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ABSTRACT This paper presents a novel Deep Deterministic Policy Gradient (DDPG) algorithm with
extended look-ahead approach for longitudinal and lateral control of vehicle platooning. The DDPG
algorithm is adapted due to its ability to fit nonlinear system and to handle continuous control environment.
Moreover, the dynamic input inversion is introduced to reduce domain of the action space from DDPG
output. The existing look-ahead approach is considered as a cost-effective approach since it uses the available
information from on-board sensors and is effective against the loss of lane markings. However, the approach
is known to suffer from cutting-corner phenomenon. To address cutting-corners, we introduce the extended
look-ahead approach and derive the true-local error states using the already available information from lidar
and V2V communication. The robustness and performance of DDPG-based extended look-ahead controller
is investigated by means of simulations and validated through experiments on a Donkey Car platform. The
simulations and experiments with Donkey Car show that the DDPG-based extended look-ahead algorithm
can provide an efficient control strategy for longitudinal and lateral maneuvers without the requirement of
path information.

INDEX TERMS Deep deterministic policy gradient (DDPG), reinforcement learning control, longitudinal
and lateral control, vehicle platooning, vehicle following.

I. INTRODUCTION
The rapid development of automotive industries and the needs
of mobility nowadays brings benefits and also simultaneously
brings challenges and problems to the transportation. The
increase of vehicles that is not balanced with the increase
of road capacity has led to traffic accidents, congestion,
and environmental problem. To cope with this problem,
one of the solution proposed is to increase the capacity of
existing roads and infrastructure. However, the development
of roads and infrastructure is considered costly, arduous, and
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time-inefficient. Thus, an alternative solution of increasing
the traffic flow is proposed. One way to increase the traffic
flow is by reducing the distance between vehicles bymeans of
vehicle platooning, which can be defined as grouping several
vehicles that formed a compact formation and drive at a
small inter-vehicle distance. An autonomous vehicle is then
developed to enables a vehicle to drive at a closer inter-vehicle
distance than a human driver could. Adaptive Cruise Control
(ACC), as a part of Advanced Driver Assistance System
(ADAS), is first invented as a comfort system that enables
a vehicle to automatically regulate its speed to maintain a
safe distance from its preceding vehicle. ACC system in a
vehicle utilizes radar, laser, or a camera to detect the vehicle
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ahead, allowing it to brake when the inter-vehicle distance is
too near, or accelerate when the inter-vehicle distance is too
far. ACC technology is regarded as one of the key component
of autonomous or intelligent vehicles. Along its development,
the functionality of ACC was then extended to Cooperative
Adaptive Cruise Control (CACC), that allows a vehicle to
receive information from other neighboring vehicles using
a Vehicle-to-Vehicle (V2V) communication. CACC realizes
automated longitudinal vehicle control by adding the preced-
ing vehicle’s velocity, acceleration, or steering angle that are
used in a feed-forward loop [1]. The invention of ACC/CACC
has led to the realization of automated longitudinal control.
However, to achieve a level 2 autonomous vehicle, in which
both steering and acceleration/deceleration are automated,
the lateral control of vehicle has to be taken into account.

One proposed approach to realize both longitudinal and
lateral control of autonomous vehicle is to separate the
control problem into two independent subsystems [2]. In this
approach, the ACC/CACC system regulates the longitudinal
control [3], while a lane keeping assist system regulates
the lateral control [4]. Typically, a lane keeping controller
is developed based on the path following method, where
a vehicle detect a reference path (e.g., lane markings or
magnetic markings embedded in roads) using magnetic
sensors or cameras. The control objective is then to calculate
a steering input that minimizes the distance from the position
of vehicle to a reference path. In this lane keeping system,
the clarity of lane markings is important for the accuracy of
path following. The drawback of this path following method
is when the lane markings are of bad quality, or even not
available, resulting in the difficulty of tracking the correct
lane which then may lead to accidents. From the platooning
perspective, when a small inter-vehicle distance is desired,
an accurate measurement of lane markings is not always
possible due to the obstructed view from the preceding
vehicle. Moreover, by treating the longitudinal and lateral
motion independently, the application of this decomposed
approach is limited to situations with small steering angles
or low speeds [5].

To achieve a combined control for longitudinal and lateral
motion that does not depend on lane markings, a vehicle
following method is adapted. In this method, a look-
ahead approach is usually used by a vehicle to follow its
preceding vehicle [6]. By utilizing the already available
information from the ACC/CACC setup, this approach is
considered as a cost-effective and feasible solution. However,
the implementation of the look-ahead approach results in
cutting-corner phenomenon for the lateral movement of
vehicles. Authors in [7] and [8] proposed an extended
look-ahead method that compensates the cutting-corners,
where the method is then applied on the vehicle platoon with
kinematic vehicle model. However, the kinematic vehicle
model is considered inaccurate for a dynamic environment
in longitudinal and lateral maneuvers. Moreover, these
two papers considered the needs of global and semi-local
positions of vehicles, which in some situation cannot be

accurately measured. In [9], the trajectory estimation of the
preceding vehicle is designed to compensate the corner-
cutting problem. Using a dynamic vehicle model, a model
predictive control is applied to fulfill the longitudinal and
lateral control. The extended look-ahead approach is also
adapted in [10], where the nonlinear dynamics of the vehicle
is taken into account. However, the physical parameters
of vehicles are difficult to be measured and estimated,
and the performance of the proposed controller in these
papers for a heterogeneous vehicle platoon was not yet
investigated.

