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ABSTRACT We propose a novel quantum turbo short-block code, which subsumes multiple-rate quantum
short-block codes (MR-QSBCs) as the outer codes and a quantum unity-rate code (QURC) as the inner
code. The proposed design is denoted as MR-QSBC-QURC. More specifically, the proposed design exhibits
multiple quantum coding rates despite relying only on a single quantum encoder. Moreover, the flexibility
offered by the single-encoder MR-QSBCs enables us to leverage extrinsic information transfer (EXIT)-
chart based heuristic optimization for determining the optimal weighting in the fractional encoding of
MR-QSBCs. Our simulation results show that the MR-QSBC-QURC scheme conceived performs relatively
close to the ultimate limit of the quantum hashing bound. Specifically, when considering the target quantum
coding rates of rQ = {0.3, 0.4, 0.5, 0.6, 0.7}, the MR-QSBC-QURC operates at a distance of D =

{0.042, 0.029, 0.030, 0.024, 0.017} from the quantum hashing bound, respectively, at a quantum bit error
ratio (QBER) of 10−3.

INDEX TERMS Quantum error-correction codes, quantum stabilizer codes, quantum turbo codes, quantum
short-block codes, EXIT chart, rate-compatible code.

I. INTRODUCTION
Quantum error-correction codes (QECCs) [1], [2], [3]
constitute a potent technique of mitigating the deleterious
effects of quantum decoherence that is prevalent in quantum
systems [4], [5]. The conception of quantum stabilizer codes
(QSCs) [6] has triggered a massive redesign of classical
correction codes for their application in the quantum realm.
Consequently, the ‘‘quantumization’’ of powerful classical
error correction codes [7], [8], [9], [10] leads to the
emergence of novel classes of QSCs, such as quantum polar
codes (QPCs) [11], [12], quantum low-density parity-check
(QLDPC) codes [13], [14], as well as quantum turbo codes
(QTCs) [15], [16]. However, classical error-correction codes
cannot be directly transplanted into the quantum domain,
since they have to satisfy the stringent requirement of
the so called symplectic criterion [3], [17]. This challenge
becomes particularly pronounced when attempting to design
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a broad class of QSCs capable of adapting their error
correction capability to the quality of quantum channels.
Explicitly, when the quality of the quantum channel starts
degrading, a QSC operating beyond its quantum error
correction capability may actually introduce more errors
instead of correcting them. Thus, wemay reduce the quantum
coding rate of the QSC by incorporating more redundancy
qubits. Similarly, when the quality of the quantum channel
starts improving, we may increase the quantum coding rate
accordingly to reduce the number of redundancy qubits
for the sake of improving the effective throughput of the
QSC. However, the well-established classical methods such
as puncturing and extending the mother code often do not
satisfy the stringent symplectic criterion imposed in quantum
domain [18], [19]. Therefore, a novel design paradigm has
to be conceived for designing adaptive and rate-compatible
QSCs.

The seminal family of rate-compatible QTCs was con-
ceived in [16], [20] by employing quantum irregular con-
volutional codes (QIrCCs) as the inner and outer codes.

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 96177

https://orcid.org/0000-0002-0930-7194
https://orcid.org/0000-0002-2636-5214
https://orcid.org/0000-0002-8209-7314


D. Chandra et al.: EXIT-Chart Aided Design of Irregular Multiple-Rate Quantum Turbo Block Codes

Unfortunately, the subcomponent QIrCCs proposed can-
not be created from a single mother code. Hence, the
implementation of QIrCCs requires a different quantum
encoder for each subcomponent code. Furthermore, since it
relies on fractional encoding of the subcomponent codes,
a number of the subcomponent quantum encoders have to be
prepared. Subsequently, another design was proposed in [21],
namely the QIrCC-QURC, where the inner codes previously
constituted by QIrCCs were replaced by a quantum unity-rate
code (QURC). The QURC was employed as the inner
code, iteratively exchanging information with the QIrCCs
serving as the outer codes, while maintaining the quantum
coding rate. In this particular scheme, since the fractional
irregular encoding operations are only performed by the outer
codes, the number of quantum encoders required for the
entire scheme can be substantially reduced. More recently,
an alternative QTC scheme was proposed in [22], where
the outer codes are constructed by quantum short-block
codes (QSBC). While the QSBCs conceived successfully
accommodate a wide range of quantum coding rates as the
outer codes, the proposed design only covers the quantum
coding rates of rQ ≥ 0.5. Additionally, the outer codes were
not optimized, despite having the potential of performing
fractional encoding using single-encoder-based multiple-rate
quantum short-block codes (MR-QSBCs).

The design of near-capacity QTCs based on optimal
fractional subcomponent codes may be achieved by invoking
extrinsic information transfer (EXIT)-chart based heuristic
optimization [16], [20], [21], [23], [24], [25], [26], [27], [28].
Explicitly, a near-capacity operation may be attained for any
arbitrary coding rate by optimizing the weighting factors of
the subcomponent codes. In the conventional near-capacity
QTCs, the subcomponent codes having various quantum
coding rates will be represented by different quantum
encoders. However, in this treatise, we envisage the attractive
solution where a carefully designed quantum encoder can
be used to accommodate subcomponent codes having a
wide-range quantum coding rates. Therefore, we firmly
believe that the benefit of EXIT-chart based optimization
can be fully exploited when the subcomponent codes can be
represented by a single encoder, which has not been achieved
by any QTC construction.

Against this background, we conceive a single encoder
that fits all types of QECCs as our main contribution in
this treatise. More specifically, our contributions may be
summarized as follows:

• We formulate and characterize the family of single-
encoder MR-QSBCs, where only a single quantum
encoder is required for supporting a wide-range of
quantum coding rates suitable for different quantum
depolarizing probabilities.

• We design single-encoder-based multiple-rate quantum
turbo short-block codes by concatenating single-encoder
MR-QSBCs with a QURC. We refer to this design as
MR-QSBC-QURC.

• We perform heuristic EXIT-chart based optimization
for designing our optimal MR-QSBC-QURC. Despite
relying on low-complexity MR-QSBCs as the outer
codes, they provide a near-hashing bound performance.
Specifically, the quantum bit error ratio (QBER) of our
half-rate MR-QSBC-QURC is comparable to that of the
best-performing half-rate QTCs in the open literature,
namely the QIrCC-QURC of [21].

• Finally, our proposed scheme performs very close to the
quantum hashing bound for a wide range of quantum
coding rates, while maintaining a QBER of 10−3.

The rest of this treatise is organized as follows.
In Section II, we present the proposed MR-QSBCs and
demonstrate that they can be constructed using only a single
quantum encoder for a wide range of quantum coding rates.
In Section III, we amalgamate MR-QSBCs and a QURC
for constructing multiple-rate QTCs, which we refer to as
MR-QSBC-QURC. The step-by-step optimization of the
MR-QSBCs using the EXIT-chart based heuristic search
is given in Section IV. We evaluate the performance of
the optimized MR-QSBC-QURCs in terms of their QBER,
performance gaps with the quantum hashing bound as well
as goodput for various quantum coding rates in Section V.
Finally, we conclude and summarize our design guidelines in
Section VI, while highlighting some potential future research
directions.

II. QUANTUM SHORT-BLOCK CODES (QSBCs)
The classical short-block codes (SBCs) are binary systematic
linear block codes C(n, k, d), whose generator matrix G is
defined by

G =
[
Ik |Pk,(n−k)

]
=

[
Ik |1k,1

]
, (1)

for k < n, where k is the length of the original information
word, n is the length of the encoded codeword, Ik is a
k-dimension identity matrix, Pk,(n−k) is a [k × (n − k)]-
element binary matrix, and 1m,n is a (m× n)-element all-one
matrix. The parity-check matrix (PCM) H of a systematic
linear block code is formulated as H =

[
PT |In−k

]
.

Therefore, the PCM H of the classical SBCs is given by

H = 11,n, (2)

which is an all-one (1 × n)-element matrix. Finally, the
resultant classical coding rate rC is given by

rC =
k
n

=
n− 1
n

, (3)

for n ≥ 2. The minimum distance of the SBCs conceived
is d = 2, which implies that classical SBCs constitute a
family of single-error detection codes. Having said that, the
minimum distance d = 2 guarantees the convergence of
iterative decoding to a vanishingly low BER, when they are
employed as the outer code within a concatenated coding
scheme [29], [30].

