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ABSTRACT With the development of artificial intelligence and autonomous driving technology, the vehicle-
road cooperative control system combined with artificial intelligence technology can provide more effective
and adaptive traffic control solutions for intelligent transportation systems. Existing research works are
confronted with two kinds of challenges. For one thing, traditional recurrent neural networks-based methods
cannot model the long-time dependent information in traffic flow sequences. For another, the large sample
correlation makes it difficult to optimize the trained strategies. In this paper, we propose a Multi-agent Deep
Reinforcement Learning (MADRL)-based intelligent vehicle cooperative control method to deal remedy
current gaps. To this end, a closed-loop control system of self-driving vehicles and signal controllers is used
as the research object to achieve dynamic scheduling of traffic flow by MADRL. After designing relevant
experimental validation, the feasibility of the method is verified in terms of both scheme comparison and
operational effect analysis, which is a good aid to traffic signal timing. The simulation results show that the
proposal can be well utilized to realize collaborative control of smart vehicles, and there is some performance
improvement compared with several typical methods.

INDEX TERMS Collaborative control, smart vehicles, deep reinforcement learning, intelligent transporta-
tion systems.

I. INTRODUCTION
A. IMPACT OF ROAD CONGESTION
Urban road congestion not only seriously affects people’s
travel efficiency but also is a hidden danger to traffic safety.
This restricts urban development and causes incalculable
losses to urban development [1]. The rapid growth of urban
population and motor vehicle ownership has triggered the
rapid growth of urban traffic demand. The contradiction
between supply and demand of urban transportation systems
is intensifying [2]. And the backward transportation systems
have become the main bottleneck to restrict the sustainable
development of the city [3]. Traffic signal control is a
traffic control method that controls traffic signals and timing
schemes by computer [4]. A traffic signal control system
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with good reliability and high stability has the advantages of
high efficiency [5]. With the rapid development of artificial
intelligence, urban traffic signal control scheme recom-
mendations, traffic intersection flow prediction and traffic
intersection spatiotemporal data analysis are increasingly
popular directions [6].

B. LIMITATIONS OF EXISTING TRAFFIC SIGNAL CONTROL
SYSTEMS
Single intersection signal control scheme recommendation is
based on the real-time status of the traffic intersection [3].
The signal control scheme recommendation systems are built
by characterizing the traffic state such as the traffic flow,
saturation, and queue length of the roadway [7]. However,
the traffic flow at traffic intersections is affected by factors
that are difficult to be comprehensively counted, and they
cannot be accurately modeled for single intersections [8].
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This results in fact that existing signal control scheme
recommendation system is still difficult to cope with complex
traffic conditions [9]. The current mainstream algorithms are
intelligent control methods based on fuzzy control and neural
network control [10]. However, the rules of fuzzy control
increase with the increase of control intersections. And too
many rules will bring certain adverse effects on the operation
speed [11]. And it has no self-learning function, yet cannot
adapt to nonlinear and randomly changing traffic flow [12].
Traditional recurrent neural networks cannot model long-

time dependent information in traffic flow sequences [13].
Deep learning is the process of learning the intrinsic laws
and levels of representation of sample data. The information
obtained from these learning processes can be of great
help in the interpretation of data such as text, images, and
sounds [14]. Its ultimate goal is to enable machines to
have analytical learning capabilities like humans, capable of
recognizing data. The literature [15] estimated the parameters
of the construction cost budgeting phase, analyzed theo-
retically their correctness and reasonableness, programmed
in MATLAB using the BP algorithm commonly used in
artificial neural networks, and predicted new projects and
found that their errors were significantly reduced concerning
traditional methods.

C. POTENTIAL OF DEEP REINFORCEMENT LEARNING
The reinforcement learning was developed to describe and
solve problems where agents learn strategies to maximize
returns. And this process is supported by the adaptive interac-
tions between the agent and the environment. The application
of deep reinforcement learning methods combined with
vehicle networking technology to vehicle-road cooperative
control decision-making for urban road traffic control is a
current research hotspot and frontier [16]. And the optimal
control strategy is learned by analyzing the training samples
between traffic state changes and control actions [17]. In this
paper, based on the multi-intelligence technology, we use
the knowledge of game theory to divide three control levels:
local level, subarea level, and area level, based on the
distribution of traffic flow in the road network [18]. This
paper firstly aims to optimize traffic flow control in urban
road intersection areas. Then, it uses the closed loop formed
by self-driving vehicles and signal controllers as the research
object to achieve dynamic scheduling of traffic flow through
deep reinforcement learning methods [19]. Through the
proposed method, it is expected to improve the transportation
efficiency.

