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ABSTRACT Passing Sight Distance (PSD) is pivotal for two-lane undivided highways, impacting their
safety and operational performance. However, current PSD standards and models are based on simplistic
assumptions and do not consider road characteristics and vehicle dynamic response. This study investigates
the adequacy of PSD models in practice by comparing them with more realistic values obtained from
IPG CarMaker®, a commercial vehicle and traffic simulation software. Similar test variables are chosen
to compare the simulation and standards consistently. Since road gradient and road-tire friction affect the
acceleration capabilities of vehicles, their effects on PSD are analysed by configuring the parameters in the
simulation. High deviations of up to 94% are observed in the PSD values compared to the existing model
under different road conditions. In the paper’s second half, the existingmodel is evaluated for its performance
in mixed traffic conditions by comparison with empirical data. Followed by this, an analytical model for
PSD is proposed, which considers vehicle dynamic response. This model allows parameter selection and
the application of physical vehicle constraints, considering the microscopic behaviour of a vehicle during an
overtake. The deviations observed in PSD values obtained from this model are within 5% for the specified
test cases simulated in the vehicle dynamics simulator. Furthermore, the model is benchmarked against
existing models using field data, demonstrating its superior performance in terms of feasibility and safety.
The accurate replication of overtaking manoeuvres by the analytical model will have significant implications
for geometric design, traffic operations, advanced driver assistance, autonomous vehicle applications and
policymaking.

INDEX TERMS Passing sight distance, trajectory modelling, two-lane highways, vehicle dynamics
simulation.

I. INTRODUCTION
The percentage share of fatalities due to head-on collisions
increased from 16.3% in 2017 to 19.2% in 2020 in India [1],
[2]. These crashes also constitute a significant share of 10.1%
of all accidents in the US [3]. The risk of a head-on collision
is maximum in the case of two-lane undivided highways,
which make up a major proportion of the road network
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around the globe. These roads represent more than 90% of
the highway network in the USA, 90% of all rural roads
in Germany, and around 92% of all roads in Spain [4], [5].
In India, they make up around 50% of the national highway
network [5], [6]. Overtaking is a complicated manoeuvre that
frequently occurs on two-lane undivided highways, which has
significant implications for the safety of road users. A fast-
moving vehicle tries to pass a slower-moving vehicle ahead
by using the adjacent lane, which is reserved for opposing
traffic. The longitudinal distance along the road that a driver
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should be able to see for safely completing the manoeuvre is
commonly referred to as the Passing Sight Distance (PSD) in
literature [7].

Therefore, adequate PSD provision along the highway
is critical for safe manoeuvring. Moreover, the inability of
fast-moving vehicles to pass slow-moving vehicles due to
inadequate PSD can lead to slow-moving bottlenecks or
queues. This reduces the facility’s average speed, and the ser-
vice level deteriorates consequently [7]. Most global research
towards developing and modifying PSD standards began in
the pre-millennium era [7]. These models were primarily
based on field data collected during the 1970s-80s in homo-
geneous traffic conditions [8], [9], [10], [11]. Glennon’s
model is one of the seminal analytical models widely used
in PSD design and practice [11], [12]. However, this model
makes several assumptions to develop mathematical relation-
ships for PSD. Also, the core framework of this model is
solely based on kinematics and does not consider vehicle
dynamics and empirical driving data. In the present context,
state-of-the-art vehicles have improved acceleration capabil-
ities, higher power-weight ratios, and updated aerodynamic
designs. Secondly, driving behaviour has evolved over the
years due to the upgradation of road infrastructure and socio-
economic changes. Consequently, aggressive manoeuvres
have become prevalent in recent years due to increased traffic
congestion, time pressure and impatience. Nevertheless, PSD
design has not been revised since the 1990s to include these
advancements in vehicular technologies and evolved driving
behaviour.