By exploiting the classical-to-quantum isomorphism [31],
the classical SBCs whose PCM is specified in (2) can be
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readily transformed into their quantum counterparts. Given
a pair of classical codes C1(n, k1, d1) and C2(n, k2, d2) having
PCMs of H1 and H2, respectively, a quantum stabilizer
code (QSC) C[N ,K ,D]1 having a binary PCM H can be
constructed by having Hx = H1 and Hz = H2, where
Hx is used for mitigating the bit-flip (X) errors and Hz is
used for mitigating the phase-flip errors (Z) of quantum Pauli
channels. Given a pair of PCMsHx andHz, wemay construct
a Calderbank-Shor-Steane (CSS)-type QSC, whose binary
PCM H is defined as follows [2], [32]:

H =

[
Hz 0
0 Hx

]
. (4)

Thus, the code parameters of the resultant CSS-type QSC
are constrained by the parameters of the classical constituent
codes. More specifically, we have N = n, K = k1 + k2 − n,
andD = min(d1, d2). In order to conceive a valid PCMH for
a CSS-type QSC, a pair of PCMs Hx and Hz has to satisfy
the following symplectic criterion [17], [33]:

HzHT
x = 0. (5)

A specific case of CSS-type QSCs associated with
Hx = Hz may be referred to as dual-containing CSS-type
QSCs. Therefore, the PCM H of dual-containing CSS-type
QSCs derived from the classical SBCs of (2) is given by the
following definition.
Definition 1 (QSBCs Type-I [22]): QSBCs obtained from

the classical PCM of (2) resulting in the following PCM of
dual-containing CSS-type QSCs:

H =

[
11,n 0
0 11,n

]
, (6)

where n ≥ 2 is an even number – which automatically
satisfies the symplectic criterion of (5)– are referred to as
quantum short-block codes (QSBCs) Type-I [22].
For a dual-containing CSS-type QSC, the relationship

between the classical coding rate of rC = k/n and its
quantum coding rate counterpart of rQ = K/N can be
described explicitly as follows [3], [16], [34]:

rQ = 2rC − 1. (7)

Since the quantum coding rate rQ has to be positive (rQ > 0),
the classical mother codes must exhibit a classical coding rate
of rC > 1/2. Consequently, the quantum coding rate rQ of the
QSBCs Type-I can be immediately expressed as

rQ =
N − 2
N

, (8)

for any even number of N > 2.
Remark 1: The classical SBCs of C(n, k, d) = C(n, n −

1, 2) can be readily transformed into QSBCs Type-I of
C[N ,K ,D] = C[n, n− 2, 2] for any even number of n > 2.

1To avoid confusion, we use the notation of C(n, k, d) for denoting
classical error-correction codes and C[N ,K ,D] for quantum error-correction
codes. For classical error-correction codes, n is the length of the codeword, k
is the length of the information word, and the d is the minimum distance of
the classical code. Meanwhile, for quantum error correction codes, N is the
number of physical/encoded qubits, K is the number of logical/information
qubits, and D is the minimum distance of the quantum code.

TABLE 1. The syndrome value evaluation of a single bit-flip error using
the QSBC Type-I having the stabilizer generators provided in Example 1.

Example 1: For n = 6, we obtain a QSBC Type-I of
C[N ,K ,D] = [6, 4, 2] having the stabilizer generators of
S = {XXXXXX,ZZZZZZ}. The syndrome value evaluation
for a single bit-flip (X) error is given in Table 1. The
syndrome value evaluation for a single phase-flip error (Z)
is identical to that of a single bit-flip error, since QSBCs
of Type-I belong to the family of dual-containing CSS-type
QSCs.

We employed the method of constructing dual-containing
CSS-type QSCs encoder V presented in [13], [22], and [35] to
design the QSBCs Type-I encoder V as portrayed in Fig. 1.2

The quantum encoder of any QSC may be constructed using
the quantum gates constituted by quantum Clifford gates.
Furthermore, the quantum encoder MR-QSBCs advocated in
this treatise can be constructed using only Hadamard (H)3

and controlled-NOT (CNOT) gates. Specifically, Fig. 1(a)
depicts the QSBC C[4, 2, 2] encoder V , which is identical to
that presented in [37]. By incorporating additional quantum
gates and connections denoted by the blue dashed lines
in the encoder V of Fig. 1(b) into the encoder V of
Fig. 1(a), we obtain theQSBC C[6, 4, 2] encoderV . Similarly,
by adding the quantum gates and connections denoted by red
dashed-dotted lines to the encoder V of Fig. 1(b), we can
readily create the QSBC C[8, 6, 2] encoder V . Demonstra-
tively, we have constructed QSBCs Type-I encoder V having
a higher quantum coding rate that simultaneously contains the
quantum encoder V exhibiting lower quantum coding rates.
Consequently, it is not necessary to construct more than a
single encoder V for various quantum coding rates of QSBCs
Type-I since the QSBCs encoder V exhibits a self-contained
structure.

It is important to highlight that this appealing feature is
reminiscent of the classical rate-compatible punctured coding
philosophy proposed in [38], where the redundant part of the
codeword may be flexibly punctured to obtain a higher-rate
classical code. Therefore, themother code should be designed
very carefully so that the punctured version of the code will
inherit the desired error correction properties.

2In this treatise, our emphasis is on designing the quantum encoder V for
dual-containing CSS-type QSCs. For readers who might like to delve deeper
into the general construction of the quantum encoder V , including non-CSS
QSCs, we recommend the paper by Cleve and Gottesman [36].

3In Fig. 1(a), the notation H represents Hadamard gate and not
parity-check matrix H .
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FIGURE 1. The QSBCs Type-I encoder V for quantum coding rates of rQ = {1/2, 2/3, 3/4} illustrating the flexibility and scalability of the code
constructions.

As we can observe, the multiple-rate QSBCs Type-I
encoder V of Fig. 1 is only scalable for rQ ≥ 0.5. Therefore,
in addition to the QSBCs Type-I, we propose a novel family
of QSBCs, whose quantum encoder exhibits the capability of
accommodating multiple quantum coding rates of rQ ≤ 0.5.
The proposed QSBCs are obtained based on classical SBCs
having the systematic generator matrix G =

[
Ik |Pk,(n−k)

]
,

where the matrix PT is given by PT =
[
1(n−k),(2k−n)|In−k

]
for 2k > n. Therefore, the PCM H of this particular family
of classical SBCs assumes a systematic form given by

H =
[
1(n−k),(2k−n)|In−k |In−k

]
. (9)

The PCM of the classical SBCs in (9) automatically satisfies
the symplectic criterion for even numbers n. The resultant
classical SBCs also exhibit the minimum distance of d ≥ 2,
which is lower-bounded by the row-weight of the generator
matrix G. Finally, the PCM H of dual-containing CSS-type
QSCs derived from the classical SBCs of (9) is given by the
following definition.
Definition 2 (QSBCs Type-II): QSBCs obtained from the

classical PCM of (9) resulting in the following PCM of dual-
containing CSS-type QSCs:

H =

[
1(n−k),(2k−n)|In−k |In−k 0

0 1(n−k),(2k−n)|In−k |In−k

]
,

(10)

where n ≥ 2 is an even number and k =
1
2 (n + 2) – which

automatically satisfying the symplectic criterion of (5) – are
referred to as quantum short-block codes (QSBCs) Type-II.

Therefore, the quantum coding rate rQ of the resultant
QSBCs Type-II can be explicitly expressed as

rQ =
2
N
, (11)

for any even number of N > 2.
Remark 2: The classical SBCs of C(n, k, d) = C(n, 12 (n+

2), 2) can be readily transformed into QSBCs Type-II of
C[N ,K ,D] = C[n, 2, 2] for any even number of n > 2.

TABLE 2. The syndrome vector evaluation of a single bit-flip error using
the QSBC Type-II having the stabilizer generators provided in Example 2.

Example 2: For n = 6, we obtain a QSBC Type-II of
C[N ,K ,D] = [6, 2, 2] having the stabilizer generators of
S = {XXIXIX,XXXIXI,ZZIZIZ,ZZZIZI}. The syndrome
vector evaluation for a single bit-flip (X) error is given
in Table 2. The syndrome vector evaluation for a single
phase-flip error (Z) is identical to that of a single bit-flip error,
since QSBCs Type-II belong to the family of dual-containing
CSS-type QSCs.

Similarly, by following themethod of constructing encoder
V presented in [13], [22], and [35] and based on the
PCM H of (9), we obtain the multiple-rate QSBCs Type-
II encoder V having the number of physical qubits N =

{4, 6, 8}, as shown in Fig. 2. More explicitly, Fig. 2(a) depicts
the QSBC C[4, 2, 2] encoder V , which is identical to the
encoder V of Fig. 1(a). Similar to Fig. 1, the encoder V
of Fig. 2(a) can be transformed into the QSBC C[6, 2, 2]
encoder V of Fig. 2(b) by adding the quantum gates and
connections denoted by blue dashed lines and into the
QSBC C[8, 2, 2] encoder V of Fig. 2(c) by incorporating the
quantum gates and connections denoted by red dashed-dotted
lines.
Remark 3: The quantum encoders V portrayed in Fig. 1

and 2 can be combined into a single encoder V . Ultimately,
we have successfully amalgamated QSBCs exhibiting a
wide-range quantum coding rates rQ into a single quantum
encoder V . We refer to this joint code constructions as
multiple-rate quantum short-block codes (MR-QSBCs).
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FIGURE 2. The quantum encoders V of QSBC type-II for quantum coding rates of rQ = {1/2, 1/3, 1/4} illustrating the flexibility and scalability of the
code constructions.