The rapid development of artificial intelligence technol-
ogy, especially Reinforcement Learning (RL), has brought
benefits to autonomous driving [5], [11], [12]. The applica-
tion of artificial neural networks for tracking and autonomous
vehicles can be traced back to 1990s, see, e.g., [13] and [14].
In these papers, data are provided by ultrasonic sensors
and used as an input to a feedforward network. Another
hybrid approach, which combines RL and fuzzy logic, for
longitudinal vehicle control is proposed in [15]. In [16],
the authors propose an actor-critic algorithm, which use a
model-free value- and policy-based RL algorithm to solve
longitudinal control problem. Q-learning algorithm, as a
subfield of RL, is a model-free algorithm that learn value
of an action in a particular state. In [17], a deep Q-learning
algorithm, which uses experience replay from a random
sample of prior action instead of the most recent action,
is proposed to control braking as a part of collision avoidance
system. The authors in [18] propose a combined approach
of supervised learning and deep Q-learning algorithm. The
lateral and longitudinal control are then treated as a dependent
system and the objective is formulated as a velocity control
and lane keeping control. In [19], the authors propose a
model-based policy iteration algorithm to solve theHamilton-
Jacobi-Bellman equation for a linearized dynamic vehicle
model, and adaptive dynamic programming is implemented
for the data-driven policy iteration. It is also important to
note that the automated driving can be classified as a control
problem for a continuous system, and the drawback of these
proposed algorithms is that they can only be implemented to
discrete environments. The process of discretization would
lead to the inability to overcome dynamic environment in the
vehicle platooning system [20].
Deep Deterministic Policy Gradient (DDPG) algorithm,

which is based on a direct policy search, is then proposed
to handle continuous control environment by directly output
continuous action [25]. In [5], the authors propose an
improved DDPG algorithm based on the double critic
networks to overcome large cumulative errors. The approach
is applied to a lane following method in autonomous
vehicle. A DDPG-based proportional integral derivative
(PID) longitudinal controller is proposed in [23] to improve
the performance regarding speed tracking error. However,
the proposed algorithms have not yet incorporated a vehicle
dynamic model, and the longitudinal and lateral motion are
still treated independently.
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TABLE 1. Literature of vehicle platooning control strategy.

Several methods to control a vehicle platoon have been
proposed in literature, see Table 1. Most of the studies
focused on using Reinforcement Learning for the control
design of vehicle platooning. However, most studies assume
that the path information for the follower vehicle to follow
is available, which is not true in some cases [26]. The
real-time control design of vehicle platooning also needs
to consider the coupled nonlinear longitudinal and lateral
dynamics of vehicle. Therefore, the main contribution of this
paper is the design of DDPG-based algorithm using extended
look-ahead approach for a dynamic vehicle model, which can
be divided into several sub-contributions. First, we introduce
the control problem formulation in vehicle platooning and a
nonlinear dynamic single-track vehicle model. To reduce the
domain of the action space from DDPG output, we propose
a dynamic input inversion method that transforms the output
acceleration from DDPG algorithm to the longitudinal force
input of the dynamic single-track model. With this domain
reduction, the computational load of the algorithm can
be reduced. To overcome cutting-corner in the look-ahead
approach, we adapted the extended look-ahead approach and
derive true-local error states. By this approach, the error states
can be calculated using the already available information
from radar and V2V communication and a global positioning
information is not required. In comparison to the existing
results of other RL-based controllers for vehicle following,
our DDPG-based extended look-ahead controller takes the
coupled dynamics of longitudinal and lateral motion into
account and handles the cutting-corners without the need of
path information.

The next part of this paper is formulated as follows.
Section II describes the problem formulation and system
model. In this section, the nonlinear dynamic single-track
vehicle model, the dynamic input inversion are introduced,
and the adapted extended look-ahead error is derived.
In Section III, we propose the design of DDPG-based
extended look-ahead for longitudinal and lateral control.

FIGURE 1. Predecessor-following platoon topology.

Section IV presents the training of the proposed algorithm
in MATLAB, training results, and simulations. In Section V,
we presents the implementation of the designed algorithm
in a Donkey Car platform for further validation. Finally, the
last section presents the summary of conclusions and future
works.

II. PROBLEM FORMULATION AND SYSTEM MODEL
A. FORMULATION OF VEHICLE PLATOONING CONTROL
PROBLEM
Consider a platoon of of m ∈ N vehicles with a predecessor-
following topology, as depicted in Fig. 1, where Sm =
{i ∈ N|1 ≤ i ≤ m} denotes the set of all vehicles in the
platoon. The first vehicle in the platoon (with index i = 1)
is assumed to be controlled by a human driver, i.e., the
vehicle can be directly velocity and steering controlled.
The velocity of vehicle i is denoted by vi, and the actual
distance between vehicle i − 1 and vehicle i is denoted
by da,i. With a predecessor-following topology, the main
objective of vehicle i is to follow vehicle i − 1 at a desired
distance, di.
The desired distance between vehicle, also known as the

spacing policy, can be designed as a constant, a constant time-
gap, or a variable time-gap spacing policy [27]. In this paper,
the desired distance di is formulated as a constant time-gap
spacing policy as follows

di = ri + hvi, (1)
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FIGURE 2. DDPG-based control structure.

where ri > 0 is the standstill distance, h is the time-gap,
and vi is the velocity of vehicle i. Using this spacing policy,
the inter-vehicle distance is increasing if the velocity of the
follower vehicle is increasing.

Based on a predecessor-following control structure, an ego
vehicle can can receive the state information (such as
position, velocity, acceleration, yaw rate, and steering angle)
through on-board sensors and communicate with its neighbor
vehicles through a vehicle-to-vehicle (V2V) communication.
The relative distance to the preceding vehicle is measured by
radar, lidar, or cameras.

