPERIMENTAL SETTINGS
We perform simulations assuming that occupants’ current
locations and velocities are given to our model via motion
capture systems instead of real-life drills. Additionally,
we assume that population velocities follow normal distri-
butions for the execution phase with a mean of 1.287 m/s
for men, 1.243 m/s for women and 1.09 m/s for elders [45],
and a standard deviation of 0.5 m/s. As for the forecasting
phase, we assume that all occupants adopt a crowd average
velocity to account for the uncertainty of each occupant’s
velocity. Furthermore, we model occupants’ trust behavior
by assuming that the majority of the population will comply

TABLE 3. Average evacuation time of 50 simulation runs on Mongar
Regional Referral Hospital and improvement percentage compared to
greedy evacuation.

with our system-recommended evacuation directions. We use
a normal distribution with a sampled average of 70% of the
population and a standard deviation of 15% for committed
occupants.

C. EVALUATION METRICS
We compare our proposed approach to a greedy evacua-
tion method. Considering that the greedy approach is the
benchmark, we consider an approach to be efficient if its
average evacuation time is shorter than that of the greedy.
Furthermore, we consider a variant of our approach, which
performs a single forecast at the beginning of the simulation,
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FIGURE 8. Analysis of a greedy run on the left and a periodic prediction (per 30 seconds) run on the right at t = 0, 150, 300, and 450 seconds for RIAU
University Hospital.

as opposed to our proposed periodic forecasting, resulting
in a static plan based on an averaged population density
distribution. The purpose of comparing our approach to such
a variant is to evaluate the effect of the proposed periodic
forecasting on evacuation time. Furthermore, we compare the
utilization percentage of environments’ exits to evaluate the
congestion reduction.

It is worth mentioning that most existing smart evacuation
systems, as discussed in Section II, turn out to be equivalent
to greedy approaches relying on shortest-path finding after

they eliminate the unsafe routes. Therefore, relying on the
greedy approach as a benchmark is reasonably sufficient.
Also, comparing our microscopic approach to any of
the network-based macroscopic approaches mentioned in
Section II will not be fair or realistic since they do not account
for delays due to congestion or obstacles.

D. SIMULATION RESULTS
We evaluated our approach using different population densi-
ties to assess the performance in the considered case studies
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FIGURE 9. Analysis of a greedy run on the left and a periodic prediction (per 30 seconds) run on the right at t = 0, 140, 280, and 420 seconds
for Mongar Regional Referral Hospital.

for moderate and overcrowded densities. Furthermore,
we considered two forecasting horizons: 30 and 60-second
intervals. It is also worth mentioning that such forecasting

horizons are intuitive since shorter horizons will lead to
an oscillating performance, while longer ones will lead to
a slow response to potential rapid changes in evacuation
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FIGURE 10. Analysis of a greedy run on the left and a periodic prediction (per 60 seconds) run on the right at t = 0, 100, 200, and
300 seconds for Hospital General Benito Juarez.

scenarios. Moreover, we performed 50 independent runs
of our simulations for each case study to alleviate the
randomness effect.

As for the evacuation time improvement compared to
the greedy approach, our approach with periodic prediction

significantly overcomes both greedy and single forecast
approaches for all case studies, as shown in Tables 2, 3 and 4.
As demonstrated, the average time improvement for all
case studies of our periodic forecasting approach ranges
from 21.29% to 21.56% for the 30 seconds and 60 seconds
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TABLE 4. Average evacuation time of 50 simulation runs on Hospital
General Benito Juarez and improvement percentage compared to greedy
evacuation.

TABLE 5. Comparison between exit utilization in the Greedy and Periodic
Prediction approaches, and percentage of exit utilization change for RIAU
University Hospital.

TABLE 6. Comparison between exit utilization in the Greedy and Periodic
Prediction approaches, and percentage of exit utilization change for
Mongar Regional Referral Hospital.

TABLE 7. Comparison between exit utilization in the Greedy and Periodic
Prediction approaches, and percentage of exit utilization change for
Hospital General Benito Juarez.

forecasting horizons, respectively. Furthermore, the superior
performance of our periodic forecasting approach takes place
for both moderate and heavy occupancy levels. Additionally,
as opposed to our approach, which can adapt to environments
of various sizes, the single forecast approach fails to provide
mature guidance for evacuation in small environments with a
limited number of exits, as in the Mongar Regional Referral
Hospital case study. Moreover, it is worth mentioning
that varying the forecasting horizon from 30 seconds to
60 seconds will not cause a significant effect since it improves
the evacuation time by just 0.28% on average.