D. OUR CONTRIBUTIONS
For the control objects of each control level, we model
regional, sub-regional, and intersection intelligence. Hence,
we propose the traffic signal rolling control method based
on Multi-agent Deep Reinforcement Learning (MADRL).
Specifically, the decision-making ability of the intelligence is
trained, the traffic signal control in the whole area of the road
network is realized, and the intelligent traffic signal control

optimization system is designed to improve the operational
efficiency of the entire traffic network. This also guarantees
the overall control performance of the traffic control system.
The software system carrying the solution is also able to
provide technical service support for the traffic department,
and improve the vitality and carrying capacity of urban traffic.
Main contributions of this paper can be summarized as five
points:

• We comprehensively analyze current challenges in exist-
ing researches on artificial intelligence-based vehicle-
road collaborative systems.

• This work formulates a traffic signal control algorithm
based on intersection clustering.

• This work formulates an Intelligent Vehicle Collabora-
tion Solution based on MADRL

• The above two points constitute main technical frame-
work of this paper: a collaborative control scheme for
smart vehicles based on MADRL.

• Some simulations are conducted to verify efficiency of
the proposal.

II. RELATED WORK
A. TRADITIONAL MATHEMATICAL MODELING-BASED
COLLABORATIVE CONTROL APPROACHES
Traffic signal control is a traffic management measure that
separates traffic flow rights-of-way in time, solving the
problem of traffic flow that cannot be separated in space [20].
The traffic control system is the main facility to ensure traffic
order, integrating the management concept and intention of
traffic managers [21]. Traffic control technology has gone
through the development process from single point control
to line control to surface control, from timing control to
induction control to adaptive control [22]. The target system
of traffic control effect is gradually improved. At the micro
level, the traffic control system optimizes the intersection
traffic state to make the traffic flow through the intersection
with minimum delay. At the level, the traffic control system
optimizes the control parameters and joint control of multiple
intersections. Hence, the main body of traffic flows smoothly
through a cluster of intersections to achieve arterial or
regional coordinated control.

At the macro level, the traffic control system adjusts
and distributes the traffic flow as a whole, so that the
traffic flow has a reasonable distribution on the road
network and achieves a dynamic balance of traffic flow.
The literature [15] first applied reinforcement learning for
traffic signal control, and proposed four classical theories in
reinforcement learning. Miao et al. [23] proposed a Markov
decision process framework for adaptive control of traffic
signals. But the transfer probabilities between traffic states
need to be determined in advance. And its practical control
applications are limited. A distributed multi-intelligence-
based approach for traffic signal control was proposed in the
literature [24].
Some researchers have started to use artificial intelligence

techniques in the field of traffic signal control. But most of
them only consider the control of individual intersections and
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are not applied to the area control level. The literature [25]
sets up target intersections, uses a cellular transport model to
model the target, and sets up a multi-objective optimization
algorithm by which various traffic operation metrics are
calculated. In the literature [26], for the dynamic and
uncertainty of intersection traffic flow, the Markov process is
used to predict the occupancy rate of vehicles entering each
inlet lane. And then, signal timing control of the intersection
is optimized by constructing a reinforcement learningmethod
based on Q-values. Zhang et al. [27] investigates special
roundabout intersections by using predictive control ideas,
establishing dynamic prediction models for the roundabouts
and entrances, and obtaining the optimal timing parameters
for roundabout intersection cycle control.

B. ARTIFICIAL INTELLIGENCE-BASED COLLABORATIVE
CONTROL APPROACHES
The literature [28] analyzes the relationship between the
gradient and period under three traffic states of undersatura-
tion, critical saturation, and oversaturation for the constraint
relationship between evaluation index and capacity. Then,
it uses the similarity function of the two as the optimization
objective to time the signal. In [29], based on the time-varying
characteristics of intersection traffic flow, a multi-objective
signal timing optimization model with the minimization
of delay, queue length, and several stops as the objective
function is proposed. In this work, the case study shows
that the optimization model can significantly improve the
applicability and efficiency of signal control. Yu et al. [30]
proposed the period and green signal ratio optimization
model for single intersection timing control is developed
using constraints that satisfy the intersection control in
general. In this work, the applicability of the model and
algorithm is verified with practical cases. Zhou et al. [31]
proposes a single-intersection signal timing optimization
method using different control objective functions based on
the intersection occupancy and flow ratio relationships. This
work verifies the superiority of the method using a real case
in Shenzhen.

In [32], the relationship between minimum green time and
vehicle delay and traffic safety is analyzed. Then, a single-
lane minimum green time optimization model based on risk
decision is established. For the multi-lane case, a multi-
lane minimum green time optimization model and a max-
imum green time optimization model are also established.
Tang et al. [33] proposed an adaptive signal control method
with the control objective of minimizing vehicle travel time
in road networks. Its advantages in reducing travel time
and stopping times are demonstrated through numerical
experiments. In literature [34], an improved priority traffic
control method for emergency vehicles at intersections in
a coordinated traffic signal timing and speed guidance is
proposed. And simulation experiments are conducted using
a simulation platform.