For a higher degree of automation in vehicle platooning,
an integration of longitudinal and lateral control have to be
considered. Based on the vehicle platooning control frame-
work in Fig. 2, the DDPG controller uses the information
obtained from on-board sensors and V2V communication
to calculate the desired acceleration and steering angle. For
a vehicle with a large acceleration and varying yaw rate,
the kinematic model of vehicle is no longer valid since the
lateral forces generated by the tires affect the longitudinal
and lateral motion [2]. Therefore, in this paper we consider
a dynamic vehicle model, and introduce the transformation
of the input of a dynamic vehicle model from the output of
DDPG algorithm. The transformation is implemented using a
dynamic input inversion, which was first investigated in [28],
and later extended to a certain class of nonlinear systems
in [29] and [30]. In order to arrive at a suitable dynamic
input inversion, the vehicle dynamic modeling is defined
first. To fulfill the longitudinal and lateral control objective
of vehicle platooning, the desired distance (1) needs to be
adapted to a two-dimensional distance. In the next subsection,
we design the dynamic input inversion, which then used
for the formulation of the error derivation based on the
two-dimensional constant time-gap spacing policy.

B. DYNAMIC MODELING OF VEHICLE
We consider the single-track vehicle model, which is com-
monly used to model the lateral and longitudinal dynamics
of a vehicle under a normal driving conditions [2], [31]. The
dynamic single-track model with a front-wheel drive is given
by

v̇x,i = 1
mi

(
Flf ,i cos δi − Fcf ,i sin δi

)
+ vy,iψ̇i (2)

FIGURE 3. Dynamic single-track vehicle model.

v̇y,i = 1
mi

(
Flf ,i sin δi + Fcf ,i cos δi + Fcr,i

)
− vx,iψ̇i (3)

ψ̈i =
1
Ii

(
lf ,iFlf ,i sin δi + lf ,iFcf ,i cos δi − lr,iFcr,i

)
, (4)

where vx , vy, and ψ̇ denote the longitudinal, lateral, and yaw
velocity, respectively. Furthermore, mi denotes the mass of
the vehicle, Ii denotes the moment of inertia, and lj,i, with
j ∈ {f , r}, denotes the distance between the axle of front and
rear tires, respectively, and the center of gravity of the vehicle.
The front-wheel traction force of the engine is denoted by
Flf ,i and the steering angle is denoted by δi, which act as
the inputs to the system. The cornering forces that generated
by the front and rear tire, are denoted by Fcf ,i and Fcr,i,
respectively, and depend on the lateral tire slip angle αf ,i and
αr,i of the respective tire, see Fig. 3.
The mapping from the lateral tire slip angle αj,i to its

respective cornering force Fcj,i, with j ∈ {f , r}, depends on
the tire model, road condition, driving condition, and can
vary in complexity. In vehicle platooning, we consider a
regular driving condition with a relatively low longitudinal
acceleration, steering angle rate, and small slip angle.
Therefore, a linear tire model in which the cornering forces
depend proportionally on their respective slip angles can be
used [32], and are defined as

Fcf ,i = Cαf ,iαf ,i

= Cαf ,i
(
δi − arctan

(
vy,i+lf ,iψ̇i

vx,i

))
(5)

Fcr,i = Cαr,iαr,i

= Cαf ,i
(
− arctan

(
vy,i−lr,iψ̇i

vx,i

))
, (6)

where Cαj,i, j ∈ {f , r}, denote the cornering stiffness
coefficient of the respective tire.

C. DYNAMIC INPUT INVERSION
Let (Xi,Yi) denote the Cartesian coordinates of the center of
gravity (CoG) of vehicle i, as depicted in Fig. 4. The chassis
kinematic model at the CoG in a Cartesian coordinate frame

VOLUME 11, 2023 96651



A. Bayuwindra et al.: Design of DDPG-Based Extended Look-Ahead for Longitudinal and Lateral Control

FIGURE 4. Trajectory tracking problem with extended look-ahead.

is given by

Ẋi = vx,i cosψi − vy,i sinψi (7)

Ẏi = vx,i sinψi + vy,i cosψi, (8)

where (vx,i, vy,i, ψi) dynamics are as described in (2), (3),
and (4). Using (7) and (8), the velocity of the CoG, vi, can
be defined as

vi =
√
Ẋi + Ẏi =

√
v2x,i + v

2
y,i. (9)

The longitudinal acceleration of the CoG, ai, is obtained by
differentiating (9) with respect to time as follows

v̇i =
vx,iv̇x,i + vy,iv̇y,i√

v2x,i + v
2
y,i

=: ai. (10)

By substituting (2) and (3) into (10), the longitudinal force
input Flf ,i is eventually obtained as

Flf ,i =
1
ξi

(
miviai − Fcf ,iζi − vy,iFcr,i

)
(11)

ζi := −vx,i sin δi + vy,i cos δi
ξi := vx,i cos δi + vy,i sin δi,

where (ai, δi) are the new inputs of vehicle i with |δi| ≤
π/4, Fcj,i, j ∈ {f , r}, is as described in (5), (6), and
vx,i > 0 such that ξi ̸= 0. Therefore, any control outputs
of the form longitudinal acceleration and steering angle can
be applied directly into the single-track model through the
dynamic inversion (11). Using the new states (7), (8), and the
transformed input (11), the error derivation is discussed in
the next section.