Moreover, researchers have not sufficiently focused on the
effect of road and environmental parameters on overtaking.
In hilly areas connected by two-lane undivided highways,
the gradient is essential for designing PSD [13]. More-
over, climatic conditions affect the tire-road friction, which
has further implications on the acceleration capability of a
vehicle during a passing manoeuvre [14]. Visibility condi-
tions also affect how drivers initiate and perform an over-
take [14]. While some studies have examined the effect of
these parameters on PSD, their examination was limited to
specific parameters, motivating the need for a systematic and
comprehensive investigation.

Thus, there is an evident need to revisit the PSD stan-
dards in light of the improved vehicular design, evolved
driving behaviour, and road and environmental parameters.
The objectives of this study are three-fold:

• Evaluate PSD values using a vehicle dynamics sim-
ulation under various road and vehicle characteristics
scenarios.

• Evaluate the existing model’s performance against the
simulation results and using empirical data.

• Proposal of an analytical model based on vehicle dynam-
ics for PSD design and assess its performance using
empirical data.

Simulations are performed with similar kinematic vari-
ables such as speeds, speed differentials, and roadway
design parameters in IPG CarMaker®, a vehicle simulation

software. The simulation results are compared with the
existing standards, and the discrepancies are discussed. Fur-
thermore, empirical data collected on a two-lane highway
was used to benchmark the existing and proposed analytical
models’ performance.

By achieving these objectives, we aim to contribute to both
research and application. In terms of research, our proposed
model advances the field of overtaking models by incorporat-
ing vehicle and roadway parameters to provide generalizabil-
ity. Consequently, researchers can use the model as a reliable
framework for analysing and predicting overtaking behaviour
and PSD for various situations. In terms of application, the
model will contribute to upgraded roadway infrastructure
design. Road designers can use the proposed model to cal-
culate appropriate and accurate PSD. This can be done by
providing additional passing zones and improving visibility,
thereby enhancing safety. Furthermore, traffic engineers can
implement the model to optimise traffic flow in congested
sections with low service levels. The study can also find
potential applications in advanced driver assistance systems
(ADAS), where the model can be integrated with controllers.
Traffic conditions and road geometry can be analysed using
the sensors mounted on the vehicle. This can be used to issue
overtaking alerts to drivers, assisting them in making safer
overtaking decisions.

The rest of this paper is organised as follows. The following
section presents a review of the literature on existing models
for PSD. In the subsequent two sections, the PSD values
calculated from Glennon’s model are compared with values
obtained from IPG CarMaker® followed by benchmark-
ing of Glennon’s model with empirical data on overtaking
manoeuvres. Post this, an analytical methodology for calcu-
lating PSD based on a trajectory with vehicular and driver
constraints is proposed in the next section, along with a final
section for concluding remarks and recommendations for
future research.

II. LITERATURE REVIEW
One of the first sets of standards to define PSD requirements
for two-lane highways was published in ‘‘A Policy of Geo-
metric Design of Rural Highways’’ [15] by the American
Association of State Highway Officials (AASHO1). This was
primarily based on field data of passingmanoeuvres collected
during the late 1930s. The policy determined the minimum
PSD [7] as

PSD = d1 + d2 + d3 + d4, (1)

where d1 is the longitudinal distance travelled during the
driver’s perception-reaction time and acceleration to the point
of encroachment of the opposing lane, d2 is the longitudinal
distance travelled by the passing vehicle in the opposing lane,
d3 is the clearance longitudinal distance between the passing
vehicle and oncoming vehicle after the passing manoeuvre is

1American Association of State Highway and Transportation Officials
(AASHTO) was known as AASHO, before 1973.
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completed, and d4 is the longitudinal distance travelled by the
oncoming vehicle for two-thirds of the passing distance [16].

The Manual on Uniform Traffic Control Devices
(MUTCD) presented criteria for marking the passing and
no-passing zones, considerably lower than the AASHO cri-
teria [7]. One of the limitations of this criterion was that
it failed to provide a mathematical rationale for deriving
PSD values. Various authors later critiqued the AASHO
and MUTCD design values for their conservative nature,
simplistic assumptions, and use of obsolete data [7]. The
following subsection discusses the subsequent studies while
grouping them based on their similarities and differences.