III. QUANTUM TURBO SHORT-BLOCK CODES
A. CONCATENATED CODE DESIGN
The resultant MR-QSBCs exhibit the minimum distance of
d = 2, which means that they only have the error-detection
capability and no error-correction capability. To transform
this error-detection capability into an error-correction one,
we may serially concatenate the MR-QSBCs with a quantum
unity-rate code (QURC). This serial concatenation scheme
provides us with two main benefits. Firstly, this allows us
to employ an iterative turbo decoding between MR-QSBCs
as the outer codes and a QURC used as the inner code.
Secondly, we do not sacrifice the quantum coding rate
of the MR-QSBCs as the outer codes since the QURC
does not reduce the throughput [21], [22]. In the following
subsections, we will elaborate on the detailed operation
of the resultant multiple-rate quantum turbo short-block
codes (MR-QSBC-QURC).We commence with the encoding
process, followed by the quantum depolarizing channel
model, and finally, the decoding process. The general
schematic of the proposed MR-QSBC-QURC scheme is
portrayed in Fig. 3.

B. ENCODING PROCESS
The encoding process is initiated by the outer quantum
encoder V1 of Fig. 3, which is constituted by MR-QSBC
encoders. This first step maps K1 logical qubits into
N1 encoded physical qubits with the aid of (N1−K1) auxiliary
qubits, which can be formally expressed as

V1
(
|ψ⟩

K1 ⊗ |0⟩⊗(N1−K1)
)

= |ψ1⟩
N1 . (12)

The output of V1 is then fed into the interleaver 5 of Fig. 3,
which can be represented as a permutation matrix formulated
as

5
(
|ψ1⟩

N1
)

= |ψ2⟩
K2 , (13)

where we have K2 = N1. The interleaver does not modify
the number of physical qubits, since it only rearranges the
qubit indices within the encoded state of the physical qubits.
In this treatise, we utilize random interleaver noting that there
are different interleaver types available in the literature [39].

FIGURE 3. The general schematic of the proposed MR-QSBC-QURC
scheme.

Next, the output of the interleaver 5 is fed into the inner
encoder V2, which carries out the following transformation:

V2
(
|ψ⟩

K2 ⊗ |0⟩⊗(N2−K2)
)

= |ψ2⟩
N2 . (14)

The encoder V2 of Fig. 3 maps the state of K2 logical qubits
into the state of N2 physical qubits with the aid of (N2 − K2)
auxiliary qubits. Here, we employ the QURC as our inner
code. Therefore, the transformation in (14) can be simplified
as follows:

V2
(
|ψ⟩

K2
)

= |ψ2⟩
N2 , (15)

where K2 = N2. Finally, the physical qubits exhibiting the
quantum state |ψ2⟩

N2 are sent through the quantum channel.

C. QUANTUM DEPOLARIZING CHANNEL
In this treatise, we rely on the quantum depolarizing chan-
nel [40], which is a special type of quantum Pauli channels
popularly used for modelling the quantum decoherence.
Accordingly, the quantum channel is modelled by a quantum
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error operator P2, which is represented by the N2-tuple Pauli
operator (P2 ∈ PN2 ). The action of the error operator P2 on
the encoded state of physical qubits |ψ2⟩

N2 can be formulated
as

|ψ̃⟩
N2 = P2

(
|ψ2⟩

N2
)
, (16)

where the error operator P2 is characterized by the depo-
larizing probability p. More specifically, each qubit may
independently experience a bit-flip (X) error, a phase-flip (Z)
error as well as a simultaneous bit-flip and phase-flip (Y )
error. The probability that each qubit is experiencing an X , Z,
and Y error is denoted by px , pz, and py, respectively. Here,
we assume that px+pz+py = p and px = pz = py = p/3 [40].
Nonetheless, we can extend the assumption to the asymmetric
scenario of px ̸= pz ̸= py, which can be deeemed to be
more realistic based on the physical implementation [41].
However, choosing the value such as px = pz = py provides
us with the worst-case scenario for quantum Pauli channels,
because we have to provide an identical level of protection for
different types of errors without favoring only one specific
type of error, which may result in quantum coding rate or
QBER improvements. For amore detailed discourse onQTCs
designed for asymmetric quantum Pauli channels, we refer
the enthusiastic readers to [41].

D. DECODING PROCESS
The decoding of MR-QSBC-QURC utilizes the same
iterative decoding principle as the conventional QTCs.
Specifically, it can be separated into two main parts, namely
the classical part and the quantum part. As shown in Fig. 3,
the quantum part is denoted by all the components bounded
by the blue dashed lines and the classical part is denoted by
all the components bounded by the red dashed-dotted lines.
Let us first commence by describing the quantum part of the
MR-QSBC-QURC decoding.

1) QUANTUM PART
For MR-QSBC-QURC, the quantum-domain operations of
Fig. 3 are commenced by the inverse encoder V†2 that
performs the following transformation on the corrupted
quantum state of the physical qubits:

V†2 (|ψ̂⟩
N2 ) = V†2

(
P2|ψ2⟩

N2
)

= L2|ψ2⟩
K2 ⊗ S2|0⟩⊗(N2−K2).

(17)

The inverse encoder V†2 has a strong resemblance of the
quantum encoder V2 since they are constituted by an identical
quantum circuit apart from the reversed input and output
qubits. Observe in (17) that the act of the inverse encoder V†2
on the Pauli error operatorP2 is the decomposition ofP2 into
two Pauli operator components. The first component is L2,
which is the logical error operator potentially corrupting the
K2 logical qubits, and the second component is S2, which
is the error operator applied to the (N2 − K2) auxiliary
qubits. The measurement of the errorneous auxiliary qubits

S2|0⟩N2−K2 results in the classical bits s2, which are fed into
the classical part of the iterative decoder. For anyMR-QSBC-
QURC, the outer inverse encoder V†2 is constituted by the
inverse encoder of QURC, and therefore we have N2 = K2.
Consequently, the expression of (17) can be further simplified
to

V†2
(
P2|ψ2⟩

N2
)

= L2|ψ2⟩
K2 . (18)

Next, the output of the inverse encoder V†2 is passed
through the deinterleaver5−1, which performs the following
transformation:

5−1(L2|ψ2⟩
K2 ) = P1|ψ1⟩

N1 . (19)

The output of the deinterleaver is then fed into the
quantum inverse encoder V†1 , which carries out the following
transformation:

V†1 (P1|ψ1⟩
N1 ) = L1|ψ1⟩

K1 ⊗ S1|0⟩⊗(N1−K1). (20)

Similar to the action of inverse encoder V†2 , the inverse
encoder V†1 also performs a decomposition of the Pauli error
operator P1 into two components, namely the L1 and S1.
More specifically, L1 is the logical error operator potentially
corrupting the K1 logical qubits and S1 is the error operator
applied to the (N1 − K1) auxiliary qubits.
In MR-QSBC-QURC, the inverse encoder V†1 is con-

stituted by the inverse encoders of MR-QSBCs, which is
described by the conjugate transpose of the encoder V1. The
measurement of the erroneous auxiliary qubits S1|0⟩N1−K1

results in classical bits of s1, which are equivalent to the
classical syndrome values. These syndrome values are then
fed into the classical part of the iterative decoder. Finally,
based on the result obtained from the classical part of the
iterative decoding, an error recovery operatorR is applied to
the output of the inverse encoder V†1 , which can be described
as follows:

R
(
L1|ψ1⟩

K1
)

= |ψ̂1⟩
K1 . (21)

IfR = L1, we obtain |ψ̂1⟩
K1 = |ψ1⟩

K1 , which completes our
decoding process.

2) CLASSICAL PART
For MR-QSBC-QURC, the classical-domain operations of
Fig. 3 are started by obtaining the information about the
depolarizing probability p of the quantum depolarizing
channel associated with the error operator P2. We assume
that the MR-QSBC-QURC decoder has perfect knowledge
of depolarizing probability p, which is acceptable since an
online depolarizing probability estimator based on syndrome
measurements tailored for QTC has been proposed recently
in [42]. Additionally, the QBER performance of QTCs in
the range of low depolarizing probability values is rather
insensitive to the depolarizing probability estimation [43].