Wilson et al. [35] proposed a traffic signal control
system using high-quality microscopic data and built an
adaptive traffic signal control simulation platform using

deep reinforcement learning methods. The simulation results
showed that the system outperformed other control systems.
The vast majority of studies use a hypothetical static stochas-
tic environment with fully independent or partially state-
cooperative coordination mechanisms for optimal control of
local intersections. This constrains the overall effectiveness
of network traffic control systems, while there has been a
rapid development of action-linkage-based MARL control
methods [36].

III. METHODOLOGY
A. TRAFFIC SIGNAL CONTROL ALGORITHM BASED ON
INTERSECTION CLUSTERING
Unlike traditional traffic signal control methods, reinforce-
ment learning methods can adjust the control strategy as
the traffic conditions change and have better adaptability.
However, the performance of reinforcement learning-based
traffic signal control methods is heavily dependent on
the accurate modeling of the traffic environment. Vehicle
dynamics information in some traffic networks is usually
difficult to obtain in real-time due to the limitations of
traffic infrastructure. For example, the number of vehicles
in a lane is easy to obtain (usually only camera equipment
is needed), while information such as vehicle speed and
waiting time is not so easy to obtain. Accurate vehicle speed
acquisition relies on the deployment of IoT devices such as
speed cameras and millimeter wave radar, while the real-time
acquisition of vehicle wait times requires continuous tracking
of vehicles.

If accurate vehicle dynamics information cannot be
obtained in real-time, existing reinforcement learning algo-
rithms are difficult to adapt to real traffic environments or the
learning process converges slowly. Therefore, it becomes a
major challenge to rapidly construct high-quality reinforce-
ment learning models for traffic signal control when the
observation of vehicle dynamics information is limited. Most
existing reinforcement learning-based traffic signal control
methods focus on optimizing traffic from the perspective of a
single traffic intersection [17]. Even in amulti-junction traffic
environment, there is no interaction between the models
controlling individual intersections. This design reduces the
complexity of the method design and limits the control
performance of reinforcement learning methods. Another
part of the control methods considering intersection synergy
optimizes the control from the perspective of neighboring
intersection influence or dividing sub-regions [14].

However, the reinforcement learning modeling is often
too complex, which seriously affects the convergence speed
of the algorithm. Therefore, accelerating the convergence
speed of the algorithmwhile considering intersection synergy
is also a major challenge. Traffic pressure modeling and
reinforcement learning modeling are performed with the
limited observation of vehicle dynamic information. In addi-
tion, unlike other methods that do not consider intersection
collaboration or design complex intersection collaboration
algorithms, the algorithm in this paper divides all traffic
intersections into clusters. Among, the reinforcement learn-
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FIGURE 1. The overall architecture of ClusterLight.

ing model is designed to be very simple and effective.
Intersections within the same class cluster collaborate by
sharing traffic data.

For the case of limited observation of vehicle dynamic
information, accurate traffic pressure modeling and rein-
forcement learningmodeling based on the number of vehicles
is performed [37]. The modeling scheme performs signal
control from the perspective of minimizing intersection
pressure. Experimental results in simulated traffic scenarios
and real traffic scenarios with different road network sizes
show that the algorithm in this paper can reduce the algorithm
learning time. Figure 1 shows the overall architecture of
ClusterLight in detail. As shown in the figure, the algorithm
is mainly divided into two modules: the terminal on the lower
side and the cloud on the upper side. Traffic intersections
are clustered according to their locations and traffic flows.
It can be seen that intersections I1 and I2 are classified into
the same class cluster and interact with class cluster 1 in
the cloud, while I3 and I4 are classified into the same class
cluster and interact with class cluster x in the cloud. The
algorithm deploys an edge node at the endpoint for each
traffic intersection. As is shown by the blue arrow line, the
traffic data collected by the edge node through sensors and
other IoT devices.

A portion of this traffic data is transmitted directly to the
neural network, which generates control phases and feeds
them to the signal devices at the terminal [38]. The other
part is transmitted as experience alongwith the control phases
to an experience replay pool for storage, and is periodically
removed by the neural network for training. In maximum
pressure theory, the definition of traffic pressure is related
to the number of vehicles in the lane. But not all vehicles in
the lane will cause pressure on traffic during a phase time.
When the lanes are long, only some of the vehicles close
to the intersection have the opportunity to pass through the
intersection. The effective distance is the longest distance a
vehicle can drive through in one phase of time, and is defined
as:

Lnn = e−αK ′
+ e−βM (x, y) · Xnn · Ynn (1)

where Lnn denotes long distance, e is a constant, K denotes
traffic pressure, x, y denotes the traffic number on the road,
and Xnn and Ynn denote the location of car x, y to the nth
intersection with n lanes, respectively.
Lane pressure reflects the traffic pressure exerted on an

intersection by the vehicles in the effective section of the
lane. Intuitively, the more vehicles in a lane, the more traffic
pressure is exerted on the intersection by the vehicles in that
lane. When the signal runs out of green time, the model needs
to select a new phase that minimizes the traffic pressure on the
intersection. ClusterLight defines the action as selecting the
best control phase for the intersection ϕρ(x, y).