D. TRUE-LOCAL EXTENDED LOOK-AHEAD ERROR
DERIVATION
Using the input inversion defined in the previous section,
the control to the dynamic model of vehicle i is transformed

from (Flf ,i, δi) into (ai, δi). To overcome the cutting-corner
problem, we adapt the extended look-ahead approach in [8].
Let Pi denotes the posture of the vehicle i, Pi,0 denotes
the desired posture of where the vehicle i should be, and
κi−1 = ψ̇i−1/vi−1 denotes the instantaneous curvature of
vehicle i−1, see Fig. 4. The desired posture Pi,0 is defined as
a function of the preceding vehicle i−1 posture, Pi−1, and the
angle of the circular arc formed by Pi−1 and Pi,0. The angle,
denoted by αi−1, is defined as

αi−1 = 2 arcsin
(
1
2diκi−1

)
, (12)

where di is the desired inter-vehicle distance as defined in (1).
By using trigonometric identities in Fig. 4, we also have

sin αi−12 =
1
2diκi−1, cos αi−12 =

√
4−d2i κ

2
i−1

2 . (13)

From Fig. 4, it can be observed that the length of Pi,0Pi−1 is
equal to the desired spacing distance di. Thus, the posture Pi,0
in a global Cartesian coordinate is defined as

Xi,0 = Xi−1 − di cos
(
ψi−1 −

αi−1
2

)
(14)

Yi,0 = Yi−1 − di sin
(
ψi−1 −

αi−1
2

)
. (15)

With this desired posture derivation, the control objective can
be defined as bringing the posture Pi to the desired posture
Pi,0. We define the error state components as[

e1,i
e2,i

]
=

[
cosψi sinψi
− sinψi cosψi

] [
Xi,0 − Xi
Yi,0 − Yi

]
. (16)

By substituting (14) and (15) into (16), and by using half and
double angle formulae, we eventually obtain the error state
components as[

e1,i
e2,i

]
=

[
cosψi sinψi
− sinψi cosψi

] [
Xi−1 − Xi
Yi−1 − Yi

]
− di

[
cos eψ,i − sin eψ,i
sin eψ,i cos eψ,i

] [
cos αi−12
sin αi−12

]
(17)

eψ,i := ψi−1 − ψi − αi−1, (18)

where cos(αi−1/2) and sin(αi−1/2) are as defined in (13),
and eψ,i is the orientation error of vehicle i. It can be
observed directly that the first term of the right-hand side
of (17) denotes the relative longitudinal and lateral error,
respectively, that can be obtained from lidar. The relative
orientation ψi−1−ψi, and the yaw rate of vehicle i−1, ψ̇i−1,
can be measured by an IMU (Inertial Measurement Unit)
and lidar, while vi−1 is measured using on-board sensors and
communicated through V2V. Using these error definitions,
in the next section we define the design of DDPG-based
extended look-ahead controller.

III. DESIGN OF DDPG-BASED EXTENDED LOOK-AHEAD
LONGITUDINAL AND LATERAL CONTROLLER FOR
VEHICLE PLATOONING
As a subfield of Reinforcement Learning (RL), Deep
Deterministic Policy Gradient (DDPG) is an algorithm that
uses an actor critic reinforcement to search for an optimal
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policy that maximizes the expected cumulative long-term
rewards. To understand how a DDPG algorithm can be
applied in a standard control problem, we can view the policy
inside of DDPG as a controller. Hence, the action produced
by the policy acts as the control input to the system, while
the states of the environment in DDPG act as the observed
output of the system. In standard optimal control problems,
the reward function designed in DDPG can be viewed as the
objective function that the policy, or the controller, is trying
to maximize. Therefore, DDPG can be seen as an algorithm
that finds the solution for optimization problem of the reward
function, and produces the optimal policy as an optimal
control law for the system [33].

The algorithm of DDPG itself, which is an off-policy
algorithm, inherits an actor-critic framework [34]. The actor
is responsible for a policy, which receives the states of the
environment as the input and generates an action. The critic,
on the other hand, estimates the action value function, which
is utilized to assess how good the actor is. The algorithm uses
two deep neural networks for each actor and critic, which is
powerful enough to represent control problem for a highly
non-linear dynamical system [35].
To ensure the convergence of the DDPG algorithm,

choosing an appropriate state space and a reward function
are critical. The states of the environment should be related
to the motion states of the vehicles, while the reward
function should be designed to minimize the longitudinal
and lateral error. For the longitudinal and lateral control
problem of vehicle platooning, the observation state at time
step t , st , are designed as a state with nine elements as
follows

st =
{
∫ ev,i, ev,i, vi, ∫ e1,i, e1,i, ∫ e2,i, e2,i, ė1,i, ė2,i

}
, (19)

where ev,i = vi−1−vi is the velocity error, e1,i and e2,i denotes
the longitudinal and lateral error, as defined in (17).
The actor network of DDPG then approximates a behavior

policy, µ, with respect to the observation state (19). The
output of the actor network is given by [36]

at = µ
(
st |θµ

)
, (20)

where θµ denotes the parameter of the strategy network of
making the determined action. On the other hand, the critic
network approximates a value function as

Q = Q
(
st , ãt |θQ

)
ãt := at +Nt , (21)

where θQ denotes the parameter of the strategy critic network,
and Nt represents the exploration noise.