In summary, based on the classical syndrome s1 and on the
depolarizing probability p, the pair of classical soft-input and
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soft-output (SISO) decoders of Fig. 3 aim for determining
the most likely error coset L̂1 imposed on the logical qubits
|ψ1⟩

K1 . Formally, this can be written as a maximum a
posteriori (MAP) decoding as follows [16], [20]:

L̂1(s1, p) = arg max
L

P(L|s1, p). (22)

The depolarizing probability value p and the a priori
information pa2(L2) gleaned from the outer soft-input soft-
output (SISO) decoder of Fig. 3 are utilized by the inner SISO
decoder for calculating the extrinsic information pe2(L2).
For the first iteration, the inner SISO decoder only has the
depolarizing probability p as the input. Thus, the value of
a priori information pa2(L2) is initialized to be equiprobable.
Next, an interleaver is utilized to transform the output of
the inner SISO decoder, namely the extrinsic information
pe2(L2) to a priori information pa1(P1) as the input of the
outer SISO decoder. By combining the a priori information
pa1(P1) and the syndrome value s1, the outer SISO decoder
of Fig. 3 calculates the extrinsic information pe1(P1). The
extrinsic extrinsic information pe1(P1) is then deinterleaved
to yield the a priori information pa2(L2), which is fed into
the inner SISO decoder. This whole process is performed
iteratively until one of the following conditions is satisfied:
1) the converged mutual information is attained; 2) the
maximum affordable number of iterations l is reached. At the
final iteration, the outer SISO decoder produces L̂1, which
is the most likely error pattern, given the value of p and
s1 provided by the quantum part of Fig. 3. Finally, the
recovery operator R = L̂1 is applied to complete the error
correction.

IV. EXIT CHART ANALYSIS
A. THE FUNDAMENTALS
In the classical domain, EXIT charts are utilized for visualiz-
ing the convergence behaviour of iterative decoding schemes,
which is based on the average mutual information (MI) at
the input and the output of the constituent decoders. The
EXIT chart was originally proposed by ten Brink [23], [24]
for dispensing with the exhaustive Monte-Carlo simulations
of classical error-correction codes. However, as the research
progressed, EXIT charts have also been shown to be a very
powerful tool for designing near-capacity error-correction
codes without resorting to tedious distance spectrum analysis.
Therefore, they have been extensively exploited for designing
near-capacity classical [27], [28] as well as quantum error-
correction codes [16], [20].

The main differences between the EXIT chart used
for classical error correction codes and their quantum
counterparts have been extensively discussed in [16] and [20].
In summary, quantum stabilizer codes only infer information
about the quantum errors through syndrome measurements,
while classical error correction codes allow the measure-
ment of the input bits of the inner encoder (and output
bits of the outer encoder). As a result, the main difference
of the EXIT chart for quantum error correction codes

is that it models the a-priori information related to the
error-sequence corresponding to the input qubits of the inner
quantum encoder, instead of the input bits of the inner
encoder themselves, which is in contrast to classical
codes.

Let us revisit the iterative decoder of our MR-QSBC-
QURC depicted in Fig 3. In this scenario, the EXIT chart is
utilized for visualizing the exchange of fourMI terms, namely
the average a prioriMI IA,L2 of the inner decoder, the average
a priori MI IA,P1 of the outer decoder, the average extrinsic
MI IE,L2 of the inner decoder, and finally, the average
extrinsic MI IE,P1 of the outer decoder. The input-output
relation between IA,L2 and IE,L2 constitutes the EXIT curve
of the inner decoder, which can be simply referred to as the
inner decoder’s EXIT curve, while that of IA,P1 and IE,P1

represents the EXIT curve of the outer decoder, which can
be simply referred to as the outer decoder’s EXIT curve. For
a full discourse on how to calculate the MI terms for the
inner and outer decoders, we refer the enthusiastic readers
to [16] and [20].

A pivotal metric required for understanding EXIT-chart
aided QTCs design is the quantum domain counterpart of
the classical communication capacity, namely the quantum
hashing bound. To elaborate a little further, for a QSC
C having a sufficiently high number of physical qubits
exhibiting a quantum coding rate of rQ, there exists a
limit p∗

= p(rQ) below which it can operate yielding
an infinitesimally low QBER. Conversely, for a given
depolarizing probability p, we can find a QSC C exhibiting a
quantum coding rate of rQ ≤ CQ(p) and having a sufficiently
high number of physical qubits that is capable of yielding an
infinitesimally low QBER. This specific limit is referred to as
the quantum hashing bound, which is based on the following
definition.
Definition 3 (Quantum Hashing Bound [13], [16], [44],

[45]): Given a quantum depolarizing channel having a
depolarizing probability p, the quantum hashing bound is
defined as

CQ(p) = 1 − H (p)−p log2 3, (23)

where H (p) is the binary entropy of p defined as H (p) =

−p log2 p−(1−p) log2(1−p). Given a value of p, thenCQ(p)
is the quantum hashing bound for p. Conversely, given a value
of rQ, the value of p∗

= p(rQ) represents the quantum hashing
bound for rQ.

Hence, the goal of designing a QSC exhibiting a quantum
coding rate rQ is to ensure that it can operate as close as
possible to the limit of p∗

= p(rQ). Similarly, given the
depolarizing probability p, we may design a QSC exhibiting
rQ very close to CQ(p), yielding an infinitesimally low
QBER. For instance, a QSC having a quantum coding rate
of rQ = 1/2, the quantum hashing bound is given by
p∗

= 0.074. Conversely, for a quantum depolarizing channel
having a depolarizing probability p = 0.050, the quantum
hashing bound is given by CQ(p) = 0.634.
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B. INNER EXIT CURVES
The QTC design advocated in this treatise relies on the
concatenation of MR-QSBCs as the outer codes and a QURC
as the inner code. As the terminology suggested, a QURC
is a quantum convolutional code (QCC) having a quantum
coding rate of unity (rQ = 1). To conceive a QTC design
having a near-capacity error corection performance, it is
highly desirable that QCC encoders exhibit recursive and
non-catastrophic properties as defined in [15]. The recursive
structure of QCCs is required for ensuring the convergence of
iterative decoding to a vanishingly low QBER. Meanwhile,
the QCCs that exhibit catastrophic structure require a
doping mechanism or entanglement-assisted solution in
order to substantially benefit from iterative decoding, since
catastrophic QCCs provide zero a priori information [45],
[46]. Unfortunately, the QCCs cannot be simultaneously
recursive and non-catastrophic [47].
To circumvent these impediments of constructing a good

QCC, a non-recursive and non-catastrophic QURC can be
very carefully designed for striking this delicate compromise,
since it still can benefit from the iteration gains even if the
inner EXIT curve terminates at the (1, y) point for y <

1, as long as it only intersects with the outer EXIT curve
very close to (x, y) = (1, 1) point. Obeying these stringent
constraints, an exhaustive EXIT-chart based heuristic search
has been conducted to find a good non-recursive and non-
catastrophic QURC. The resultant memory-2 QURC has the
following seed transformation [21]4:

U = {21, 56, 5, 46, 44, 38}10. (24)

For the rest of this treatise the QURC specified in (24) will be
employed as our inner code in theMR-QSBC-QURC scheme
advocated.

Figure 4(a) portrays the inner EXIT curves of the selected
QURC in (24) for depolarizing probability values of p =

{0.08, 0.07, 0.06, 0.05}. We also depict the outer EXIT curve
of the half-rate QSBC given in Fig. 1(a). For a half-rate
QSC (rQ = 1/2), the quantum hashing bound is given by
p∗

= 0.074 based on (23). Therefore, the p values used for
generating the inner EXIT curves are selected around p∗.
In Fig. 4(a), we can observe that for p = 0.07, the inner
and outer EXIT curves intersect very early. As we decrease
the depolarizing probability to p = 0.06, a marginally open
tunnel between the inner and outer EXIT curves can be seen,
which means that at this p value the concatenation between
half-rate QSBCs and a QURC will start to glean iterative
decoding gains. However, we can also see in the inset of
Fig. 4(a) that the inner and outer EXIT curves intersect before
they reach the (x, y) = (1, 1) point, albeit it is very close.
As the depolarizing probability value decreases (p = 0.05),
the inner EXIT curve shifts higher and the intersection point
is getting closer to the (x, y) = (1, 1) point. Consequently,

4A quantum encoder V can be represented using a binary matrix V and
seed transformation U is used for simplifying the representation of binary
matrix V . A complete tutorial of transforming a quantum encoder V to its
seed transformation U can be found in [22].

based on the observation with regard to the inner and outer
EXIT curves in Fig 4(a), we may predict the QBER curve
obtained by the Monte-Carlo simulations: a waterfall-like
QBER curve is expected for the p values close to p∗, (0.05 ≤

p ≤ 0.6) followed by an error floor, as the p value decreases
(p < 0.05). In fact, this simple concatenation of half-rate
QSBCs and a QURC has been demonstrated to provide
an excellent error correction performance near the quantum
hashing bound in [22], as predicted accurately by the EXIT
curves presented in Fig. 4(a).