ϕρ(x, y) = ϕ
∑
y∈γ

∑
x∈χ

[
p(x, y)
ln p(x, y)

− Ax − Cy
]

+ λ (2)

where ρ is the distance function and A and C are constants.
During the traffic signal control cycle, the first phase

allows traffic flow in the NS direction to go straight and
prohibits traffic flow in the WE direction. In the traffic signal
control cycle, the second phase allows traffic flow in the NS
direction to turn left and right and prohibits traffic flow in the
WE direction to going straight. In the traffic signal control
cycle, phase 3 allows traffic flow in the WE direction to go
straight and prohibits traffic flow in the NS direction. In the
traffic signal control cycle, the first phase allows the traffic
flow in the WE direction to turn left and right and prohibits
the traffic flow in the NS direction to go straight. The red
light indicates that the east-west direction is prohibited and
the north-south direction is allowed. The first phase, and the
rest of the phases are analogous according to the traffic rules.
The design of the traffic signal phase is one of the key factors
affecting traffic congestion. If the phase time is designed
too long, it will increase the average delay time of vehicles
in opposite directions. If it is designed too short, it is not
conducive to balancing the right-of-way of road vehicles and
is prone to traffic accidents at intersections [30]. Most of the
previous research work used discrete action spaces, where the
signal controller selects one phase from all possible phases to
act as each step of the simulation. The signal light controller
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FIGURE 2. Diagram of green waveband control.

can choose to keep the current phase unchanged or switch to
the next phase after the minimum phase duration has elapsed.

In this paper, the traffic light controllers in the region are
controlled centrally, so the complete set of actions for the
smart body traffic signal controller is defined as follows:

TLaction =
[
a1, a2, . . . , ai,··· ,, an

]
(3)

where i is the state of a signal and n is the total number
of signals. The signal cycle can be specifically divided
into the optimal cycle C0, the minimum cycle Cmin and
the maximum cycle Cmax . Different cycle lengths are
usually used according to the actual operating conditions of
the intersection. The desired control effect, and the more
commonly used is the optimal cycle, which is calculated by
the following formula:

C0 =
aLoss+ 5
1 − Y

(4)

where Y denotes the time loss constant, which is determined
by the specific roadway environment. And Loss denotes the
total cycle time lost, which is expressed as:

Loss =

n∑
t=0

(losst + It − AT ) (5)

where losst denotes the loss of phase at moment t, I denotes
the green interval time of the phase, and A denotes the yellow
light time.

Arterial coordinated control, as shown in Figure 2, is to
consider multiple adjacent intersections on urban trunk roads
as one system for coordinated control. The main control
parameters involved in arterial coordinated control include
cycle time, green signal ratio, and phase difference [39].
Arterial coordination control can be divided into one-way
arterial coordination control and two-way arterial coordina-
tion control. Synchronous coordinated control is when the
intersection spacing is quite short, and the traffic volume
along the arterial direction is much larger than the traffic
volume in the intersection direction. when the traffic volume
of the arterial road is particularly large, the peak hour traffic

volume is close to the capacity. And the red light vehicle
queue at the downstream intersection is likely to cross the
upstream intersection, forming these intersections into a
synchronous coordinated control system can avoid the traffic
congestion situation.

However, in both cases, the use of a synchronized
system results in additional stopping time for vehicles on
the intersecting streets. In addition, in such systems, the
disadvantage of having all green lights displayed ahead
can cause drivers to speed up to catch the green light.
In an interactive coordination system, signals connecting
adjacent intersections in a system display opposite light
colors at the same moment. When the vehicle travels
between adjacent intersections for a time equal to half of
the signal cycle duration, the vehicle can pass through the
intersection continuously with the interactive coordination
system. The continuous coordination system is based on the
average running speed on the trunk line and the intersection
spacing, to determine the phase difference of each adjacent
intersection [19].

The costly, security and confidentiality issues associated
with the acquisition of real traffic data have led to the
significant use of traffic simulation in engineering practice.
In addition, traffic simulation helps to make an effective
evaluation of infrastructure and strategy changes before
actually putting them on the road. Therefore, this paper uses
an open-source, microscopic, multimodal traffic simulator,
SUMO (Simulation of Urban Mobility). This can model
multimodal transportation systems such as road vehicles,
public transportation, and pedestrians, and contains several
tools to support route finding, visualization, network import
and emission calculation.