A. CRITICAL POSITION MODELS
Several alternative models were developed from the 1970s
to the late 1990s based on the critical position (CP) con-
cept to estimate PSD. The CP is defined as a point in the
time-space domain during the overtaking manoeuvre, after
which the driver cannot abort safely to prevent a collision.
Van Valkenburg andMichael introduced CP [8] and defined it
by comparing the bumper positions of the passing and passed
vehicles. It was extended further as a point where the time
to abort the pass is the same as the time to complete it [9].
It was later argued that CP could be explained more logically
by equating sight distances for abortion and completion of a
pass [10], rather than temporal comparison [9]. Consequently,
several studies used sight distance for analysing CP [11], [17],
[18], [19], [20], [21].

A review of alternative PSD models found that the mod-
els proposed by Glennon [11] and Hassan et al. [21] most
adequately represent the PSD needs of passing drivers [7].
The reasonable argument that the likelihood of a passing
manoeuvre getting aborted was high at the start of a pass
was supported by both these models. Besides this, both the
models accounted for the trade-off between the completion
and abortion of a pass to derive the PSD values that were
not as conservative as AASHTO. Subsequently, CP based
on sight distance was applied to compute PSD for the geo-
metric design of two-lane highways in the latest AASHTO
Green Book [12]. The overtaking process concerning CP is
described in Fig. 1. Moreover, a recent study implemented
Glennon’s model to compute the PSD required for passing a
truck platoon [22].

B. RECENT OVERTAKING STUDIES
After the proposal of CP-based models, the focus of
researchers shifted to using field data for PSD computation.
This was driven by technological advancements in the late
1990s, which enabled easier data collection and extraction.
Polus et al. [23] quantified the components of PSD using
field data collected in Israel and found AASHTO standards
to be slightly conservative. A later study in Spain reaf-
firmed this [24], which found the PSD components given
by AASHTO to be higher than field observations. Recent
studies have aimed to analyse the factors which influence the

FIGURE 1. Passing mechanism based on critical position concept. (a) The
first phase of passing. (b) Completed manoeuvre from the critical
position. (c) Aborted manoeuvre from the critical position. P - passer, I -
impeding vehicle, O - oncoming vehicle.

overtaking behaviour of drivers. It was found that the speed
of passing and impeding vehicles [25], distance to opposing
vehicle [26], traffic volumes [27], and road gradients [28]
influence the overtaking behaviour of drivers. Other studies
have attempted to quantify the risk involved in overtaking
manoeuvres [27], [29]. Studies showed that an increase in
the size of impeder [29], the lower speed difference between
passer and impeder [29], and higher traffic volumes [27] may
elevate the risk in overtaking manoeuvres. A summary of
these studies and CP-based models is presented in Table 1.

Much of the research on developing PSD models and
standards was done in the pre-millennium era, in which sev-
eral restrictive assumptions were made for speed differential,
acceleration, and headways. Moreover, most works consid-
ered only vehicle length for modelling PSD while neglecting
crucial vehicle parameters such as weight distribution, steer-
ing limit and comfortable acceleration [11], [19], [20], [21].
Although some recent studies have utilised empirical data [5],
[22], [33], [34], their focus has primarily been on providing
PSD estimates rather than developing generalisable overtak-
ing models that can be applied across different situations to
compute PSD. Also, despite advancements in vehicular tech-
nologies, there has been no systematic attempt to incorporate
vehicle dynamic response in recent studies. Finally, PSD
modelling by researchers has overlooked the effect of road-
way factors such as friction. Although road gradient has been
analysed for a fixed speed limit of 70 km/h [28], the effect of
varying speeds on overtaking manoeuvres should have been
addressed. These roadway factors influence the acceleration
and deceleration of a vehicle during overtaking manoeuvres,
thereby affecting the PSD requirements of drivers. These
identified gaps highlight the need for developing an adaptable
overtaking model that incorporates insights from empirical
data, vehicle, and roadway parameters to provide accurate
estimates of PSD.