C. OUTER EXIT CURVES
In contrast to the inner decoder’s EXIT curve, the outer
decoder’s EXIT curve is independent of the depolarizing
probability value of the quantum depolarizing channel, since
the a priori information obtained by the outer code is
provided by the inner code, not by the quantum channel.
Therefore, the outer EXIT curve of the QSBCs only
depends on its quantum coding rate. Based on the quantum
encoders of MR-QSBCs illustrated in Fig. 1 and 2, the seed
transformations of the MR-QSBCs are given in Table 3.
Figure 4(b) portrays the outer EXIT curves of the proposed
MR-QSBCs exhibiting the quantum coding rates of rQ =

{3/4, 2/3, 1/2, 1/3, 1/4}. We can observe from Fig. 4(b) that
as the quantum coding rate increases, the outer EXIT curve
shifts higher. Consequently, the inner code has to operate
at a lower depolarizing probability to appropriately attain a
marginally open tunnel between the inner and outer EXIT
curves, which is a trend we also learned from Fig. 4(a).
Similarly, we can also infer approximately the p values
required by the QURC as the inner code based on the
quantum hashing bound p∗ to produce a marginally open
tunnel. Explicitly, given the quantum coding rate of the
QSBCs rQ = {3/4, 2/3, 1/2, 1/3, 1/4}, we obtain p∗

=

{0.116, 0.094, 0.074, 0.056, 0.039}.
We will utilize the results in Fig. 4(b) for optimizing the

MR-QSBCs as the outer codes of the proposed MR-QSBC-
QURC scheme in the following subsection. Each of the
MR-QSBCs having a different quantum coding rate will serve
as a subcomponent code. It is important to note that although
we only consider five subcomponent codes in this treatise,
the range of MR-QSBC quantum coding rates can be readily
extended to the higher as well as lower quantum coding rates
to increase the number of subcomponent codes by directly
following the discussions of Section II.

D. EXIT-CHART AIDED DESIGN
The primary objective of the EXIT-chart aided QTC design is
to obtain the best possible inner and outer code combination
by evaluating their inner and outer EXIT curves. Assuming
we have many copies of theMR-QSBCs encoders, our design
objective is to find the optimal configuration of the outer
codes constituted by MR-QSBCs, which provides the best
match to the given inner code – in this case to the QURC.
The optimization is performed by utilizing the EXIT-chart
based heuristic search by finding the optimal outer EXIT
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FIGURE 4. (a) The inner EXIT curves for non-recursive and non-catastrophic QURC and the outer EXIT curve of a half-rate QSBC. The quantum
hashing bound is p∗ = 0.074. (b) Outer EXIT curves for MR-QSBCs.

TABLE 3. The seed transformation U associated with the subcomponent MR-QSBCs exhibiting various quantum coding rates rq.

curve having a marginally open tunnel with regard to the
inner EXIT curve at a depolarizing probability close to the
quantum hashing bound of the quantum coding rate required.
More specifically, due to the inherent flexibility of our
proposed MR-QSBCs encoders, we may design a QTC that
exploits not only the quantum encoder that exhibits a single
quantum coding rate. More precisely, we may configure
the MR-QSBCs as the outer codes so that they encode a
specifically designed fraction of the K logical qubits. The
fraction of the logical qubits is determined by the weighting
coefficient satisfying the following constraints [25], [26]:

rQ =

Q∑
q=1

rqwq, s.t.
∑
i

wi = 1, (25)

where rQ is the target of quantum coding rate, Q is the
number of subcomponent codes, rq is the subcomponent
quantum coding rate, and wq is the weighting coefficient
of the subcomponent code subjected to the normalization.
Since we employ multiple-rate QSBCs as the outer codes
of our proposed MR-QSBC-QURC scheme, we have rq =

{1/4, 1/3, 1/2, 2/3, 3/4}. Therefore, our design objective

can be reformulated as that of finding the weighting
coefficient wq to produce the optimal MR-QSBC-QURC
design.

Let us now formally define the inner and outer EXIT curves
presented in Subsection IV-B and IV-C. Firstly, the inner
EXIT curve can be formally described as a transfer function
T1 mapping the average MI IA,L2 of the a priori information
to the average MI IE,L2 of the extrinsic information by taking
into account the depolarizing probability p as follows:

IE,L2 = T1[IA,L2 , p]. (26)

Secondly, similar to the inner EXIT curve, the outer EXIT
curve can be formally described as a transfer function
T2 mapping the averageMI IAP1 of the a priori information to
the average MI IE,P1 of the extrinsic information as follows:

IE,P1 = T2[IA,P1 ]. (27)

Notice that in Fig. 4(b), we inverted the plot of the outer EXIT
curves, since the extrinsic information provided by the outer
code is utilized as the a priori information of the inner code.
Therefore, the outer EXIT curves portrayed in Fig. 4(b) are
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more accurately described as

IA,P1 = T−1
2 [IE,P1 ]. (28)

Let Q be the number of MR-QSBCs subcomponent codes.
In this treatise, we have Q = 5, and T−1

2,q is the outer EXIT
curve of the q-th subcomponent code for q = {1, . . . ,Q}.
Therefore, the resultant outer EXIT curve IE,Q,P1 of the
MR-QSBCs after fractional encoding using the weighting
coefficients of (25) can be determined as

IE,Q,P1 = T−1
2,Q[IA,P1 ] =

Q∑
q=1

wqT
−1
2,q [IA,P1 ]. (29)

To find the optimal weighting coefficient for the
MR-QSBCs subcomponent codes, we have to perform a
curve matching optimization by minimizing area represented
by the the square of errors between the inner and outer
EXIT curves. For simplifying the notation, let T1[IA,L2 , p] =

T1[j, p], T
−1
2,Q[IA,P1 ] = T−1

2 [j], and T−1
2,q [IA,P1 ] = T−1

2,q [j]
for j = {1, . . . , J}, where J is the number of sample points
displayed in our inner and outer EXIT curves. Therefore, the
error can be directly calculated as

e[j] = T1[j, p] − T−1
2 [j], (30)

where we have p = p∗
− ϵ, given that ϵ is chosen to be

arbitrarily small. Therefore, the corresponding matrix-based
representation can be written as

e = a− Bw, (31)

where we have

e =


e[1]
e[2]
...

e[J ]

 , a =


T1[1, p]
T1[2, p]

...

T1[J , p]

 , w =


w1
w2
...

wQ

 ,

B =


T−1
2,1 [1] T

−1
2,2 [1] · · · T−1

2,Q[1]
T−1
2,1 [2] T

−1
2,2 [2] · · · T−1

2,Q[2]
...

...
. . .

...

T−1
2,1 [J ] T

−1
2,2 [J ] · · · T−1

2,Q[J ]

 . (32)

Since we do not want the inner and outer EXIT curves
to cross-over far from the (1, 1) point, we have to impose
an additional constraint that guarantees a marginally open
tunnel between the inner and outer EXIT curves, which can
be explicitly expressed as

e[j] > 0 for j = {1, . . . , J}. (33)

Thus, the cost function used for finding the weighting
coefficients w is given by

E(w) =

J∑
j=1

e[j]2 = eT e. (34)

FIGURE 5. Decoding trajectory of MR-QSBC-QURC at the depolarizing
probability of p = 0.05. The inner code is a non-recursive and
non-catastrophic QURC and the outer code is the optimized MR-QSBCs
having rQ = 0.5. The quantum hashing bound is p∗ = 0.074.

Finally, the overall EXIT-chart based curvematching required
for finding the optimal weighting coefficient ŵ can be
summarized as

ŵ = arg min
w

E(w), (35)

which is subject to (25) and (33). The unconstrained
optimization of (35) can be iteratively solved using the
gradient descent method, where we have

∂E(w)
∂w

= 2e. (36)

The solutions are then reevaluated according to the con-
straints (25) and (33). For a full discourse on the
EXIT-chart based optimization algorithm of finding the opti-
mal weighting coefficient ŵ, we refer the enthusiastic readers
to [25] and [26].

