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ABSTRACT Soil fertility refers to the ability of soil in a particular area to provide favorable chemical,
physical and biological characteristics that help the plant in its growth. It is affected by multiple parameters,
from the available concentration of Nitrogen in the soil to the concentration of Organic Carbon in the soil.
This paper discusses the implementation of an explainable AI (XAI) model based on a Random Forest
classifier. The developed model reliably predicts the relative soil fertility of a given soil using its various
physiochemical properties, and explain the reasons behind the model’s soil fertility indicator prediction
using user friendly graphs. The model shows 97.02% accuracy in comparison with state-of-the-art machine
learning models. The paper also discusses applications of developed model in providing possible solutions
to further improve upon soil fertility in the short term and long term.

INDEX TERMS Explainable AI, machine learning, random forest classifiers, soil fertility.

I. INTRODUCTION
Agriculture has always played a vital role in human society.
It has had a significant impact on the development of human
civilization over the centuries, having influenced and pro-
vided human civilizations with the basis of real development
in economic terms [1]. It has traditionally needed the presence
of favorable environmental conditions. Today, due to a rapid
rise in requirements over the past decades, agricultural pro-
duce demand has skyrocketed, whilst increasing urbanization
has simultaneously led to a decrease in usable arable land for
agricultural purposes [2]. This is putting pressure on nations
to find a solution to the dual challenge of rising demand with
a reduction in available land for agricultural use. In such a
scenario, there is a need to adopt sustainable and optimized
methods to improve agricultural yields from available arable
land, without harming the environment. An increase in soil
nutrient removal, due to increased cultivation of land, has
led to an overall depletion of soil fertility [3]. This may lead
to an increased risk of future food crises for the world’s
inhabitants.
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Modern, computer-based optimization and forecasting
techniques can be used to help prevent such a scenario.
Various computational techniques (traditional as well as
AI-based) are being used to compute the fertility parameters
of soil samples. The main issues with these methods are the
lack of transparency and high capital expenditures. Through
the explainable AI (XAI)-basedmodel proposed in this paper,
we aim to improve and address these shortcomings, by pro-
viding the farmers with the ability to predict and interpret
soil fertility using a lucid waterfall plot, without the need for
complex traditional analysis techniques, while at the same
time, providing the farmer with a clear explanation on the
reasons behind the same.

A. SOIL FERTILITY
Soil fertility refers to the ability of soil in a particular area to
provide favorable chemical, physical and biological charac-
teristics [4], that help plants in their growth. The presence
of fertile soil could be beneficial to the environment, as it
improves vegetation restoration, providing an opportunity to
develop a carbon-neutral ecosystem [5], if further organic
soil amendments are incorporated. It is an important metric
as soil fertility is directly related to a plant’s nutrition [6],
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and a continuous nutrient supply during the crop growth
phase can maximize crop productivity [7].

B. SOIL FERTILITY AND ITS ALIGNMENT WITH UNSDG
Improving Soil fertility is a part of the United Nations
Sustainable Development Goals (UNSDG). The 2030 Sus-
tainable Development Agenda identifies several goals that are
directly or indirectly linked to soil fertility, including SDG 2
(Zero Hunger), SDG 13 (Climate Action), and SDG 15 (Life
on Land). Thus, it can aid efforts to end hunger, mitigate
climate change, protect the environment, and contribute to
an overall improvement in the health and wellbeing of the
populace.

C. UNDERSTANDING SOIL PARAMETERS
Soil types differ according to different geographical con-
ditions [9] often characterized by elevation and slope, and
some specific soil types typically require specific climatic
conditions to exist. Therefore, there must be a standardized
set of parameters to consider when looking into soil fertility
for different soil samples. Reference [10] describes different
parameters that are required for soil fertility prediction in a
traditional setup, and how to gather them using lab-based
techniques. [10, Table 1] summarizes these parameters and
the techniques used to extract them.

Each metric in Table 1 has its purpose in the soil samples,
described below,

• SOM provides nutrients to the soil through recycling
methods like littering inputs from ash deposits, and
mineralization of plant-based remains [11], as well as
through the action of living organisms. It is critical for
the stabilization of the soil structure and provides mech-
anisms for the retention and release of plant nutrients
and maintenance of water-holding capacity. [12].