The objective of the DDPG algorithm is to find the optimal
strategy such that the cumulative reward is maximized, see
Algorithm 1 [25]. The design of the reward function is
critical for the DDPG-based extended look-ahead algorithm
and needs to take several aspects into account: firstly, the
velocity of the follower vehicle vi must be positive to
satisfy the condition of vx,i > 0, which then implies that

Algorithm 1 DDPG algorithm [25]
Initiate random actor network µ(s|θµ) with weight θµ and
critic network Q(s, a|θQ) with weight θQ

Initiate target network µ′ with weight θµ
′

← θµ and Q′ with
weight θQ

′

← θQ

Initiate replay buffer
for i = 1 to G do
Initiate random process N for action exploration
Obtain initial observation state s1
for t = 1 to T do
Evaluate action at = µ(st |θµ)+Nt with respect to the current
policy and exploration noise
Implement action at , observe reward Rt and new state st+1
Save transition state (st , at ,Rt , st+1) in replay buffer
Sample a random mini batch of N transition states
(si, ai,Ri, si+1) from replay buffer
Set yi = Ri + γQ′(si+1, µ′(si+1|θµ

′

)|θQ
′

)
Update the critic network by minimizing the loss function

L =
1
N

∑
i

(yi − Q(si, ai|θQ))2

Update the actor policy using sampled policy gradient:

∇θµJ ≈
1
N

∑
i

∇aQ
(
s, a|θQ

)
|s=si,a=µ(si)∇θµµ

(
s|θµ

)
|si

Update the target networks:

θQ
′

← τθQ + (1− τ) θQ
′

θµ
′

← τθµ + (1− τ) θµ
′

end for
end for

ξi ̸= 0 as a necessary condition for (11); secondly, there
should to be no collision between vehicles; and thirdly,
the follower vehicle needs to be responsive to follow the
maneuvers of its preceding vehicle. Therefore, as one of
the main contributions in this paper, we propose the reward
function Rt at every time step t , which is designed as

Rt = − (Re + Ru)+ Rt + R1 + R2, (22)

where

Re = we
(
50e21,i(t)+ 50e22,i(t)

)
Ru = wu

(
5ȧ2i (t − 1)+ 5δ̇2i (t − 1)

)
Rt =

{
wt ,

∣∣e2,i∣∣ > 10 or vi < 0.5 or xi−1 − xi − di < 0
0, otherwise

R1 =

{
w1, e21,i < 0.01
0, otherwise

R2 =

{
w2, e22,i < 0.01
0, otherwise,

VOLUME 11, 2023 96653



A. Bayuwindra et al.: Design of DDPG-Based Extended Look-Ahead for Longitudinal and Lateral Control

FIGURE 5. The design of DDPG neural network architecture: actor network (left) and critic network (right).

and ȧi(t − 1) and δ̇i(t − 1) are the derivative of acceleration
and steering input of the previous time step t − 1. Negative
term of reward function Re eliminates errors to achieve
the longitudinal and lateral control objective. The negative
reward function Ru is designed to minimize the chattering
in control effort. The reward function Rt is a logical
value that terminates the training if the lateral error is too
high, if the velocity of the follower vehicle is approaching
zero, or if the relative inter-vehicle distance is negative.
The reward functions R1 and R2 are logical values that
encourage the agent to make longitudinal and lateral error,
respectively, small. The weighting coefficients wj, with j =
{e, u, t, 1, 2}, are appropriately tuned in order to balance the
importance of the components [37]. To fulfill the important
aspects of vehicle following objectives, it is critical to avoid
the condition of the non-zero or negative velocity and to
minimize the lateral and longitudinal position errors. Hence,
the weight wt , w1, and w2 are chosen as 10. On the other
hand, we want to avoid the aggressive control action of
accelerating/decelerating, while also maintaining a smooth
chattering in control effort. Hence, we set the weight we and
wu equals to 0.001.

IV. TRAINING OF DDPG-BASED EXTENDED LOOK-AHEAD
CONTROLLER
A. TRAINING AND SIMULATION ENVIRONMENT
For the longitudinal and lateral vehicle platooning control
system as described in the previous section, we utilized
the actor and critic networks within the DDPG algorithm.
The overall network architecture is shown in Fig. 5. The
actor network consists of six layers: one input layer,
one output scaling layer, and four fully connected hidden
layers. Each connected hidden layer has 100 neurons with
the activation function of rectified linear unit (ReLU) to
accelerate convergence [38]. To handle multi-layer neural
networks, a tanh activation function is used in the output
scaling layer.

TABLE 2. Parameters of DDPG training.

TABLE 3. Parameters of the system.

The critic network consists of two input layers (state
and action), one output layer, and three fully connected
hidden layers. Both action and state path merge into the
output layer through addition layer. The hidden layers have
100 neurons each with ReLU activation function, while
the linear activation function is used in the addition layer.
To eliminate the dimensional influence between the data,
we use batch normalization that can transform the input
data to a normal distribution. To improve the efficiency of
exploration, the Ornstein-Uhlenbeck process noise is applied
with variance 0.6 and 0.1 for acceleration and yaw rate input,
respectively. The decay rate of the noise is chosen as 10−5.
Other training parameters are as listed in Table 2.

The DDPG-based extended look-ahead algorithm is
trained using RL Toolbox in MATLAB. We trained the
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FIGURE 6. Reference acceleration and yaw rate profiles for all scenarios.

algorithm for a platoon with two vehicles, modeled as a
nonlinear dynamic single-track vehicle. Vehicle 1 acts as a
leader and is directly controlled with predefined acceleration
and yaw rate profile. Vehicle 2 acts as a follower vehicle
and is controlled by the DDPG-based extended look-ahead
algorithm. The parameters for vehicles are as given in Table 3.