We now present the results of the aforementioned
optimization algorithm after optimizing the MR-QSBCs as
the outer codes for the proposed MR-QSBC-QURC. Figure 5
depicts the iterative decoding trajectory of our MR-QSBC-
QURC, where the inner code is constituted by the QURC
of (24) and the outer code is constituted by the optimized
MR-QSBCs having rQ = 0.5. Explicitly, by implementing
the optimization algorithm we just described, we found that
the optimal weighting coefficient ŵ of half-rate MR-QSBCs
matching the inner EXIT curve of the QURC at p = 0.05 is
given by ŵ = {0, 0.60, 0, 0, 0, 40}. It can be immediately
verified that the constraints in (25) and (33) are satisfied. The
decoding trajectory represents the iterative MI improvements
based on the information exchange between the inner and
outer decoders, which is illustrated by the stair-case-like
curve in Fig. 5. We can observe a marginally open tunnel
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between the inner and outer EXIT curves that guarantees
the convergence of the iterative decoding to vanishingly
low QBER. In the inset of Fig. 5, the decoding trajectory
terminates before reaching the (x, y) = (1, 1) point due to
the non-recursive and non-catastrophic nature of the QURC
encoder. Therefore, we expect to witness an error-floor in its
QBER curve.

To demonstrate that the proposed MR-QSBC-QURC
scheme can be designed to cater for a wide range of
quantum coding rate requirements, we have also performed
EXIT-chart aided optimization for our MR-QSBCs covering
quantum coding rates of rQ = {0.3, 0.4, 0.6, 0.7} and
the results are presented in Fig. 6. Similarly, each of the
MR-QSBCs have been optimized to match the inner EXIT
curve at a depolarizing probability p close the their respective
quantum hashing bounds p∗. The resultant optimal weighting
coefficient ŵ obtained for all the target quantum coding rates
evaluated are summarized in Table 4. We can observe in
Fig. 6 that all the inner and outer EXIT curves of the MR-
QSBC-QURC designed provide a marginally open tunnel for
the p values close the quantum hashing bound p∗ and the
decoding trajectories terminate really close to the (x, y) =

(1, 1) point. We note that the decoding trajectory terminates
earlier for MR-QSBCs exhibiting lower rQ. Consequently,
we predict that the QBER curve ofMR-QSBC-QURC having
rQ = 0.3 will have a higher error floor than the MR-
QSBC-QURC having rQ = 0.7. We have to reiterate
once again that the proposed MR-QSBC-QURC scheme
may be designed and be optimized for arbitrary values
of 0 < rQ < 1.

V. MULTIPLE-RATE QUANTUM TURBO SHORT-BLOCK
CODES
This section is dedicated to validating our EXIT-chart
aided design presented in Section IV. We evaluate the
performance of the proposed MR-QSBC-QURC scheme in
terms of its QBER, their distance to the quantum hashing
bound, and finally, the achievable goodput through Monte-
Carlo simulations. For this purpose, we consider the MR-
QSBC-QURC having the target quantum coding rates of
rQ = {0.3, 0.4, 0.5, 0.6, 0.7}, with their quantum hashing
bounds given by p∗

= {0.116, 0.094, 0.074, 0.056, 0.039}.
To produce simulation results having significant appeal for
near-future implementation, we consider a moderate number
of logical qubits, namely K = {500, 1000, 2000} for all the
schemes considered during the simulations.

A. QBER
In this treatise, we define the qubit error ratio (QBER)
as the ratio between the number errors imposed on the
logical qubits |ψ̂1⟩

K1 after applying the recovery R at the
end of the decoding of MR-QSBC-QURC to the total number
of logical qubits simulated. First, we compare the QBER of
the proposed half-rate MR-QSBC-QURC scheme to that of
half-rate QTCs using QIrCCs as the outer codes and a QURC
as the inner code, which we refer to as QIrCC-QURC. Similar

TABLE 4. The result of subcomponent codes optimal weighting
coefficient ŵi obtained from EXIT-chart based exhaustive curve matching
for various target of quantum coding rates rQ. The subcomponent
quantum coding rates are rq = {1/4, 1/3, 1/2, 2/3, 3/4}.

to our proposed scheme, the outer code of QIrCC-QURC is
also optimized using the EXIT-chart based heuristic search
presented in Section IV. The main difference is that the
outer codes of the QIrCC-QURC are composed by QCC
subcomponent codes. More specifically, the seed transforma-
tion U of the QCC subcomponent codes utilized as the outer
codes is described in Table 5. The EXIT-chart based optimal
weighting coefficients of half-rate QIrCC-QURC scheme are
given by ŵ = {0.1316, 0.1869, 0.2962, 0.3852, 0}. The outer
codes of QIrCC-QURC exhibit a stronger error-correction
capability than the outer codes of MR-QSBC-QURC, which
are constituted by MR-QSBC that exhibit a minimum
distance of d = 2. Additionally, the QIrCC-QURC also
represents the best-performing half-rate QCC-based QTC
in the open literature. However, as we have elaborated on
earlier, our proposed MR-QSBC-QURC scheme has the
advantage that it can be designed to accommodate arbitrary
quantum coding rates using only a single quantum encoder.
By contrast, puncturing QCCsmay result in QCCs that do not
satisfy the symplectic criterion.

Figure 7 depicts the QBER comparison between the
half-rate MR-QSBC-QURC and half-rate QIrCC-QURC
schemes. The quantum hashing bound of half-rate QSCs is
given by p∗

= 0.074, marked by the red dashed line. The
maximal number of iterations invoked for both schemes is
l = 16. The QBER curves of the QIrCC-QURC scheme
are represented by the black dashed lines, while those of
the MR-QSBC-QURC scheme are depicted using blue solid
lines.

We observe from Fig. 7 that both schemes provide QBER
improvements as the number of physical qubits increases,
which is the expected trend based on the pertinent quantum
coding trade-offs [31]. Furthermore, as we have predicted
using the EXIT chart analysis of Section IV, that the QBER
waterfall region of MR-QSBC-QURC can be seen in the
region of 0.04 < p < 0.06. However, as the depolarizing
probability decreases, an error floor emerges, which is
expected, since we have witnessed in our EXIT chart analysis
that the decoding trajectory terminates before reaching the
(x, y) = (1, 1) point due the the crossover between the inner
and outer EXIT curves. Having said that, the waterfall region
of the QBER curve appears near to the quantum hashing
bound.

Compared to the QIrCC-QURC, the QBER curve of the
MR-QSBC-QURC intersects with the uncoded QBER curve
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FIGURE 6. The decoding trajectories of MR-QSBC-QURC exhibiting various quantum coding rates.

TABLE 5. The seed transformation U associated with QCC subcomponent codes exhibiting various quantum coding rates rq for constructing the
QIrCC-QURC of [21]. All of the QCCs exhibiting a memory of m = 3.

at a higher depolarizing probability value in Fig. 7. For
instance, let us observe the scenario of K = 2000. In Fig. 7,
we locate the cross-over point between the uncoded QBER
curve and the QBER curve of the MR-QSBC-QURC at p =

0.058. Meanwhile, the QBER curve of the QIrCC-QURCC

intersects at p = 0.043. Thus, the proposed scheme provides
a higher coding gain when we consider a scenario having the
requirement of QBER ≤ uncoded QBER.

Let us now consider in Fig. 3 a case where the requirement
is QBER ≤ 10−3. We obtain the maximum tolerable
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TABLE 6. Performance comparison of half-rate QIrCC-QURC to half-rate MR-QSBC-QURC for logical qubits of k = {500, 1000, 2000}. The performance is
described using the maximum tolerable depolarizing probability p given various requirements, below which the code improves the QBER. The quantum
hashing bound is p∗ = 0.074.

FIGURE 7. The QBER comparison between half-rate QIrCC-QURC and
MR-QSBC-QURC.

depolarizing probability of p = 0.044, below which the
MR-QSBC-QURC satisfies the QBER requirement, while
for the QIrCC-QURC, we find the maximum tolerable
depolarizing probability of p = 0.037. In this scenario, the
MR-QSBC-QURC advocated still outperforms the QIrCC-
QURC. However, when we consider the case where the
requirement is QBER ≤ 10−4, we find that the depolarizing
probability threshold must be lower for MR-QSBC-QURC
than for QIrCC-QURC to avoid the emergence of an error
floor. More specifically, for the MR-QSBC-QURC, we have
p = 0.027, while for QIrCC-QURC, we have p =

0.035 in Fig. 3. Since the outer code of the QIrCC-QURC
is based on an ensemble of QCC subcomponent codes
having stronger error correction capabilities than the MR-
QSBCs, the QIrCC-QURC tends to further degrade the
QBER by imposing additional errors when it tries to perform
error correction beyond its capability, instead of correcting
them. However, once the QIrCC-QURC operates within its
convergence region, it starts correcting more errors than
the MR-QSBC-QURC. Therefore, the QBER curve of the
QIrCC-QURC intersects with the uncodedQBER at a slightly
higher QBER value than the MR-QSBC-QURC, but the
former has a steeper QBER curve and lower error floor.
Thus, our advocated scheme performs well at relatively high
quantum depolarizing probabilities, providing reasonably