While field data can provide insights into real-world over-
taking behaviour, the absence of vehicle-dynamics-based
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TABLE 1. Review of PSD models and studies.

models may limit our comprehension of the overtaking
manoeuvre. To address these gaps in the literature, this
study evaluates the adequacy of PSD standards in practice
with results obtained from test runs in IPG CarMaker®

(IPG-CM), a vehicle dynamics simulation software. The
effects of road gradient and tire-road friction on PSD are
investigated. Furthermore, the existing model is evaluated
using empirical data on overtaking manoeuvres. Finally,
an analytical model is proposed, which considers the micro-
scopic behaviour of a vehicle for determining the PSD
requirements.

III. GLENNON’S MODEL
Glennon derived a mathematical equation to find CP and crit-
ical PSD values using the trade-off between aborted and com-
pleted passes [11]. The following are the major assumptions
of the model:

1) Passenger cars (of length 16 ft) were chosen as passing
and impeding vehicles similar to AASHTO.

2) Existence of a critical point in the passing manoeuvre
based on sight distance.

3) A constant deceleration rate of 8 ft/s2 during an
abortion.

4) A variable speed differential over a constant value as in
AASHTO.

5) A constant headway of 1 second between the passer and
impeder at the end of the pass.

This study used these equations to determine the PSD require-
ments for pre-determined speeds. The speed differential (m)
between the passing and passed vehicles was interpolated
from Glennon’s work [11]. This was done to ensure a consis-
tent comparison between the results from Glennon’s model
and the simulation. The CP (1c) and the critical PSD (Sc) are
calculated in Glennon’s model as [11]:

1c = Lp+m

[
(2G+Li+Lp)

2v− m
−

√
4v(2G+Li+Lp)
d(2v− m)

]
, (2)

Sc = 2v
[
2 +

Lp − 1c

m

]
, (3)

where v and m are the design speed and speed differential
between the passer and impeder, respectively. Lp and Li rep-
resent the lengths of the passer and impeder, respectively. d
signifies a safe deceleration rate for the abortion of a pass.
G indicates the clearance gap between the passer and the
impeder at the end of the pass. Due to the assumed headway
of 1 s, G becomes equal to m. It is evident from (2) that
the position of the critical point depends on the speeds and
lengths of both the passing and the passed vehicles. The
critical PSD, Sc, is computed using (3) once the position of the
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TABLE 2. PSD values from Glennon’s model.

critical point is known from (2). The pre-determined speed
range is chosen to vary from 40-100 km/h. The lengths of the
passing and impeding vehicles are chosen for two present-day
vehicles, identical to the ones chosen in the simulation. The
PSD values obtained using Glennon’s model [11] are shown
in Table 2.
As seen in Table 2, the critical position shifts ahead with

an increase in the speed of the passer. The increase in PSD
is almost linear with the passing vehicle’s speed, as evident
from (3). As suggested by AASHTO [35], these are minimum
PSD values used in the design of two-lane undivided high-
ways, which may not be sufficient for passes under certain
conditions.

While the derivations by Glennon attempt to replicate
the manoeuvre, the model suffers from several limitations:
(1) Plugging in (Lp − 1c)/m from equation 2 into equation
3 indicates that PSD depends upon the sum of passer and
impeder’s length, whichmay occlude the effect of one vehicle
class passing other and vice versa, (2) The vehicle is assumed
to slow down to unreasonably low speeds in case of pass
abortion, which impeder’s speed should logically constrain,
and (3) Assuming a fixed deceleration rate (2.43 m/s2) for all
speeds is not rational in the present context, as modern vehi-
cles are capable of decelerating faster (up to 4 m/s2 [36]) and
safely due to advanced braking systems. Besides, accelera-
tion capabilities are affected considerably by road parameters
such as gradient and friction. Although it has been well estab-
lished that dynamic models perform better for high-speed
scenarios such as overtaking [37], [38], Glennon’s kinematic
model limits its use cases to low speeds from a vehicular
perspective. So, to evaluate the adequacy of Glennon’s model
for current conditions, the values obtained from Glennon’s
model are compared with those from IPG-CM to investigate
the effect of various vehicle and road parameters, the details
of which are discussed next.