B. INTELLIGENT VEHICLE COLLABORATION SOLUTION
BASED ON MADRL
This algorithm uses the parameter policy to approximate
the policy directly and updates the parameters of the
characterized policy based on the gradient of the performance
metrics [13]. In the Actor-Critic framework, the parametric
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strategy is characterized using the parameter Sg(x) and the
value function is characterized using the parameter Ai [40].
The following analysis of the strategy gradient method
algorithm is performed. Taking the parametric strategy as
an example, the general form of the update equation in the
strategy improvement process can be expressed as:

S =
1
an
Ai


n
· · ·

· · ·

k

 (−1)kg(x − ak) (6)

For the parametric strategy Ssigma, in the continuous action
control problem, it is generally assumed that action selection
obeys a Gaussian distribution. This method can effectively
integrate strategy search and strategy x(t) exploitation [41].
Above for the continuous control problem, the parametric
strategy characterized by using Gaussian distribution can be
expressed as:

Ssigma =
1
t

∫ T

0
[x(t) − γ (t)]dt + C (7)

where γ (t) is the output of the function approximator
concerning the parameter x(t), C denotes the mean of the
action distribution and α1 is the standard deviation of the
action distribution associated with state s. Then Equation (1)
can be expressed as follows:

Llocal = α1 −
(αi + αi+1)

(
E1
n + λi

)(∑k
i=1 λi

) Ssigma (8) (8)

Therefore, the estimation of the error signal and the
updating accuracy of the policy network are key factors
for the algorithm efficiency. In the initial stage of learning,
the estimates of the current state Ssigma and state S value
functions Llocal Lnn are calculated by random initialization
of the weights. This in turn makes the error signal difficult
to be estimated accurately and eventually affects the update
direction. At the same time, the sign of the error signal
determines the updating direction of the parameter strategy
relative to the action. In reinforcement learning algorithms,
the values are generally small, when the actual update
result is the direction of the parameter strategy update.
When the initial parameter policy is poor, resulting in
an intelligent body searching for an action with a poor
error signal, this action a is in the same direction as the
optimal action a* concerning Lloacl . In addition, the actual
system characteristics limit the executable search strategy,
and the intelligent body allows only a limited step of
action changes at adjacent moments. Thus, the action search
variance can only be limited to a small range. In summary,
an effective updating depends on a suitable search strategy
with accurate evaluation. The evaluation signal calculated
by Equation (8) can be used to evaluate whether the system
state is closer to the desired value [42]. However, when
the policy network is poorly initialized, the intelligence
will get a negative evaluation signal after searching both
directions, and cannot determine the correct policy update

direction. Therefore, further correction of the evaluation
signals in such cases is needed. The search direction is further
evaluated by comparing the difference in the return signals
of different search directions. The global signal expression is
as follows:

Lglobal = τmin
∂γ

∂j
+

1
τmax

n∑
i=1

XiYi (9)

where τmin denotes the minimum response time and τmax
denotes the maximum response time. Using the evaluation
signal d as supervision, when the relationship of Eq. 10 is
available:

sign(δ) = sign(d)(10) (10)

The following equation is used to update the policy
network based on the Bellman equation:

dθ = dθ + αδ∂ log(a | s, θ) (11)

The update direction of the strategy parameter network is
opposite to the update (M1) direction of the strategy network
based on the Bellman equation. Through the normalized
evaluation method described in the previous section, the
correct direction of the action search is found through several
steps of exploration and comparison. This action search
direction is used in the next step of the strategy search.
In each batch dataset, the intelligence forces two directions
of action search to update based on a priori knowledge. The
above design approach makes the reinforcement learning
method with less a priori knowledge or training data. The
design of each signal such as specific dS will be specified
by the vehicle longitudinal driving policy learning control
problem. The driving process is modeled as a Markovian
decision process. it is divided into state design, action
design, and reward design. The state vector design needs
to fully characterize the state. The following mode can be
designed as:

Nvi = 5

(
3∑
i=1

Vit + θ

)
+ η (12)

where Vi denotes the state design, action design, and reward
design states, respectively, and we weigh the sum of the
global and local rewards, and the final presentation form of
the reward function is:

Nglobal = EXP
(∑n

i=1 Nvi
n

)
(13)

where EXP(·) denotes the sigmoid function as follows:

EXP (x) =
1

1 + e−x
(14)

The communication mechanism allows each intelligence
to simulate the global state of the environment, allowing
them to make more accurate decisions. To achieve this,
a communication module is designed that uses LSTM to
encode the previous observations and behaviors, resulting in

96226 VOLUME 11, 2023



L. Shi, H. Chen: Collaborative Control Scheme for Smart Vehicles Based on MADRL

FIGURE 3. Diagram of green waveband control.

a vector form of information. By communicating between the
intelligence, the overall state can be approximated as:

w =
kx + δ

p2(x)
+ C (15)

This is because themessage p(x) already contains all previous
observations and behaviors. Each agent selects one behavior
w(t):

w(t) =
1.22√

1 +

(
Kt2
T

)2 + 0.43 (16)

The goal is to maximize the overall cumulative return, which
is evaluated by Kt2

T . As Figure 3 shows the detailed structure
of the algorithm, the information based on observations
and behavior a is updated by the communication module,
where the red squares indicate information and the blue
squares indicate observations. More specifically, at time t, the
agent receives the current observation from the environment.
The global state of the environment is shared by all the
bits of intelligence, relying not only on the historical state
and behavior of each intelligence but also on the current
observation.