TABLE 7. The maximum tolerable depolarizing probability p given
various QBER requirements and different numbers of logical qubits K ,
below which the code improves the QBER of MR-QSBC-QURC.

low QBER. However, once the MR-QSBC-QURC operates
at lower depolarizing probabilities within its convergence
region, we may switch the MR-QSBC-QURC to a higher
quantum coding rate for meeting the QBER requirement. The
summary of our QBER comparisons between QIrCC-QURC
and MR-QSBC-QURC is provided in Table 6.
To provide a complete picture of the MR-QSBC-QURC

performance, Fig. 8 portrays the QBER of the MR-QSBC-
QURC having various quantum coding rates. Recall that all
the outer codes of MR-QSBC-QURC can be represented
by a single quantum encoder, along with the optimal
weighting coefficient ŵ required for performing fractional
encoding. In Fig. 8, we indicate the quantum hashing
bound for each quantum coding rate with red dashed line.
Since the outer codes have been specifically designed using
EXIT-chart based optimization, as expected, the waterfall
region of their QBER curves appears near to their respective
quantum hashing bound p∗. Additionally, the error floor
of the MR-QSBC-QURC having a higher quantum coding
rate is lower than that of their counterparts having lower
quantum coding rate, since during the EXIT chart analysis
the inner and outer EXIT curves of the higher quantum
coding rate intersects closer to the (x, y) = (1, 1) point.
However, for a high quantum coding rate, the error floor
is low enough to become invisible, since it would require
excessive time to capture the qubit errors by simulations
involving limited numbers of physical qubits. We summarize
the maximum tolerable depolarizing probability for meeting
the requirement of QBER ≤ uncoded QBER as well as
QBER ≤ 10−3 in Table 7.

It is worth emphasizing that the cost of achieving a lower
QBER is an increase in the depth of the quantum encoder
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FIGURE 8. The QBER performance of MR-QSBC-QURC exhibiting various quantum coding rates rQ. The red dashed line represents the
quantum hashing bound of the associated quantum coding rate rQ.

and quantum inverse encoder, as well as an increase in the
complexity of the classical decoder. Explicitly, the QBER
performance of MR-QSBC-QURC exhibiting different quan-
tum coding rates was evaluated while keeping both the
number of logical qubits (K ) and the number of decoding
iterations fixed (l = 16). Therefore, the main factor affecting
the encoding and decoding complexity of the MR-QSBC-
QURC is the number of physical qubits. More specifically,
for QSBCs used as outer codes, the depth of the quantum
encoder is independent of the number of physical qubits (N ).
By contrast, for the QURC used as inner code - which belongs
to the family of quantum convolutional codes - the depth of
the quantum encoder is linearly proportional to the number
of auxiliary qubits (N − K ). Since the quantum inverse
encoder is the reversed version of the quantum encoder, its
depth is also identical to that of the quantum encoder. On the
other hand, the complexity of the classical decoder is linearly
proportional to the length of the classical syndrome vector
constituted by the (N − K ) classical bits inferred from the
measurements of the erroneous auxiliary qubits. For example,

for a quantum coding rate of rQ = 1/2 and K = 1000 logical
qubits the length of the syndrome vector is (N − K ) =

1000 bits. By comparison, for an MR-QSBC-QURC having
the same quantum coding rate of rQ = 1/2, but encoding
K = 2000 logical qubits, the length of the syndrome vector
is (N − K ) = 2000 bits. Similarly, when fixing the number
of logical qubits to K = 1000, but reducing the quantum
coding rate to rQ = 1/4, the length of the syndrome
vector becomes (N − K ) = 3000 bits. In both examples,
we observe that a QBER performance improvement is
attained by increasing the complexity of the classical
decoder.

B. DISTANCE FROM THE QUANTUM HASHING BOUND
It is clear from the results presented in Fig. 8 that by reducing
the quantum coding rate of MR-QSBC-QURC, we are
capable of correcting the errors imposed by the quantum
depolarizing channels having higher depolarizing probability.
We summarize the results of Fig. 8 in Fig. 9(a) by considering
the QBER results for K = 2000. Indeed, the results follow
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FIGURE 9. The QBER of the MR-QSBC-QURCs exhibiting various quantum coding rates rQ = {0.3, 0.4, 0.5, 0.6, 0.7} versus: (a) depolarizing
probability p; (b) the distances to the quantum hashing bound D. The MR-QSBC-QURCs are used for protecting K = 2000 logical qubits.

the expected trends – the lower the quantum coding rate,
the higher its tolerable depolarizing probability. However,
in contrast to classical communication systems, we do not
have a quantitative metric that directly takes into account the
quantum coding rate differences of the QSCs having different
quantum coding rates. Since the QBER is plotted versus the
depolarizing probability rather than the classical energy per
bit to noise power spectral density ratio (Eb/N0), having
an appropriate normalization metric may be beneficial for a
fair comparison. Explicitly, it is essential to provide such a
normalization, since the most intuitive step to be taken for
improving the QBER of any QSC is to reduce their quantum
coding rate, which results in encoding fewer logical qubits
and/or incorporating more auxiliary qubits. While indeed this
improves the QBER, as demonstrated in Fig. 8, it reduces the
effective throughput. Therefore, in this treatise, we introduce
a pair of additional metrics for transforming the QBER of
Fig. 8 by accounting for the different quantum coding rates
rQ, namely, the distance from the quantum hashing bound and
the goodput.
Definition 4 (Distance From the Quantum Hashing

Bound [22], [34]): Given a quantum coding rate rQ, p∗

represents the quantum hashing bound for rQ. Therefore,
the distance D from the quantum hashing bound is defined
by

D = p− p∗, (37)

where p is the depolarizing probability.
Figure 9(b) explicitly portrays the appropriately shifted

version of the QBER curves in Fig. 9(a) according to each of
the quantum hashing bounds p∗. More precisely, the quantum
hashing bound of QSCs having rQ = {0.3, 0.4, 0.5, 0.6, 0.7}
is given by p∗

= {0.116, 0.094, 0.074, 0.056, 0.039}.
If we consider QBER = 10−3, we attain the distances
of D = {0.042, 0.029, 0.030, 0.024, 0.017} from the
quantum hashing bound. It is important to highlight that

these near-hashing-bound results are achieved for protecting
K = 2000 logical qubits using practical non-zero quantum
coding rates.

A closer inspection of Fig. 8 reveals that as we reduce the
quantum coding rate rQ, the QBER curve shifts further away
from the quantum hashing bound. However, we also have to
point out that at higher quantum coding rates, for instance
st rQ = 0.7, the quantum hashing bound is as low as at
p∗

= 0.039, which only results in a modest shift of QBER
curve. Consequently, the aforementioned absolute distance
D from the quantum hashing bound may still require further
normalization by the quantum hashing bound p∗ for defining
the normalized distance from it.
Definition 5 (Normalized Distance From the Hashing

Bound): Given a quantum coding rate rQ, p∗ represents
the quantum hashing bound and D is the absolute dis-
tance from the quantum hashing bound. The normalized
distance R from the quantum hashing bound is then defined
by

R =
D
p∗
. (38)

Using (38), we obtain the normalized distance from
the quantum hashing bound for the proposed MR-QSBC-
QURC scheme having rQ = {0.3, 0.4, 0.5, 0.6, 0.7} as
follows: R = {0.362, 0.309, 0.405, 0.429, 0.436}. Now,
we observe that the higher quantum coding rates exhibit a
slightly larger normalized distance from the quantum hashing
bound. Since we have individually optimized theMR-QSBC-
QURC for different quantum coding rates, the resultant
normalized distances from the quantum hashing bound do
not exhibit large variations. We argue that the absolute
and the normalized distances from the quantum hashing
bound provide a balanced view when it comes to comparing
the QBER of QSCs having different quantum coding
rates.
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FIGURE 10. The achievable goodput for differenet QBER requirements: (a) QBER ≤ Uncoded QBER; (b) QBER ≤ 10−3. The number of logical
qubits K = 2000. The switching points are based on the results summarized in Table 7.