IV. OVERTAKING SIMULATION IN IPG-CM
The first step in analysing the existing PSDmodels is to com-
pare their estimates with values for specific pre-determined
test cases using IPG CarMaker® (IPG-CM), a software for
vehicle dynamics and traffic simulation. IPG-CM is an open
integration and testing platform that helps visualise virtual
test runs. It provides adaptable models for vehicles, roads
and traffic. Several studies have demonstrated IPG-CM to

TABLE 3. Pre-defined simulation parameters.

TABLE 4. Calibrated parameters.

accurately replicate dynamic vehicle characteristics such as
lateral acceleration and longitudinal speed [39], [40], [41].
This substantiates the use of IPG-CM as a reliable simulation
tool. IPGDriver® (IPGD), an in-built configurable simula-
tion driver, is used to record the properties of overtaking
manoeuvres for these test cases [42]. A glimpse at the inter-
face of CarMaker® 8.1 is shown in Fig. 2. The following
steps are involved in the initial setup for the simulation
runs. First, the speeds and initial locations of the passing,
impeding, and oncoming vehicles are provided to IPG-CM
via the manoeuvre and traffic interfaces. The length of the
road stretch, lane width, number of lanes, friction properties,
and gradient are set in the road parameters interface. The
driving style is configured using variables such as energy
efficiency and overtaking rate in the IPGD interface [42]. The
overtaking rate2 is set to its highest value of 1 to ensure that
all possible passing manoeuvres are captured in the data. The
PSDs for different manoeuvres are obtained from IPG-CM
by setting up simulation test runs with the parameters shown
in Table 3 and Table 4.

A. SIMULATION METHODOLOGY
The critical point needs to be measured for each test case
to find the critical PSD. Here, the critical point has been
defined as the last position of the passer in reference to
the impeder when it has the option of either completing the

2The overtaking rate is a dimensionless parameter which lies between
0 and 1, and is used to quantify the likelihood of doing an overtake [42].
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FIGURE 2. The IPG CarMaker® environment for vehicle and traffic
simulation. (a) Initial screen with options for configuring simulation
parameters. (b) IPGMovie® interface for visualising vehicle manoeuvres
in real-time.

FIGURE 3. Simulation workflow in IPG-CM to compute CP and PSD.

FIGURE 4. Vehicle trajectories from IPG-CM for finding the critical
position with completed and aborted manoeuvres.

passing manoeuvre or aborting it while it is in the adjacent
lane. If the passer senses the oncoming vehicle after it has
crossed the critical position, it would not be able to abort
the manoeuvre safely and would try to complete it. On the
other hand, if it senses the oncoming vehicle before the
critical position, the manoeuvre would be aborted. To find
the critical position experimentally, the initial position of the
oncoming vehicle is varied, and the overtaking behaviour is
recorded. As the oncoming vehicle is brought closer, there
occurs a point at which the passer switches from completing
the manoeuvre to aborting it. At this point, the longitudinal
distance between the passer and the impeding vehicle is
recorded as the critical distance, 1c, and the longitudinal
distance between the passer and the oncoming vehicle is the
PSD, Sc. The overall simulation workflow has been demon-
strated in Fig. 3. The trajectories of the passing vehicle for
aborted and completedmanoeuvres are shown in Fig. 4. Fig. 5
shows the time-space diagrams of the vehicles for aborted and
completed manoeuvres in the IPG-CM simulations for two
different initial positions of the oncoming vehicle used for
finding the critical position.

FIGURE 5. Time-space diagrams of all vehicles from IPG-CM for
(a) completed pass and (b) aborted manoeuvre and reattempted pass.