B. ALGORITHM TRAINING AND SIMULATION RESULTS
In this subsection, the training result of the DDPG-based
extended look-ahead algorithm and the simulations are
presented. The platoon consists of leader and follower
vehicles which are modeled using a nonlinear dynamic
single-track vehicle model as in (2)–(4). The platoon is
simulated in three scenarios: the circular path, eight-shaped
path, and snake path. The circular path can be considered
as the simplest scenario, consisting of a straight path and a
circular path with a constant curvature. The eight-shaped path
consists of a zero, varying, and constant curvature, where the
robustness of the designed controller is evaluated against an
aggressive curvature trajectory. The snake path consists of
a straight path and a wave path with varying curvature and
acceleration. Within this path, the robustness of the controller
algorithm is evaluated simultaneously against both varying
curvature and acceleration. Fig. 6 shows the acceleration and
yaw rate profile of each scenario. In the training process,
the leader and the follower vehicle are initiated with the
velocity of 24 m/s (equals to 86.4 km/h) and 22 m/s (equals
to 79.2 km/h), respectively, and the initial positions of
both vehicles and the reference path are randomly changed
before the beginning of each episode to prevent over-fitting
of the model to a certain scenario, while also ensure the
reliability of the agent for all scenarios. In other words, each
episode has different initial longitudinal and lateral spacing
errors.

The total and last five average reward per episode are as
shown in Fig. 7. Training performance is considered good if
the reward value is high. As expected, the value of cumulative

FIGURE 7. Performance of total and average reward versus episode.

reward increases with the increase of episode. The designed
DDPG-based extended look-ahead algorithm converges after
training for 2975 episode with the last five average reward
equals to 5251. Due to the random change of scenarios, it can
be observed that total reward is declining between episode
2000 and 2500. However, the proposed algorithm shows its
robustness against changing scenario after episode 2500.

C. SIMULATION RESULTS
A vehicle platoon typically maneuvers at normal driving con-
ditions, i.e, low acceleration/deceleration, and low yaw rate.
To demonstrate the potency of the DDPG-based extended
look-ahead controller, we simulated the trained agent for
a platoon with 4 vehicles in the three different scenarios:
circular path, eight-shaped path, and snake path scenario.
The circular path is composed of a straight and circular
path to assess the robustness of the designed controller
against a delicate curvature changes. The eight-shaped path
is generated by half circles and quintic polynomial functions,
and is useful to evaluated the robustness of the controller
against a varying curvature. The snake path is composed of
a sinusoidal yaw rate with varying frequency and varying
velocity, and used to demonstrate the robustness of the
controller in handling varying curvature and velocity at the
same time. It should be noted that the second and third
scenario are not typical maneuvers of a vehicle platoon,
but they were conducted to evaluate the performance of our
designed controller to handle challenging maneuvers.

To model all vehicles, we used a dynamic single-track
model, as in (2)–(4). Vehicle 1 acts as a leader and is
controlled directly using respective acceleration and yaw
rate profile as in Fig. 6. Vehicle i, with i = {2, 3, 4},
is controlled by the DDPG-based extended look-ahead
algorithm with the preceding vehicle i − 1 as its reference.
For all scenarios, vehicle 1 starts at a random initial position
(50 + 1x, 0) m, |1x| ≤ 2, with initial orientation π/4 rad,
while vehicle i, with i = {2, 3, 4}, starts at a random initial
position (50 − 15(i − 1) + 1x,−5 + 1y) m, |1x| ≤ 2,
|1y| ≤ 0.5, with initial orientation 0 rad.
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FIGURE 8. Trajectory of vehicles for the circular path scenario: regular
look-ahead (left), DDPG-based extended look-ahead (right).

FIGURE 9. Velocity and yaw rate of vehicles for the circular path scenario:
regular look-ahead (left), DDPG-based extended look-ahead (right).

For comparison purposes, we simulated the regular
look-ahead controller designed in [7] with identical vehicle
parameters and initial conditions with the DDPG-based
extended look-ahead controller. This regular look-ahead
controller adapts the concept of pure-pursuit controller,
in which the follower vehicle does not have any path or
trajectory information of its preceding vehicle, and can only
track the preceding vehicle by measuring the distance from
the front of the follower to the rear of the preceding vehicle.

Fig. 8 shows the trajectory of vehicles for the circular
path scenario. The figure on the left shows the trajectory of
vehicles using the regular look-ahead controller. As expected,
the follower vehicle can only track its preceding vehicle’s
trajectory on a straight path. Without any path or trajectory
information of the preceding vehicle, the follower vehicle
suffers cutting-corner, as evidenced by the difference in
the path curvature of the follower and its preceding. The
difference in curvature can be explained by observing Fig. 9,
where all follower vehicles with the regular look-ahead
controller have lower turning velocity than the ones with
the DDPG-based extended look-ahead controller. On the
other hand, as depicted in Fig. 8(right), the follower vehicles
with the DDPG-based extended look-ahead controller can
track their predecessor’s trajectory for the circular path,
i.e., the path with constant velocity and varying yaw rate.

FIGURE 10. Trajectory of vehicles for the eight-shaped path scenario:
regular look-ahead (top), DDPG-based extended look-ahead (bottom).

FIGURE 11. Velocity and yaw rate of vehicles for the eight-shaped path
scenario: regular look-ahead (left), DDPG-based extended look-ahead
(right).

Fig. 9(right) confirms that all follower vehicles track the
velocity and the yaw rate of their respective preceding vehicle
with sufficiently small errors.

The overall response of the first scenario is similar to one
of the second scenario, the eight-shaped path, as shown in
Fig. 10. For the DDPG-based extended look-ahead controller,
it can be observed from Fig. 11(right) that the difference
between the velocity and the yaw rate of the follower vehicles
and vehicle 1 is relatively small, thus ensuring that all vehicles
drive on the same path. From both first and second scenario,
we can conclude that the proposed DDPG-based extended
look-ahead algorithm handles varying yaw rate and constant
velocity in a satisfactory manner.