• OC is a valuable indicator of soil quality [13], and is a
part of SOM. A higher concentration of OC promotes
soil structure, leading to greater physical stability, lead-
ing to lower chances of erosion and nutrient leaching
from the soil.

• pH indicates the acidity or basicity of a soil type, and
has an enormous influence on soil biogeochemical pro-
cesses [14].

• EC indicates the salinity status of the soil and is influ-
enced by both natural and anthropogenic factors [15].

• N is required for plant growth, and plant food process-
ing. It is affected by the changes in the organic matter
content of the soil [16].

• K is an essential cation and plays a vital role in the phys-
iological processes in plants, and Na acts as a promoter
of plant growth [17].

• Soil micronutrients like Cu, Zn, Fe, and Mn participate
in the enzyme activation processes in plants [18].

• Both Ca and Mg help neutralize organic acids, which
form during plant cell metabolism. Ca is also required
for cell wall formation and normal cell division and

TABLE 1. Traditional soil chemical parameters.

participates in the enzyme activation processes in plants.
Mg is also an essential component of chlorophyl and acts
as a phosphorous carrier in plants [19].

• B plays an important role in structural integration and
cell wall synthesis. It also participates in the nitrogen and
carbohydrate mechanism and is responsible for sugar
transport [20].

• S acts as a signaling molecule in stress management and
normal metabolic processes [21].

When considered in a composite fashion, these parameters
can determine the relative soil fertility of a given soil sam-
ple. [10, Table 2] describes experimentally recorded ranges
and concentration indicators (either present in low, medium,
or high quantities).

D. SOIL FERTILITY PREDICTION
Various techniques such as VNIR (Visible and Near Infrared)
spectroscopy, XRF (X-ray fluorescence) spectroscopy, and
laser-induced breakdown spectroscopy, [22] have been
used to generate datasets for conventional prediction of
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TABLE 2. Classification of soil nutrient concentrations.

soil fertility. These datasets are important in deducing func-
tions required to predict soil fertility. A mathematical model
has also been proposed, which involves the use of differential
equations to predict soil fertility [23]. It considers 8 input
metrics (or features), and can be represented by [23, eq1],

dPi
dt
= fi(humus,N ,F,K , pH ,W , 8i,CO2) (1)

where Pi measures fertility, N denotes Nitrogen concentration
in the soil, F denotes Fluorine concentration in the soil,
K denotes Potassium concentration in the soil, pH indicates
the potential of Hydrogen that is used to compute how acidic
or basic the given soil sample is, W denotes soil moisture,
8I denotes the rate of photosynthesis, determined by the
intensity of the diffusion flux of the CO2 to chloroplasts
from the atmos, and CO2 denotes the concentration of carbon
dioxide in the soil [23].

With differential equations, it can be deduced that the the-
oretical soil fertility of a particular soil sample can be given
by [23, eq2] and [23, eq4], a1, a2and a3 being mathematical
constants dependent on the soil parameters, c being a random
constant, and t denoting a time T for which soil fertility is
computed.

P =
1
2a3

[
A

(
1−

2
eA(t+c)

)
− a2

]
(2)

A =
√
a22 + 4a1a3 (3)

It is a very large model, requiring various calculations
at every stage, making it a complex operation, due to the
time requirements. Also, compared to lab-based calculations
of soil fertility, the model does not seem to be accurate
in predicting soil fertility. However, one advantage of this
approach is transparency, as it can justify the increase and
decrease of soil fertility via a well-structured relationship – in
this case, the fertility decreases with the decrease of humus,
photosynthesis rate, the intensity of the diffusion flow of
the CO2, calcium, phosphorus, and soil moisture [23].

E. FEASIBILITY OF USING MACHINE LEARNING TO
PREDICT SOIL FERTILITY
To simplify the complexity of predicting soil fertility, appro-
priate machine learning (ML) models can be used to imple-
ment a fertility prediction model with given datasets. This
would reduce time to derive approximate values of soil
fertility, given certain input variables. It has already been
achieved whilst addressing other challenges in agriculture
(such as crop management, water management, and livestock
management). Reference [24] describes a method to predict
crop yields using the Naïve Bayes algorithm, using variables
such as soil moisture levels, humidity, and temperature. It can
predict a particular crop yield with an accuracy of 97%, using
a dataset with a training testing split of 70%:30%. Refer-
ence [25] has been able to implement a sugarcane yield grade
forecasting model, using the Random Forest (RF) machine
learning classifier, with variables such as fertilizer type, and
soil type. The proposed implementation achieves an accuracy
of 71%, an improvement over previous baselines of 50%
accuracy. Thus, Machine Learning has already been success-
fully applied in other domains of agriculture, and there also
exist implementations that predict soil fertility using machine
learning models, that have been discussed later in this paper.