The results of the test runs are shown in Table 5, which
indicates that Glennon’s model has high deviations from the
IPG-CM PSD values, up to 94% at high speeds. An opposite
trend for the critical positions is observed in Glennon’sModel
and IPG-CM. In the case of IPG-CM, the critical position
advances with an increase in the passer’s speed. This trend
of the critical position advancing with an increase in speed
seemsmore reasonable, as drivers practically tend tomaintain
a larger clearance from the impeding vehicle ahead at higher
speeds while deciding to pass. Higher relative speeds between
the passing and oncoming vehicles also demand a larger gap
to abort at high speeds safely. These observations show the
inadequacy of PSD standards based on Glennon’s model. The
difference is attributed to IPGD’s preference for maintaining
sufficient clearances from the impeding and oncoming vehi-
cles when the pass is completed or even aborted. Alongside
this, the IPGD ensures no loss of control when manoeuvring,
thus choosing to perform only safe and feasible manoeuvres.
These results agree with previous studies, where AASHTO
standards were found to be inadequate for passing manoeu-
vres of cars [23], [33].

TABLE 5. PSD values from IPG CarMaker®.

B. EFFECT OF ROAD GRADIENT
The frequency and length of passing sections are low in steep
gradients to reduce construction costs, thereby reducing the
feasibility of safely completing an overtake. Moreover, the
operational efficiency of logistic movement to remote areas
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suffers due to lower average speeds [43]. AASHTO [35]
points out the effect of gradients on PSD requirements but
fails to quantify the same. Therefore, the effect of gradient
on PSD is studied in this work. However, negative gradients
are not studied because passing becomes convenient for a
vehicle moving downgrade as it can accelerate quickly, and
the opposing vehicle moves slowly [35]. In contrast, dur-
ing acceleration on positive gradients, the tires’ capabilities
change due to a dynamic load shift from the front to the rear
wheels. Therefore, positive gradients require consideration
as the load on the passer’s powertrain increases, impacting
its acceleration capability [13]. Hence, simulations are per-
formed in this study for three cases to investigate the effect of
road gradients on PSD values.

Three gradient levels that represent different terrains, 2.5%
(plain), 5% (rolling), and 6% (mountainous), are studied in
this research. The results of the simulations are shown in
Table 6. Compared to PSD results obtained using Glennon’s
model, the PSD values are significantly higher. The deviation
ranges from 22% at lower speeds to as high as 49% at higher
speeds, indicating an underestimation of PSD by Glennon for
different gradients. Also, the PSD value increases marginally
with higher gradients. To conclude the impact of varying
gradient levels on PSD, a student’s t-test was conducted with
the PSD values obtained from IPG-CM at speeds varying
from 40 km/h to 100 km/h on different grades with that from
flat terrain. The null and alternative hypotheses formulated
are:

• Ho: No significant difference exists between the PSD
obtained at higher grades compared to flat terrain.

• Ha: A significant difference exists between the PSD
obtained at higher grades compared to flat terrain.

The test statistics were obtained for the three gradient levels
as tstat,2.5% = 3.10, tstat,5% = 3.48, tstat,6% = 4.04, and
tcrit (0.05, 6) = 2.45. Lower tcrit values compared to tstat
values present evidence to reject Ho, indicating a signifi-
cant difference between the PSD values obtained at different
grades and those from flat terrain. This is rational, as a
gradient can impact the overtaking ability of a car. While
driving on a positive grade, the accelerating capability of the
passer reduces due to gravitational resistance, and it takes
longer to gain sufficient speed to complete the manoeuvre.
This results in prolonged overtaking time and distance for the
passing vehicles. Therefore, it becomes essential to include
road gradients as a parameter in PSD design.

C. EFFECT OF ROAD-TIRE FRICTION
Road-tire friction is crucial in controlling the movement and
stability of a vehicle. To determine the effect of road-tire
friction, three values of friction coefficient, 0.8 (dry), 0.6
(wet), and 0.2 (icy) are studied. The PSD values obtained
from the simulation for the specified road friction levels are
shown in Table 7. The values deviate from Glennon’s PSD
by 20% at lower speeds to 52% at higher speeds, indicating
an underestimation of PSD by Glennon for different friction
levels. Moreover, PSD values are high (low) at low (high)

TABLE 6. PSD values from IPG CarMaker® for varying gradients.