The third scenario is conducted to assess the performance
of the design DDPG-based algorithm against both varying
yaw rate and velocity. From t = 0 s until t = 10 s,
vehicle 1 drives at a straight path with constant velocity. From
t = 10 s onward, a sinusoidal yaw rate with magnitude
0.4 rad/s and frequency 0.5 Hz is applied as input to the
vehicle. From t = 15 s until t = 25 s, a one cycle sinusoidal
acceleration with magnitude 1.8 m/s2 is applied. As shown
by Fig. 12(right), all follower vehicles with the DDPG-based
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FIGURE 12. Trajectory of vehicles for the snake path scenario: regular
look-ahead (left), DDPG-based extended look-ahead (right).

FIGURE 13. Trajectory of vehicles for the snake path scenario: regular
look-ahead (left), DDPG-based extended look-ahead (right).

extended look-ahead controller respond quickly to follow
their respective preceding vehicle on a varying yaw rate and
varying acceleration. The difference between the velocity of
the followers and their preceding vehicle from t = 15 s
onward indicates a varying deceleration (see Fig. 13(right),
which implies a varying desired distance due to the constant
time-gap spacing policy (1). Therefore, it can be concluded
from these three scenarios that our DDPG-based extended
look-ahead controller can be applied to multiple vehicles in
a platoon, where vehicle i − 1 acts as a target tracking for
vehicle i, further confirming the scalability of the controller.
The simulation results also confirm that the DDPG-based
controller can be implemented in a nonlinear dynamic
model, which takes coupled longitudinal and lateral dynamics
into account, using the designed dynamic input inversion.
Moreover, our designed controller is proven to be effective
against cutting-corner in the situation where the preceding
vehicle’s path is unknown, justified by the acceptable error
tolerance for various road conditions with varying yaw rate
and velocity.

V. EXPERIMENT WITH DONKEY CARS
A. EXPERIMENTAL SETUP
In this section, we describe the experimental setup for the
implementation of DDPG-based extended look-ahead con-
troller. Additionally, we present the experimental results to
validate theoretical and simulation results. We implemented

FIGURE 14. The Donkey Car used in simulation. The rear-wheel drive
system is throttled using a dc motor and the front wheels are steered
using a servo. RPLIDAR-A2, MPU-6050, and additional battery (right side,
from top to bottom) are added to the car.

the DDPG-based extended look-ahead controller in a platoon
consisting of two Donkey Cars. A Donkey Car is a four-
wheel small-scale car with amodular design, and is developed
using open source libraries based on Python. ADonkey Car is
typically modeled by a kinematic single-track model instead
of a nonlinear dynamic single-track model that we used on
the simulation By using Donkey Cars, we further verified the
generalization capability of our controller to different vehicle
models. In this experiment, we used two starter kit Donkey
Cars (HSP 94186 model) with servo drivers PCA 9685 to
control the throttle and steering, and additional components
as follows (see Fig. 14):
• Raspberry Pi 4Model B: a single-board computer (SBC)
that acts as the brain of the car, attached to each
leader and follower vehicle. The DDPG-based controller
algorithm is embedded into the SBC of the follower
vehicle, while the SBC of the leader vehicle controls
the throttle and steering and also transmits all necessary
signals for the controller through Wi-Fi protocols.

• SLAMTEC RPLIDAR-A2: a small lidar with 0.2 - 16 m
measuring range, 16K sampling frequency, and 5 - 10Hz
rotational speed. The lidar is attached to the follower
vehicle to measure the inter-vehicle distance.

• InvenSenseMPU-6050: a micro electro-mechanical sys-
tem with a 3-axis gyroscope and 3-axis accelerometer to
measure linear and angular velocities and accelerations,
attached to each leader and follower vehicle.

• Extra battery: since the original Donkey Car kit uses
1,100 mAh battery, we replace it with a 2,400 mAh
battery in each vehicle to power Donkey Car, Raspberry
Pi, and lidar.

The DDPG-algorithm that is trained in MATLAB in the
previous section is exported to TensorFlow using the built-in
function exportNetworkToTensorFlow. The function
exports the deep learning network and saves it as a
TensorFlow model in the Python package.

In order to validate the simulation results, we define a
circular trajectory for the leader vehicle. The leader vehicle
is directly controlled, while the follower vehicle is controlled
by the DDPG-based extended look-ahead algorithm. Since
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FIGURE 15. Velocity (left) and steering angle (right) of the leader and
follower vehicle.

the longitudinal motion of a Donkey Car is controlled by
providing a throttle input, we designed a PID controller for
the leader vehicle to achieve a constant velocity of 2 m/s.
On the other hand, the lateral motion of a Donkey Car is
directly-controlled by providing a constant steering angle
input of 0.2479 rad. The standstill distance parameter for
the spacing policy is chosen as ri = 0.3 m, and the
time-gap is chosen as hi = 0.1 s. The lidar is used to
measure the inter-vehicle distance and angle of an object
relative to the lidar orientation. The Inertial Measurement
Unit (IMU) utilizes a low pass filter to reduce noise effect
and increase sensor’s accuracy. The necessary signals from
the leader vehicle (such as, velocity and relative orientation)
with a sample rate of 60 Hz are then transmitted to the
follower vehicle through a Wi-Fi communication, while the
relative inter-vehicle distance is measured using the lidar.
The DDPG-based controller then calculates the inputs needed
for the follower vehicle.