C. GOODPUT
The final metric that we consider for comparing the QBER
results of Fig. 8 is goodput, which is based on the following
definition.
Definition 6 (Goodput [22]): Goodput represents the

effective number of logical qubits obtained after error
correction, which is defined as the fraction of error-free
logical qubits normalized by the quantum coding rate rQ
formulated as follows:

G = rQ(1 − QBER). (39)

We portray the goodput ofMR-QSBC-QURC in Fig. 10 for
two different QBER requirements. Explicitly, in Fig. 10(a),
we show the achievable goodput for QBER ≤ uncoded
QBER, while in Fig. 10(b), for QBER ≤ 10−3. The
MR-QSBC-QURC scheme may commence its operation
at a lower quantum coding rate for coping with a high
depolarizing probability, but once the QBER requirement
is met it may switch to higher quantum coding rates for
increasing the goodput. For instance, let us observe Fig. 10(a),
where the requirement is QBER ≤ uncoded QBER. Assume
that we initially operate at p = 0.06, implying that the
MR-QSBC-QURC runs at rQ = 0.4. As the quality of
the quantum channel improves, the depolarizing probability
may reduce to p = 0.05. Hence, the MR-QSBC-QURC
switches its quantum coding rate to rQ = 0.5, since we
can still satisfy the QBER requirement, while yielding a
higher goodput. Similarly, consider Fig. 10(b), where the
requirement is QBER ≤ 10−3. The MR-QSBC-QURC may
start operating at rQ = 0.4 when p = 0.05. Then, it may
switch to rQ = 0.5 once the quantum channel improves
to p = 0.04 for meeting the QBER requirement, while
increasing the goodput. These switching points indicated in
Fig. 10 are based on the results summarized in Table 7.

In Fig. 10, we also include the quantum hashing bound
as our benchmark. This is because goodput and quantum
hashing bound are intimately linked. Explicitly, quantum
hashing bound may be viewed as the maximum achievable
goodput, when the mandatory requirement is QBER = 0. Let
us now imagine that we have infinitely many quantum coding
rates to cover all the quantum coding rates of 0 < rQ < 1,
which is actually plausible for our MR-QSBC-QURC. In that
case, the resultant goodput curve will be a perfectly smooth
line near-parallel to the quantum hashing bound. Finally, the
distance of goodput curve from the quantum hashing bound
depends on the codeword length, the higher it is the lower
its distance from the quantum hashing bound. Therefore,
we suggest that this characteristic curve should be used more
prevalently as a fair metric of rate-compatible QSC designs
in the future.
Remark 4: The future development of rate-compatible

QSCs should aim for achieving the highest goodput possible
given the specific QBER requirement and codeword length.
Additionally, for attaining a lower low QBER, the achievable
goodput is expected to be close from the quantum hashing
bound.

D. COMPARISON WITH STATE-OF-THE-ART
Most of the quantum stabilizer codes found in the literature
suffer from low quantum coding rates. Moreover, it has
proven to be challenging to find a family of quantum
stabilizer codes that offers the same level of flexibility as
our proposed MR-QSBC-QURC. Recent advancements in
the field have introduced two novel QLDPC codes that exhibit
relatively high quantum coding rates: multiple-rate (MR)
QLDPC codes [48] and spatially-coupledQLDPC codes [49].
In [48], a family of QLDPC codes is proposed, which

utilizes a single stabilizer measurement circuit across a wide
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range of quantum coding rates. This is in contrast to our
proposedMR-QSBC-QURC scheme, which employs a single
encoder and inverse decoder circuit. The multiple-rate nature
of the proposed QLDPC codes is achieved by utilizing
row-circulant matrices within the parity-check matrix. Some
of the resulting QLDPC codes achieve quantum coding rates
of rQ ≈ 0.75 and rQ ≈ 0.87, with a convergence region p ≈

0.0185 and p ≈ 0.0128, respectively. The smallest reported
number of logical qubits in [48] is K ≈ 2200. In comparison,
our MR-QSBC-QURC scheme with a quantum coding rate
of rQ = 0.7 and K = 2000 achieves a convergence region of
p = 0.0250.

Inspired by the powerful classical spatially-coupled (SC)
LDPC codes, the quantum version of SC-LDPC codes,
known as spatially-coupled QLDPC codes are proposed
in [49]. This novel QLDPC codes family demonstrates
an impressive error-correction performance, achieving a
convergence region around p = 0.065 for a quantum coding
rate of rQ ≈ 0.34 with K = 2500 logical qubits and
a convergence region around p = 0.080 for a quantum
coding rate of rQ ≈ 0.28 with K = 1600 logical
qubits. This remarkable performance is largely attributed
to an effective algorithm that eliminates all four-cycle
and six-cycle configurations in the parity-check matrix.
As a comparison, our MR-QSBC-QURC scheme achieves a
convergence region of p = 0.094 for a quantum coding rate
of rQ = 0.3 with K = 2000 logical qubits.

E. PRACTICAL ASPECTS
We can see that the MR-QSBC-QURC has immediate poten-
tial for applications in quantum-secure direct classical [50],
[51] and quantum communications [52]. As quantum com-
munication channels exhibit time-varying characteristics,
it becomes essential to have a set of quantum error-correction
codes that can efficiently adapt to this dynamic nature.
To achieve this, an accurate estimation of the quantum
depolarizing channels is crucial in assigning the appropriate
quantum coding rate based on the channel quality. One
approach for assessing the quality of quantum communica-
tion channels involves using known pilot qubits or pre-shared
entanglement to estimate the depolarizing probability. How-
ever, this method assumes that the quantum depolarizing
channel remains static or quasi-static, implying that the
depolarizing probability does not vary significantly over
time. An alternative approach is to employ syndrome-based
depolarizing probability estimation, which draws on classical
principles [42], [43].

The potential application of MR-QSBC-QURC in the field
of quantum computation is highly intriguing. One notable
advantage of multiple-rate quantum turbo codes, compared to
other quantum stabilizer codes, is their ability to offer flexible
quantum coding rates and accommodate varying numbers of
logical qubits, all while ensuring a guaranteed convergence
region. However, more research is needed to investigate the
feasibility and implementation of error-corrected quantum
gates using quantum turbo codes.

VI. CONCLUSION
We have conceived near-hashing-bound single-encoder-
based multiple-rate MR-QSBC-QURC using EXIT-chart
based heuristic search. The main advantage of our pro-
posed design is that it can be tailored for any arbitrary
quantum coding rate rQ, which is achieved by perform-
ing fractional encoding of the MR-QSBCs as the outer
codes. This is plausible in the light of our experience
with classical error-correction codes design. Despite the
low-complexity outer codes, our Monte-Carlo simulation
results show that the MR-QSBC-QURC advocated performs
near to the quantum hashing bound at QBER = 10−3

for the specific quantum coding rates considered. More
precisely, our MR-QSBC-QURC is capable of operating at
the distance ofD = {0.042, 0.029, 0.030, 0.024, 0.017} from
the quantum hashing bound for quantum coding rates of
rQ = {0.3, 0.4, 0.5, 0.6, 0.7}. Despite its low-complexity
code constructions, the advocatedMR-QSBC-QURC scheme
advocated offers a competitive QBER performance even
against the best-performing QCC-based QTC in the litera-
ture. We believe our solutions will open the pathway for
the future development of rate-compatible QSCs capable
of adapting to diverse QBER requirements and quantum
channel qualities without relying on different quantum
encoders.

A. DESIGN GUIDELINES
Based on the discussions throughout this treatise, we provide
the following design guidelines for MR-QSBC-QURC capa-
ble of operating at various quantum coding rates in line with
different quantum channel qualities.

• Determine the MR-QSBC-QURC parameters based on
the uncoded QBER, including the expected quantum
coding rates rQ for the given depolarizing probabilities p
or vice versa, using the quantum hashing bound of (23).

• Determine the number of MR-QSBC subcomponent
codes according to the desired rQ. In this treatise,
we consider only five MR-QSBC subcomponent codes.
However, the number of subcomponent codes can be
readily extended to both higher and lower quantum
coding rates by following Section II.

• For each quantum coding rate, optimize the outer
code constituted by MR-QSBCs by choosing the
optimal weighting coefficient using the EXIT-chart
based heuristic search. The optimization objective is
to obtain a marginally open tunnel at the associated
depolarizing probability value p between the inner
and the outer decoder’s EXIT curves, as described in
Section IV.

• Perform Monte-Carlo simulations for each MR-QSBC-
QURC having different quantum coding rate to deter-
mine the switching points for meeting the QBER
requirements. These switching points may be utilized
for quantifying the achievable goodput of the MR-
QSBC-QURC scheme according to the specific QBER
requirements, as exemplified in Section V.
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B. FUTURE RESEARCH
The development of quantum error-correction codes that pos-
sess a small number of physical qubits, high quantum coding
rates, and demonstrate robust error correction performance
has posed a significant challenge in the field of quantum
information. However, recent progress in the field has
brought forth notable advancements, particularly in the area
of decoding techniques adapted from classical noise-guessing
decoding for the quantum domain [53], [54]. One such
approach, known as quantum-aided GRAND, has emerged
as a versatile and promising method that exhibits universality
across various quantum stabilizer decoding paradigms. This
innovative decoding technique has demonstrated exceptional
error-correction performance, particularly for quantum stabi-
lizer codes with a modest number of physical qubits. Given
these exciting developments, it becomes highly intriguing to
explore the potential of applying the quantum-aided GRAND
approach to decode MR-QSBC-QURC codes.
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