TABLE 3. Differences between white-box and black-box models.

F. DISADVANTAGES OF USING ML FROM THE END USER
PERSPECTIVE
One of the main disadvantages when exploring solely ML
solutions to agricultural problems is the inherent lack of trans-
parency regarding the decisions taken by the model during
prediction of the output [26]. Another aspect of the lack of
transparency in traditional ML and DL models is the loss of
trust in the model, as it cannot provide a logical reasoning
of its predictions, due to the traditional black box approach
to solving problems. This is where we can consider the
application of Explainable AI onto the model, as it provides
the developer with a transparency design that aptly describes
how the model functions, from its structure, singular com-
ponents, and its training algorithms [26], and provides the
end user with a post hoc explanation, in terms of analytics,
visualizations, and examples [26]. This leads to an increase
in trustworthiness in the model as well, due to the white-box
approach [27] taken by such models. [28, Table 3] provides a
brief comparison between white-box and black-box models.
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FIGURE 1. High Level Model Abstraction.

G. A HIGH-LEVEL DESCRIPTION OF THE PROPOSED
MODEL
The higher-level description of the model is shown in
Figure 1. It consists of three layers. This paper discusses the
implementation of all three layers of the proposed model, and
compares the proposed methods with previous approaches to
predicting soil fertility. The functions of each layer are listed
below,
• Layer 1: This layer describes the K-means clustering
layers, that takes in the input dataset and clusters it
accordingly into 5 different categories in terms of input
variable concentrations and accordingly classifies each
sample in the input dataset into 3 categories depicting
relative soil fertility.

• Layer 2: This layer describes the RF classifier model,
which takes in input soil variables and generates an
approximate label describing the relative soil fertility
of the input sample. The implementation of this model
would be discussed later in this paper.

• Layer 3: This layer would consist of an Explainable
AI layer, which attempts to give a human interpretable
understanding of the reasoning behind the value pre-
dicted by layer 2, providing it with a transparent
design [27].

The proposed approach differs from state-of-the-art
approaches in the use of a XAI layer to provide reasoning for
the output prediction, whilst also converting the model from
a black-box to a white-box based approach [26]. This makes
the proposed model’s output much more user friendly, as it
provides a user interpretable waterfall plot explaining each
metrics contribution to the rating of the soil in terms of soil
fertility.

The remaining part of the paper is organized into four
sections. Section II discusses the related work in area of intel-
ligent soil prediction. Section III provided gives details about
proposed XAI model for soil fertility prediction. Section IV
provided results and discussion, along with further appli-
cation of model in real world scenario. Finally, the paper
concludes with future directions and references.

II. RELATED WORKS
The selected papers subjects are related to soil fertility
and machine learning. Table 4 compares the articles found
regarding the machine learning algorithm implemented, the
advantages/disadvantages to the approach, and the accuracy
to the approach, and the level of transparency and post facie
analysis compared to the proposed model.

Reference [29] discusses the implementation of Partial
Least Squares (PLS) regression to make predictions of soil
fertility and crop yield from a procedurally generated dataset,
involving various entities as described in the AgroXML stan-
dard. For predicting soil fertility, 2 different PLSmodels were
constructed, with one involving organic matter calibration
and the other involving clay calibration data, and the final
models had Pearson correlation coefficient (R2) scores of
0.94 and 0.92, mean square error of calibration (RMSEC)
scores of 0.36 and 3.36, and mean square error of cross-
validation (RMSECV) scores of 0.54 and 5.28 respectively,
an improvement over previous baseline models with smaller
datasets involved.

Meanwhile, [30] describes a model that can appropriately
determine the suitable algorithm for predicting soil fertility.
It shows that linear regression is an efficient algorithm when
it comes to grading soils based on their properties, due to
its small (RMSE) score of 0.0617, and that the most suitable
algorithm for classifying these soils based on measured fertil-
ity variables is the RF algorithm, which achieves an accuracy
of 72% compared to other algorithms applied on the same
dataset (Support Vector Machines (SVM) (linear kernel) and
Gaussian Naïve Bayes (GNB) each having an accuracy of 63
% and 50.78% respectively).