Once the action returns, the simulator starts again to
interact with the environment to generate data, and so on. The
system-shared memory array provides fast communication
between the action server and the simulator, and the server
does not need to access the Tra CI port each time. Syn-
chronous samplingmay slow down due to the backward effect
equating to the slowest process at each step. The variation
in step time arises from different computational loads and
other random perturbations in different simulator states. The
lagging effect worsens as the number of parallel processes
increases, but it is mitigated by stackingmultiple independent

simulator instances in each process. Each process executes all
simulators for each batch gradient computation.

IV. EXPERIMENTAL VERIFICATION AND ANALYSIS
A. EVALUATION ON TRAINING
The algorithm validation process in this paper is based
on Spark cloud computing architecture deployed on cloud
servers. The Spark cloud architecture consists of a primary
node and multiple worker nodes. The red arrows indicate
that the primary node broadcasts global learning rates and
average parameters to the worker nodes. The blue arrows
indicate that the worker nodes aggregate local data to the
primary node. The efficiency of the road network before and
after the introduction was compared by varying the vehicle
penetration rates in four directions of 1600veh/h, 2400veh/h
and 3600veh/h with the introduction of autonomous vehicles
at 10%, 40% and 75%. The resource management node
is dedicated to managing the resource scheduling and
monitoring the operation status of the nodes, as shown in
Figure 4. In the parallel iterative learning process of the CNN-
LSTM prediction model, the local data update is considered
the Map process, and the global data update is considered
the Reduce process. In the Map phase, all worker nodes
compute local gradient sums, and local loss functions and
update local parameters in parallel based on a subset of
locally cached data. In the Reduce phase, the primary node
reconstructs the global learning rate and computes global
learning parameters. Primary node broadcasts global data
to all worker nodes in the cloud as the next iteration. The
primary node broadcasts the global data to all worker nodes
in the cloud as the initial values for the next iteration. This
parallel iterative computation process continues until a preset
number of iterations or prediction accuracy is met.
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FIGURE 4. The overall structure of cloud parallel training.

FIGURE 5. Comparison of prediction performance of prediction models in different prediction time
domains.

The daily traffic flows in the road network have similar
characteristics of random fluctuations, reflecting the rela-
tively stable travel demand and regular traffic flow propa-
gation. It can be observed from the dataset that the traffic

flows on the same day of the week exhibit a time-dependent
periodic repetitive characteristic with irregular perturbations.
The training dataset embeds the time-series fluctuation
characteristics of traffic flow on the same road section and

96228 VOLUME 11, 2023



L. Shi, H. Chen: Collaborative Control Scheme for Smart Vehicles Based on MADRL

FIGURE 6. Number of vehicles passing through all intersections per
simulation round.

the spatiotemporal coupling characteristics formed between
multiple road sections in the road network. In this paper,
87,798 traffic flow data collected on 14 expressways are used
as the data samples for this experiment. The first 10 months
of data are used as the training data set with a sample size of
79173, and the remainingmonth of data is used as the test data
set with a sample size of 8625. The entire training data set is
decomposed into several subsets and distributed to different
computing nodes in the Spark cloud. The global features
of the entire dataset are obtained by aggregating the local
learning features of the data subsets on multiple compute
nodes. The remaining test dataset is used to verify whether
the CNN-LSTM model parallel training method can extract
the nonlinear spatiotemporal features of the traffic network
flow. The future prediction time domains are defined as 5min,
15 min, 30 min, and 60 min, respectively.

The prediction performance is shown in Figure 5. The
experimental results show that the DTRmethod has the worst
performance in traffic network flow prediction because the
random perturbation of traffic data affects the stability of
the decision tree algorithm. the SVR algorithm reduces the
prediction error to some extent, by mapping the uncertain
traffic flow data to a high-dimensional feature plane.
However, the prediction error is still high because SVR
cannot reflect the nonlinear connection between complex
inputs and multidimensional outputs in solving the problem
of multi-output regression analysis. Compared with the SVR
method, the CNN method taps the spatial coupling features
between multiple sections by convolution operations and
reduces the MAE and RMSE error metrics by an average
of 9.42% and 3.25% in different prediction time domains.
the LSTM method further improves the prediction accuracy
with its unique gate unit and correlation time series network
structure.