TABLE 7. PSD Values from IPG CarMaker® for varying road friction.

friction levels. To conclude the impact of friction levels on
PSD, a student’s t-test was conducted with PSD values from
IPG-CM at speeds from 40 km/h to 100 km/h on wet and icy
surfaces with that on dry surfaces. The null and alternative
hypotheses formulated are:

• Ho: No significant difference exists between the PSD
obtained at wet and icy surfaces compared to dry sur-
faces.

• Ha: A significant difference exists between the PSD
obtained at wet and icy surfaces compared to dry sur-
faces.

The test statistics for friction levels of 0.2 and 0.6 were
obtained as tstat,0.2 = 9.57, tstat,0.6 = 9.72, and
tcrit (0.05, 6) = 2.45. Lower tcrit values compared to tstat
values present evidence to reject Ho, indicating a significant
difference between the PSD values for wet and icy surfaces
compared to dry surfaces. This is logical since road friction
influences the accelerating capability of a vehicle. Drier roads
with high friction provide a greater grip to the tires, allowing
the vehicle to accelerate quickly and complete the manoeu-
vre. Furthermore, the responsiveness of the vehicle steering is
enhanced at higher friction, which causes prompt tire reaction
to steering inputs. On the contrary, lower friction levels can
decrease the grip and deplete the accelerating capability,
leading to prolonged overtaking times. Thus, surface friction
can impact the overall safety of the manoeuvre, indicating the
need to include road-tire friction in PSD design.

V. BENCHMARKING WITH EMPIRICAL DATA
To evaluate how closely Glennon’s model replicates the over-
taking behaviour in the field, the trajectories obtained from

98506 VOLUME 11, 2023



A. Raj et al.: Analysis and Modelling of Passing Sight Distance Using Vehicle Dynamic Response

FIGURE 6. (a) 3-D point cloud of the roadway environment generated by
LIDAR, (b) Data collection site - NH 922 marked in Google Maps, (c)
On-ground view of the two-lane undivided highway.

Glennon’s model are compared with those from empirical
data, the details of which are discussed hereafter.

A. DATA COLLECTION SITE
The data collection site has the following characteristics
(Fig. 6):

• Two-lane two-way national highway (NH 922);
• A 7 to 7.5-m-wide carriageway with 1 m paved
shoulders on both sides;

• Speed limit of 80 km/h on the facility;
• Straight section with negligible curvature, which can
limit driver visibility;

• Moderate traffic volume (upto 600 vehicles/h) to ensure
overtaking manoeuvres;

• Absence of intersections and roadside friction, which
can cause interference with traffic.

• Daytime, clear weather, and dry pavement conditions.

B. INSTRUMENTED VEHICLE SETUP
Empirical data was collected on overtakingmanoeuvres using
unmanned aerial vehicles (UAVs) and an instrumented vehi-
cle in prevailing heterogeneous traffic conditions. The instru-
mented vehicle used was a Maruti Suzuki Celerio, which was
equipped with a Video VBox data logger (RLVD20P) [44]
and Velodyne Puck LIDAR (VLP-16) [45]. The VBox con-
sists of a GNSS engine that records the geo-coordinates of
the vehicle at an update rate of 20 Hz with a 60 cm accuracy
(95% circle of error probable) [44]. It has a set of 4 cameras,
which can record at 720p at a frame rate of 25 frames per
second. The cameras are installed at the bonnet, front right
door, rear right door and rear windshield (see Fig. 7), to get
an all-round view during the travel. This can be seen in Fig. 8.
Furthermore, the inputs from GNSS and cameras were stored
in an SD card installed in the data logger (Fig. 7).