Reference [31] compares the performance of the Gener-
alized Linear Model (GLM) and RF algorithm in predicting
soil fertility using (PXRF) soil data. It is shown that RF
performs better than GLM, providing higher values of R2,
residual prediction deviation (RPD) and ratio of performance
to inter-quartile distance (RPIQ) whilst simultaneously hav-
ing lower values of mean absolute error (MAE), RMSE and
normalized root mean square error (nRMSE).

Reference [32] proposes an implementation of various
regression algorithms such as RF, Gradient Boosted Machine
(GBM), and Bayesian Additive Regression (BAR) tree
towards the prediction of soil fertility metrics. It is observed
that a RF regression implementation with feature selection
achieves the highest R2 value of 0.70 indicating very good to
excellent correlation, as it achieves values closest to the true
fertility index of the soil samples tested.

Reference [33] describes an implementation of the SVM
algorithm that uses both soil and crop datasets to predict
soil fertility and then use that prediction to further predict
suitable crops for a given soil type. The paper describes that
its proposed model performs better than previous baseline
models implemented on similar datasets. (94.95 % accuracy
compared to previous baseline implementations of 91.90%
accuracy and 92.30 % accuracy respectively).
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TABLE 4. Comparison of different soil fertility models.

The proposed model in this paper shall implement a RF
algorithm to classify various physiochemical properties of
given soil samples to predict a composite soil fertility metric,
and provide reasons as to why the soil is fertile.

III. PROPOSED METHODOLOGY
This section describes the implementation of the proposed
model in this paper, from the dataset used to the model
used. The model has been implemented using the Python
programming language and the scikit-learn module. Figure 2
gives a visual understanding of the working of the model.

A. SOIL FERTILITY PREDICTION USING XAI
• Data Preprocessing: The input raw data from the

LUCAS 2018 topsoil dataset (which consists of
pH_CaCl2, pH_H2O, EC, OC, CaCO3, N, P and K
attributes) is cleaned, and all null values are replaced
using the IterativeImputer function present in the
scikit-learn module of python.

• Model Preparation and Implementation: As discussed
earlier, the proposed model would consist of 3 different
models acting as nodes or layers, in which the first
node ( consisting of a K-Means model) would provide
labels to the data, the second node consisting of a RF
Classifier would train on the labelled data and generate
predictions on given test data, and the third node would

consist of an TreeExplainer layer, that would provide
explanations of the output from the second node.

• Model Evaluation: The performance of the RF Classi-
fier model will be evaluated using the accuracy and F1
scoring metrics calculated on the predicted output.

B. DATASET USED
The dataset used for this model is the LUCAS 2018 Topsoil
dataset [40], that has 18984 sample points of soils taken all
over Europe. It is the largest open source database of its
kind, spanning across the entire geographic region of the
European union and the United Kingdom. It has been stored
in the .csv format, and for each datapoint, the proposed model
derived upon the above dataset would use the input parame-
ters given in Table 5. Table 6 summarizes the datasets used
by the selected papers and the proposed model, alongside the
regions and the metrics used for each dataset.

C. DATA PREPROCESSING
As shown in Table 6, some parameters of the raw dataset
have < LOD (Limit of Detection) as values, and there are
also some instances of NaN values in the dataset. To eliminate
problems that stem from these issues, NaN values of the
given dataset were filled using the IterativeImputer function
in the scikit-learn module, which works by first fitting itself
on the given dataset, and then predicting any missing val-
ues in the dataset wherever necessary. Table 7 gives a brief
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FIGURE 2. A flowchart describing the working of the model.

TABLE 5. Input parameters within given model.

description of the data after processing. Also, for each cate-
gory, all < LOD values were replaced with the lower bound
of the limits of detection asgiven in [34]. Since there were
no labels generated previously for this dataset, a clustering
model is used to generate labels for the classificationmodel to

train on. The clustering model uses the K-Means algorithm,
where the K-value is first computed using a within-cluster
sum of squares (WSS) algorithm, that evaluates the input
data and computes the necessary number of clusters for the
input data using the elbow technique, The Elbow Point is
the value of k at which the WSS starts to level off and the
rate of decrease slows down. It typically forms a sharp bend,
resembling an elbow. The Elbow Point indicates the optimal
k value, as it strikes a balance between capturing meaningful
clusters (low WSS) without overfitting or introducing noise.
Figure 3 demonstrates the results of the WSS algorithm that
are used to choose the K-values for the clusters in the dataset.