The CNN-LSTM method based on parallel adaptive
training combines the advantages of both CNN and LSTM,

FIGURE 7. The computational efficiency of offline training based on the
edge computing cloud.

fully extracts the spatial correlation features betweenmultiple
sections of traffic network flows and their respective time
series features, and further improves the prediction accuracy
through the fully connected structure. The CNN-LSTM
method is significantly smaller than other prediction methods
in terms of MAE and RMSE error performance metrics for
traffic network flow prediction tasks in different prediction
time domains. Overall, the CNN-LSTM prediction method
decreases approximately 29.47%, 25.24%, 17.44%, and
12.11% in MAE error measures, and 28.93%, 16.6%,
13.77%, and 8.43% in RMSE error measures, respectively,
compared with the DTR, SVR, CNN, and LSTM methods.
These data comparison results show that the CNN-LSTM
parallel prediction method can effectively extract the spa-
tiotemporal characteristics of traffic network flow in traffic
big data and improve the prediction effect. Compared to
CNN-LSTM, MADRL avoids getting caught in the local
optimal solution, and the overall prediction accuracy is
higher, and there is only some error in the 20min traffic
prediction, so MADRL is the most suitable traffic prediction
algorithm.

B. EVALUATION ON COLLABORATIVE CONTROL
The parallel and serial schemes using different numbers of
computational nodes have slight oscillations during training,
which are caused by the µ-greedy greedy search mechanism.
In the early stages of training, the multiple intelligences
explore actions randomly with a large probability within
the constraint, which causes the training curve to fluctuate
around a low value. As the number of training episodes
increases, the probability of the actor-critic being adopted as
a controller gradually increases and the training curve starts
to climb upward. At the later stage of training, the training
curve gradually converges as multiple intelligences learn to
cooperate, relying on feedback rewards and contribution allo-
cation mechanisms. The MADRL parallel training scheme
and the serial training scheme based on different degrees of
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FIGURE 8. Tendency of loss values with respect to experimental methods (key points-based curves).

parallelism eventually converge to a near-stable threshold,
as shown in Figure 6. This indicates that the MADRL parallel
computing method does not degrade the accuracy of the serial
training scheme.

The performance comparison of the computation time
consumed by CMAC training using a different number
of computation nodes is shown in Figure 7. In Figure 7,
the training time decreases gradually with the number of
computational nodes. The traditional serial training scheme
that requires a large amount of computation time spent and
memory consumption. However, for those parallel training
schemes that use different numbers of computational nodes,
the more the number of computational nodes, the less the
number of actor-critic intelligence is allocated to each node,
and the less computational time and memory are required.
This is because large computational loads, such as parameter
updates, action generation, and value function computation
tasks, are computed synchronously in a parallel manner
by multiple computational nodes assigned to the cloud.
In particular, the efficiency of MADRL parallel computing
is maximized when only one actor-critic intelligent body
decision task is assigned to one node of edge computing.
As shown in the figure, the acceleration ratio curve of
the MADRL parallel training method shows an increasing
trend with the number of computational nodes. However,
for Spark clusters of different sizes deployed in the cloud,
the load generated by resource scheduling, task allocation,
communication, and synchronization among compute nodes

is uneven, so the increasing trend of this speedup ratio is non-
linear.

Taking MADRL, LSTM, CNN and SVR as an example,
their training process is visualized via two format of charts.
The changing tendency of loss values is selected as the core
metric for presentation. It is displayed via two types of charts:
key points-based curves and continuous smooth curves. The
former is shown as Figure 8, and the latter is shown as
Figure 9. They both have four subfigures which correspond to
circumstances of MADRL, LSTM, CNN and SVR. For each
subfigure, its X-axis denotes the phase duration changing
from 1 to 25, and its Y-axis denotes the loss values. The
two kinds of charts can well display the changing tendency
of training process via different visualization effect. It can
be seen from the figures that experimental methods can
tend to converge after some iterative rounds. In addition,
we also make some comparison between MADRL and other
three methods in terms of control quality, which is shown
as Figure 10. For MADRL, the shorter the phase duration,
the better the control quality of the strategy, because when
the phase duration is reduced, less green time is wasted. The
traffic network under MADRL control not only always has
the smallest average travel time, but also learns faster than
the MADRL-based one, which starts converging in the first
ten rounds of learning.

Comprehensive experiments were conducted under four
simulated traffic datasets and two real traffic datasets
to validate the effectiveness of MADRL. Compared with
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FIGURE 9. Tendency of loss values with respect to experimental methods (continuous smooth curves).

traditional signal control algorithms and three advanced
reinforcement learning control algorithms, MADRL can
improve the global traffic network efficiency while avoiding
a few vehicles waiting all the time and enhancing people’s
travel experience. At the same time, MADRL has a faster
convergence rate and can learn the optimal control strategy
quickly. The state information acquisition device serves the
control algorithm integration deployed in the cloud, and
the traffic light device receives the control action to ensure
the traffic operation. After receiving the status information,
the algorithm integration part performs calculations from
the status information and returns the calculated control
commands to the traffic light devices. The road condition
information acquisition equipment and the average vehicle
travel time acquisition equipment transmit traffic statistics
to the cloud visualization platform in real time for traffic
monitoring. Meanwhile, the vehicle information acquisition
device records the vehicle id, the intersection, the lane, the
specific location, and the waiting time. After the vehicle
information is uploaded to the cloud, the visualization
platform will show the details of the four vehicles with the
longest waiting time.