E. CONGESTION AND EXITS UTILIZATION ANALYSIS
Furthermore, our approach improves utilization percentages
of the exits of our case studies’ environments. In other words,

our approach balances the distribution of occupants heading
to the exits taking into account minimizing the evacuation
time. Such balance in distributing occupants across exits
leads to a decrease in the congestion of occupants instead of
having them concentrated around specific exits compared to
others.

For instance, for RIAU University Hospital, with a
5000 occupant population, Figure 8 shows snapshots taken
at different time steps comparing a greedy run and a
periodic prediction run of 30 seconds prediction horizon
with evacuation times close to those of their averages, i.e.,
706 and 630 seconds, respectively. At t = 150 seconds, exits
e2 and e6 have a better utilization in the periodic prediction
approach than in the greedy approach, the congestion at
e4 somewhat decreased and occupants are more uniformly
distributed around e7. Furthermore, at t = 300 seconds, e2 is
still being utilized in the prediction approach and masses
of occupants heading to e5 in the greedy approach have
already cleared in the prediction approach. Additionally,
at t = 450 seconds, the prediction approach run is left with
196 occupants to evacuate, while the greedy approach run still
has 359 occupants trying to evacuate.

Similarly, for Mongar Regional Referral Hospital with a
3000 occupant population, Figure 9 demonstrates that e1 has
a better utilization in our periodic prediction approach at
t = 140 seconds, and congestion at e3 slightly decreases.
At t = 280 seconds, e3 does not suffer anymore from con-
gestion, as opposed to the greedy approach, and occupants
heading towards that exit are more uniformly distributed
using our prediction approach. Finally, at t = 420 seconds,
congestion has almost cleared, and all three exits are still
being utilized in our prediction approach with 265 occupants
to evacuate. On the other hand, congestion persists for
the greedy approach run, and 509 occupants are trying to
evacuate using two exits only.

Also, for Hospital General Benito Juarez, with a
3000 occupant population, Figure 10 shows that at t =
100 seconds, e3 and e5 are better utilized using our periodic
prediction approach than in the greedy approach, and e2 is
congestion relieved. At t = 200 seconds in the prediction
approach, e2 is no longer congested, and e5 is still being
utilized, whereas it is not in the greedy approach. Finally,
at t = 300 seconds, all five exits are still being utilized in
the prediction approach run with 432 occupants to evacuate,
while the greedy approach run utilizes three exits only and
still has 720 occupants to evacuate.

Finally, we demonstrate the change in exit utilization
percentages in Tables 5, 6, and 7 for RIAU Hospital, Mongar
Hospital, and Benito Juarez Hospital, respectively. We show
that the utilization percentage of some exits has decreased to
reduce congestion along the paths leading to them, such as
e7 in RIAU Hospital, e3 in Mongar Hospital, and e2 in Benito
Juarez Hospital. Additionally, the utilization of other exits has
increased to accelerate the evacuation, such as e2 in RIAU
Hospital, e1 in Mongar Hospital, and e5 in Benito Juarez
Hospital.
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V. CONCLUSION AND FUTURE WORK
This paper introduces a novel evacuation guidance system
that can dynamically guide highly dense populations in
architecturally complex buildings. We apply a Monte Carlo
simulation model to forecast future congestion periodically
to guide occupants away from highly congested areas and
minimize evacuation time. We evaluated our model via
simulation using three complex case studies, i.e., RIAU
University Hospital, Mongar Regional Referral Hospital, and
Hospital General Benito Juarez. We demonstrated that our
approach leads to a significant reduction in evacuation time
that ranged from 21.29% to 21.56% on average based on
the prediction horizon compared to the greedy evacuation
approach. Additionally, we demonstrated that our approach
distributes evacuees as uniformly as possible across any
building layout to make the most efficient use of it.

As for future work, we aim to address several enhancement
aspects. For instance, we plan to extend our model to
handle multi-storey buildings. Accordingly, we need to
model evacuation on stairs and the dynamics of descending
crowds down a building, as parameters governing movement
down staircases, such as velocity, differ from those of
horizontal movement. We aim to test the influence of
congestion formation along stairs on evacuation performance
by simulating occupant accumulation moving down from one
storey to another. Moreover, we will utilize a fire model to
simulate fire conditions and their progress across a building
to consider fire danger factors when calculating the route
direction decision plan. Thus, we plan to test different fire
breakout scenarios at different building locations. Also, a safe
distance from fire needs to be defined while considering
fire progress. Any route that does not maintain the defined
safe distance will be eliminated from the evacuation plan.
Finally, we plan to automate dynamic signs placement.
We intend to explore methods to identify all possible decision
locations where dynamic signs should be installed without
redundancy. For instance, corridor intersections and room
doors are considered appropriate decision locations; however,
only one sign should be placedwithin a certain radius to avoid
confusion. In open areas, signs should be placed within a
certain distance to prevent occupants from getting lost and
to help them keep track of the evacuation routes.
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