B. EXPERIMENTAL RESULTS
For the experiment, we placed the follower vehicle behind
the leader vehicle with a relatively small initial longitudi-
nal and lateral errors. The orientation of the follower is
placed in the same direction as the leader vehicle. This
positioning is done to ensure that the follower vehicle moves
forward with a small initial orientation error as possible.
The leader vehicle maneuvers on a circular path with a
constant velocity of 2 m/s and a constant steering angle of
0.2479 rad. The velocity and steering angle of both leader
and follower vehicle are shown in Fig. 15. As observed, the
velocity convergence of the follower vehicle is apparent after
t = 3 s, subject to the inter-vehicle longitudinal spacing
policy. Fig 16(left) shows the desired longitudinal dis-
tance, based on the constant time-gap spacing policy (1),
and the actual inter-vehicle distance. It can be observed
that the desired distance varies due to the varying velocity
of the follower vehicle. During t = 0 s until t = 2 s, the
desired distance is bigger than the actual distance due to a
high velocity of the follower vehicle. From t = 4 s onward,
the actual distance converges to 0.5 m. On the other hand,
although the measured steering angle suffers from a bigger
noise than the velocity measurement, it is shown that the
steering angle of the follower also converges to the steering
angle of the leader vehicle. To analyze the runtime efficiency
of the proposed algorithm, wemeasured the execution time in

FIGURE 16. Longitudinal distance (left) and errors (right) of the
experimental results.

every time step using the built-in clock function in Raspberry
Pi. The average execution time is obtained as 0.012 ms.
Since the controller agent is already trained in MATLAB, the
computational time is relatively fast and does not interfere
with the control purpose, which evidently shown by the error
plot in Fig. 16(right). However, from the figure, it should
be noted that lateral error e2 is relatively larger than the
longitudinal error e1. The large lateral error might be caused
by several factors: the inaccuracy of the inertial measurement
unit, delay of the actuators, and the non-deterministic delay
in the Wi-Fi communication. Despite of these factors, the
average errors are smaller than 0.1 m, which then show
satisfactory results of the proposed DDPG-based extended
look-ahead algorithm.

C. REMARKS AND DISCUSSION
The experiment with Donkey Cars showed the potential
of the DDPG-based extended look-ahead controller imple-
mentation, which also can be seen as a first step towards
the implementation in real vehicles. It should be noted that
although the dynamics of a Donkey Car is different than
the one of a real vehicle, in a normal driving condition in a
platoon (i.e., low acceleration/deceleration and low yaw rate)
a real vehicle can be modeled as a linear dynamic single-track
model, or even a kinematic single-track model. To adapt our
controller to a real vehicle model, we can design a secondary
controller that controls the acceleration or speed, instead
of throttle in Donkey Car, internally compensating for the
vehicle parameters.

In the simulation, it is assumed that all vehicles can
measure the inter-vehicle distance accurately, and no delays
are involved in wireless communication. However, it should
be noted that the experiment with Donkey Cars and future
implementation of the DDPG-based extended look-ahead
controller in real vehicles have to take sensors’ accuracy, reli-
ability, and potential failures into account. In [39], a failure-
resilient platooning system is proposed to handle potential
failures of sensors. In this system, the failed sensors is
emulated by collectively utilizing other sensors in the platoon.
The control system then can instantaneously reconfigured the
cooperative mode using only the live sensors. Authors in [40]
proposed levels of failure with immediate stop of the vehicle
to address sensor malfunctions. To address the problem
where some signals cannot be accurately measured or are
unavailable due to sensors malfunction, an observer-based
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secure control as proposed in [21] can be adapted. In the
experiment with Donkey Cars, we used IEEE.802.11 wireless
protocol which works well for our controller. On the other
hand, the Vehicle-to-Everything (V2X) communication uses
ETSI ITS-G5 and DSRC/WAVE technology based on IEEE
802.11p, which is a more robust protocol against fading
and multipath propagation effects of signals in a vehicular
environment. In the situation where the communication is
delayed or even failed, we can adapt a failure tolerance system
as the one designed in [41]. To address a deliberate manip-
ulation of the system through cyber-attacks, authors in [42]
proposed a reliable trust-based platoon service. To handle the
aforementioned sensors failures, our DDPG-based controller
can be used in conjunction with other controllers or systems
designed in those studies.

VI. CONCLUSION
In this paper, we propose a Deep Deterministic Policy
Gradient (DDPG) algorithm with extended look-ahead
approach for the control of longitudinal and lateral vehicle
platooning. This method combines the ability of DDPG
to handle nonlinear system and uncertainties with the
advantage of cost-effectiveness and feasibility of the look-
ahead approach. Without the information of reference paths
or lane markings, the application of the look-ahead approach
can cause cutting-corner phenomenon. The cutting-corners
escalate upstream in the platoon, thus affecting the lateral
tracking performance of all vehicles in the platoon.Moreover,
a nonlinear dynamics vehicle model must be considered for
dynamic longitudinal and lateral maneuvers. To solve the
cutting-corner problem, we adapted the extended look-ahead
approach that redefined the tracking objective point into a
nonlinear dynamic vehicle model. With an input inversion,
the original input of the nonlinear dynamic vehicle model
can be obtained from acceleration and steering angle input
from DDPG algorithm. The effectiveness of the proposed
DDPG-based extended look-ahead approach is evaluated in
both simulation and experimental environments. The results
demonstrate that the DDPG-based extended look-ahead
algorithm can meet the requirements of longitudinal and
lateral tracking by reducing cutting-corners under different
road, velocity, and yaw rate conditions.

The future work would be concentrated on the imple-
mentation of the algorithm into a platoon with more than
two vehicles, and on the design optimization of the DDPG
algorithm to improve the performance, error minimization,
and convergence speed. Moreover, the following research can
incorporate the string stability analysis of the platoon and
can focus on the implementation on real vehicles to further
verify the reliability of the DDPG-based extended look-ahead
algorithm.
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