We used TraCI to assign different ports to run the traffic
instances of this experiment in SUMO, using 8 CPU parallel
processes to run, where the information about the intelligence
interacting with multiple environments can communicate
with each other, increasing the randomness of the training
samples and facilitating the learning of the experiences
gathered from different environments. The average rates of

the road network trained by introducing 10%, 40%, and 75%
autonomous vehicles under vehicle penetration(VP, vehicles
penetration) of 1600veh/h, vehicle penetration of 2400veh/h,
and vehicle penetration of 3600veh/h are shown in Figure 11,
where the penetration rate indicates the one-way penetration
rate in four directions. The horizontal axis indicates the
simulation time (s), and the vertical axis indicates the regional
average rate (km/h). From the analysis of the training results,
the average rate increase is the largest when the vehicle
permeability is 1600veh/h and the road network is less
saturated, and the average rate increase becomes smaller as
the road network becomes more and more saturated, but
the average rate is still significantly higher than the signal
control. By the analysis of the experimental conclusion of
the fixed timing scheme, we know that the system balance
depends on the uniformity of the vehicle rate, the more
uniform the vehicle rate, themore balanced the system. Under
the above three groups of different road network saturation
conditions, the MADRL model with the introduction of
autonomous vehicles all shows more stable growth, while
the average rate variance of the road network under signal
control is larger, indicating that the system is in an unbalanced
state.

Figure 12 shows the critic network loss under the two
control strategies after smoothing, from the figure it can be
seen that the signal light control model converges too early
and may fall into local optimum, while the model converges
slowly under the vehicle-road cooperative control model,
here it is because in the vehicle-road cooperative control
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FIGURE 10. Comparison among experimental methods with respect to control quality and algorithm convergence.

FIGURE 11. Comparison experiment under different vehicle permeability.

model, TLcontroller and AVcontroller share an objective
function and the two bits of intelligence Considering each
other’s current part of observable state information, the
two parties establish a cooperation mechanism, and at the
same time, the sample data is random and the strategy uses
joint optimization to avoid falling into local optimum. The

experimental results show that in the high saturation state of
the road network, the regional traffic throughput is improved
by 23.6% on average and the average speed is improved
by 30.7% compared with the single-signal control, and the
parallel process makes the model training time significantly
optimized compared with the signal control.
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FIGURE 12. Critic network losses under different control strategies.

C. DISCUSSION
For the technical methodology, we utilizes the deep reinforce-
ment learning to improve the collaborative control efficiency
for transportation signal systems. The above two subsections
have well verified efficiency of the proposed collaborative
control method for transportation signal systems. It can be
observed from the experiments that the proposal can converge
to a relatively stable status after some iterations. It can be
also observed that proper control effect can be achieved.
However, it is noted that the proposal still suffers from two
aspects of challenge. The first challenge is the real-time
updating on large-scale data stream. In realistic large-scale
data stream, the dynamic parameter is important for the
models. The larger updating frequency is, the better dynamics
themodels have. The second challenge is the balance between
model complexity and sample diversity. In realistic engi-
neering scenarios, the statistical characteristics of samples
is changing dynamically. But general deep learning models
are with fixed structures. Will the models have the ability to
adaptively adjust their model structures according to time-
varying samples? This is also a future research point.

V. CONCLUSION
Along with the development of urbanization, traffic con-
gestion is becoming more and more prominent. Traffic
congestion not only has an impact on the environment and
economy but also leads to a huge waste of time and seriously
reduces people’s travel experience. As a controlled key device
in the traffic system, intelligent control of signals is crucial to
reduce traffic congestion. A traffic signal control algorithm
based on reinforcement learning and intersection clustering is
proposed for traffic scenarios with the limited observation of
vehicle dynamic information. In this paper, traffic pressure is
modeled based on the number of vehicles in the lane under the
restricted observation of vehicle dynamic information, and
the state, action, and reward of the reinforcement learning
method are designed based on the traffic pressure. In addition,
this paper clusters traffic intersections based on location

information and traffic flow to form multiple reinforcement
learning models for centralized control. Through accurate
reinforcement learning modeling and centralized control of
intersections, the algorithm can learn high-quality signal
control strategies quickly. In this paper, a dynamic selection
strategy for phase duration is designed based on the real-time
traffic state. Combining the traffic intensity modeling and the
design of dynamic phase duration, this paper can significantly
reduce the average vehicle travel time. Meanwhile, the
waiting time consideration can avoid vehicles from waiting
for a long time at intersections, which improves people’s
travel experience. Experimental results on real traffic datasets
and simulated traffic datasets with different road network
sizes show that the method proposed in this paper can
significantly reduce the average vehicle travel time while
shortening the control strategy learning time compared with
other state-of-the-art traffic signal control methods.
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