After selecting the appropriate cluster count for the input
parameters, the WSS algorithm is also used to compute the
appropriate k value for the relative soil fertility labelling on
the dataset. Figure 4 shows the results for the same.

Based on the results from the above computations, the
K-Means model individually categorizes each parameter of
a given datapoint into 5 distinct categories, depending on
their relative values, and then collectively clusters them into
3 different relative soil fertility categories. The results of
this are shown in Figure 5, in which, the x-axis values are
Point IDs, which are unique references to each soil sample in
the dataset, and y-axis denotes the respective values for the
given metric.

To further understand the monotonic relationships between
the parameters and the relative soil fertility, the Pearson cor-
relation coefficient was computed in python using the pandas
library. This coefficient is a dimensionless value, and is used
to depict whether a particular variable is related to another
variable, and usually has a value between −1 to 1 [35],
where −1 depicts a negative correlation, 0 depicts no cor-
relation, and 1 depicts a positive correlation between any
two variables. Table 8 shows the results of this computation,
depicting the relationship between the concentrations of a
particular parameter and the relative soil fertility, and its rela-
tionships with the categories generated using the K-Means
algorithm during the clustering step. It is also imperative
to understand the importance of feature selection, and what
features are selected by the RF classifier to predict the soil
fertility. Thus, the feature importance metric was examined
on the input dataset, and the results are shown in Figure 6.
Algorithm 1 shows the complete process involved during data
preprocessing and clustering.

D. MODEL PREPARATION AND IMPLEMENTATION
In the proposed model, the processed data goes through 2 pri-
mary stages, namely, a multi-class multi-output classification
model, that formulates relationships between the classifica-
tion labels and the dataset, and attempts to predict soil fertility
categories and soil parameter categories simultaneously for
a given dataset, given input real values. The second layer,
an explainable AI (XAI) analysis layer, attempts to explain
the relative soil fertility based on the results from the above
2 models. A K-Means cluster acts as a data preprocessing
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TABLE 6. Comparison of different soil fertility datasets.

TABLE 7. Some statistics of raw input dataset.

layer for themodel, wherein, unlabeled data is provided labels
for the rest of the model to compute its predictions from.
Table 9 shows the numeric label clusters formed in this step,
alongside their equivalent human interpretable discrete label
assignment and color (used to depict datapoints in Figure 5).
This clustering technique works on the concept of divid-
ing multiple datapoints in N dimensions into K clusters so
that the sum of squares within points in a cluster is mini-
mized [36]. Thus, each datapoint is assigned a set of integer
labels based on its input attributes. This K-Means cluster uses
the implementation present in the scikit-learn module [38]
from python.When the labels are generated, the data is stored

FIGURE 3. A plot showing the optimal number of clusters for the input
parameters to the model.

in .csv files, and then the data is loaded into the program for
the classification model.

Each of these algorithms are based on practical implemen-
tations of mathematical formulae. The RF Classifier works
by computing impurity coefficients respectively to determine
how nodes branch on a given tree. By default, the gini impu-
rity coefficient is used, which is given by (4),

GiniImpurity = 1−
∑C

i=1
(pi)2 (4)

where Pi denotes the relative frequency of a particular class
in a dataset, and C represents the number of classes. The
XAI model used uses a SHAP Tree Explainer layer [39],

97872 VOLUME 11, 2023



H. Chandra et al.: Explainable AI for Soil Fertility Prediction

FIGURE 4. A plot showing the optimal number of clusters for generating
relative soil fertility labels.

FIGURE 5. A Scatter plot of clusters formed for each soil point on
(a) pH_CaCl2 values (b) combined relative soil fertility.

TABLE 8. Some statistics of processed input dataset.

that attempts to compute SHAP values for Tree based models
(exclusively) in polynomial time. SHAP values are tradition-
ally computed using (5),

φi(p) =
∑

S∈N [i]

|S|!(M − |S| − 1)!
M !

[p(S ∪ {i} − p(S))]

(5)

where, ϕi denotes the Shapley value for any feature i (out of a
total of N features), M denotes the overall number of features,
p denotes the prediction given by the model, and S denotes a
set containing non-zero indexes for the features [41].

The input data has a training-testing split of 80%-20%.

FIGURE 6. Feature Importance for the RF Classifier.

Algorithm 1 Data Preprocessing & Clustering
Input: Raw .csv files containing LUCAS 2018 Topsoil dataset

Step 1: Load & clean dataset Di using defined classes
Step 2: Define Clusters C1& C2,having 5 & 3 classes respectively.
Step 3: Fit dataset Di to clusters C1 and C2, & combine generated label sets

L1and L2 with Di
Step 4: compute_correlation(Data, RelSoilFertility)
Step 5: compute_feature_importance(Data)
Step 6: write_back(Data, filename← ‘data.csv’)
import the Numpy library as np and the Pandas library as pd
function clean_data(dataset)
data_new← ‘‘’’
for i in dataset do
column← np.asarray(i).reshape(i.shape[0],1)
imp← IterativeImputer(max_iterations = 10)
col_new = imp.fit_transform(m)
if type(data_new) = string then

data_new = col_new
continue

end if
data_new = np.c_[data_new, col_new]

end for
data_new = pd.DataFrame(data_new)
return data_new

end function
function load_data(filename)
load← pd.readcsv(filename)
return load

end function
function combine(dataset1,dataset2)
return np.c_[dataset1,dataset2]

end function
procedure compute_correlation(dataset)
r← dataset[:8].columns
p = dataset[9:]
for i in r do
correlation← p[i].corr(p[’Relative Soil Fertility’])
corr_itself← r[i].corr(p[i])
display correlation
display corr_itself

end for
end procedure
procedurecompute_feature_importance(dataset)

Define the classifier model
Fit the classifier to the data
sort← clf.feature_importances_.argsort()
Plot a bar graph of sort, labelled Feature Importance

end procedure
Output: Processed data, stored in data.csv, with generated labels.

E. CLASSIFICATION MODEL
The classification model is built on the RF classification
algorithm [37], a bagging ensemble learning technique that
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TABLE 9. Cluster categories.

involves an additional layer of randomness. It is a supervised
learning algorithm, which means that it is trained on a labeled
dataset. Each decision tree in the RF makes a prediction
based on the features of an example, and the predictions of
all the trees are combined to make the final prediction for
the RF. This model uses the implementation of the RFClas-
sifier class, present in the scikit-learn module [38] from
Python. This model uses the labeled data generated in the
previous step to understand and thus predict the relative soil
fertility category that each datapoint belongs to. Algorithm 2
shows the step by step working of RF model preparation in
abstract form.

Algorithm 2 RF Model
Input: Processed data, stored in data.csv, with generated labels.

Step 1: Fetch data, & split it into training & testing set (80%-20%).
Step 2: Define a RFClassifier from the scikit-learn library
Step 3: Fit the training data variables to the RF Classifier
Step 4: Get Predictions from the RF Classifier based on testing data
Step 5: Compute and display Models F1 score
Step 6: Compute and display Models Accuracy
Output: Trained Multiclass, Multioutput RF Model.

F. EXPLAINABLE AI (XAI) ANALYSIS LAYER
To understand the correlation between the relative soil fer-
tility classification and the soil parameters (like pH_CaCl2,
pH_H2O etc.), the relationships formed by the ensemble clas-
sifier must be explained using the SHAP (SHapley Additive
exPlanations) module from Python. It is a game theoretic
approach [39] that allows optimal explanations of the global
models output based on understanding the cumulative local
explanations of the model’s predictions. Figure 7 shows
three different waterfall plots from the SHAP module, which
describes the impact of the metrics on relative soil fertil-
ity categorization. It can be observed in Figure 7 that the
pH_H2O and pH_CaCl2 have a huge impact on the fertility
of the soil. A low or high pH_H2O and pH_CaCl2 value
can impact the relative soil fertility rating of a particular
sample of soil. Other metrics like P, N, OC, K, CaCO3,
and EC also have a significant impact on the relative soil
fertility rating of any given soil sample. Table 10 gives the
selected datapoints for each waterfall plot, and their cate-
gorization. Algorithm 3 shows the stepwise brief overview
of XAI model preparation and generating lucid waterfall
plots.

FIGURE 7. A datapoint with (a) low relative soil fertility, (b) medium
relative soil fertility and (c) high relative soil fertility.

IV. RESULT, DISCUSSION, & APPLICATION SCOPE OF
MODEL
A. EVALUATION METRICS
The performance of the RF model is measured using the
Accuracy and F1 scoring for the classification of each metric.
The Accuracy metric is computed using (6), (whose variables
are explained in Table 11),

Accuracy% =
TP+ TN

TP+ TN + FP+ FN
(6)

Alongside this, an F1 score is computed on the classifier’s
output, for each metric, using (7),

F1 =
2 ∗ precision ∗ recall
precision+ recall

(7)

97874 VOLUME 11, 2023



H. Chandra et al.: Explainable AI for Soil Fertility Prediction

TABLE 10. Selected datapoints for waterfall plot.

Algorithm 3 XAI Model
Input: Trained Multiclass, Multioutput RF Model; Test dataset

Step 1: Load Model into a TreeExplainer Function
Step 2: Create a Tree Explainer class based on Model
Step 3: Load Test Dataset Dtest
Step 4: Generate SHAP values using TreeExplainer on Dtest
Step 5: Project SHAP values onto a waterfall plot
Output: Lucid waterfall plot depicting the effect of individual soil fertility metrics on the relative
soil fertility for a given soil sample.

TABLE 11. Meaning of the variables.

where, both precision and recall are quantities that are com-
puted using (8) and (9), assuming the variables as defined
in Table 11,

precision =
TP

TP+ FP
(8)

recall =
TP

TP+ FN
(9)

The AUCROC score is also calculated, using the scikit-learn
roc_auc_score function, with the inputs being y_test and the
prediction probabilities of the model, in the One-vs-Rest
format.

Based on calculations using these formulae, it is found that
the proposed model achieves a high score of 96.97% in terms
of accuracy % and 0.90 in terms of the F1 score. The results

TABLE 12. Model performance.

TABLE 13. Performance comparison with other implementations.

are further demonstrated in table 12, and compared with
similar implementations in table 13.
Similar implementations of RF Classifiers in other papers

(like [30]) achieve an accuracy of 72% whilst predicting
soil fertility, implying that the proposed model can outper-
form existing implementations whilst introducing a layer of
transparency often missing from other models. Also, due to
the vast preprocessing involved and the self-generation of
labels, the proposed model may also have less bias in the
data compared to other implementations, that use human
defined boundaries as constraints for labels. Figure 8 shows
confusion matrices for each metric, generated on a sample
size of 3797 datapoints.

The model can classify a sample of soil into a relative soil
fertility category, and explain the reasoning behind the classi-
fication of the soil in that category. This has tremendous uses
in understanding the relationships between the concentrations
of a soil’s physiochemical properties and the relative soil
fertility. To apply our understanding of these relationships,
further work must be done to predict the rating from a short
term and long-term perspective. This would be useful for
farmers to understand both the short-term implications and
long-term implications (in years, for example) of using a
particular fertilizer in terms of soil fertility rating. A future
application could potentially be used in the real world as a soil

VOLUME 11, 2023 97875



H. Chandra et al.: Explainable AI for Soil Fertility Prediction

FIGURE 8. Confusion Matrix for (a) Relative Soil Fertility, (b) pH_H2O,
(c) pH_CaCl2, (d) EC, (e) OC, (f) CaCO3, (g) P, (h) N, (i) K.

fertility improvement guide, which could improve yields of
certain crops over time. Figure 9 demonstrates such a use case
in a real-world scenario.

FIGURE 9. A real world scenario for the model.

V. CONCLUSION
Soil fertility is a crucial factor in determining the quality and
quantity of crops produced. As agriculture continues to play
a vital role in feeding the world’s population, it is essential to
understand and address issues related to soil fertility.With the
advancements in technology, the use of Explainable AI (XAI)
based models, like the proposed model, can aid in assessing
and identifying reasons for variations in soil fertility over
time. In this study, we investigated the application of this
model on real-world data collected in the European Union
for predicting relative soil fertility. Additionally, we analyzed
the factors contributing to specific levels of soil fertility.
To enhance interpretability, we presented the results using
user-friendly graphs, which demystify the functioning of
the model. Such models can assist farmers in understanding
soil deficiencies and implementing sustainable solutions to
improve fertility and ultimately optimize crop yields. It is
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imperative for further research in this field to be conducted
to fully harness the potential of these models in improving
global food security.
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