Secondly, LIDAR was installed on the roof of the instru-
mented vehicle to perceive the roadway and traffic environ-
ment. VLP-16 has 16 channels, recording up to 0.3 million
points every second. The LIDAR has a maximum range of
100 m and records with an accuracy of ±3 cm. The height of

FIGURE 7. (a) Exterior of probe vehicle instrumented with VLP-16 LIDAR,
GNSS engine and cameras, (b) Interior of probe vehicle indicating VBox
data logger and speed display unit.

FIGURE 8. (a) Initiation of overtaking manoeuvre, (b) Completion of
outgoing lane change, (c) Start of incoming lane change after passing the
probe vehicle, (d) Completion of overtaking manoeuvre in the face of
oncomer.

the LIDAR was fixed with a tripod at a level for recording the
surrounding traffic only (Fig. 7). The data generated from the
LIDAR was stored on an onboard laptop. It should be noted
that the optimal placement of VBox cameras and LIDARwas
decided after conducting preliminary test runs. The test runs
also assisted in mitigating certain issues and errors, which
proved helpful in the actual data collection.

VBox cameras and LIDAR can only offer limited visual
perception in real-life conditions (< 50 m), making it difficult
to estimate the time-series spacings between the vehicles.
Therefore, a pair of DJI Mavic drones were used to record
the test stretch from the top-down view. These drones offered
stable video footage from a height of 110 m, at a resolution
of 1080p at 30 frames per second.

C. DATA COLLECTION AND EXTRACTION
The instrumented vehicle was driven in the test stretch
(Fig. 9) covered by UAVs at pre-determined speeds lower
than average traffic speed so that other cars could overtake the
instrumented vehicle. The speed differential was maintained
in the range of (10-20) km/h, as indicated in the literature [5],

VOLUME 11, 2023 98507



A. Raj et al.: Analysis and Modelling of Passing Sight Distance Using Vehicle Dynamic Response

FIGURE 9. Magnified view of the two-lane two-way highway from UAV
footage.

[33]. Multiple runs were conducted along the test stretch
while the UAV was in flight. Ultimately, the UAV helped
record the trajectories of the passer, impeder and oncomer
vehicles in 72 overtakes during the data collection. 23 over-
takes belonged to cases where a car passed the instrumented
vehicle.

During the runs, the VBox cameras record the vehicle type
for the passer and the oncomer. This was intended as the
vehicle type may not be evident in some instances in the
UAV footage (Car vs. LCV). Moreover, all devices were time
synchronised for seamless extraction of the critical manoeu-
vres in the overtaking process, such as encroachment into the
opposite lane, completion of outgoing lane change, passing
ahead, the start of return lane change and completion of over-
take (Fig. 8). The LIDAR recorded the traffic environment
around the instrumented vehicle as point clouds.

The trajectory data was extracted from the UAV footage
using a semi-automated trajectory extraction tool (SAVE-
TRAX v1.0 [46]). SAVETRAX is a MATLAB-based appli-
cation that can extract vehicle trajectories from camera
footage and is independent of camera angle, terrain type,
and road geometry. After trajectory extraction, trajectories
were smoothened using a recursively-ensembled low pass
filter [47], [48]. Post trajectory extraction, vehicle types were
validated in the trajectory data with VBox camera footage.
The velocity of the passing vehicles in close range of the
instrumented vehicle was corroborated with LIDAR data, and
the errors were found to be within acceptable limits (±2%).
The architecture of the instrumented vehicle for the overall
data collection process is shown in Fig. 10.

D. DATA ANALYSIS
The values of parameters were adapted to simulate Glen-
non’s model, including assuming constant speeds for the
impeder and oncomer. The empirical data was filtered for the
cases where a car is passing another car to ensure consistent
comparison with Glennon (PSD design for cars only). The
distance required to complete the overtake after reaching the
critical position was obtained from the data and compared
with that of Glennon. It should be noted that the oncomer
was not considered, as there were several manoeuvres in
the field in the absence of an oncomer. The scatter plot

depicting both can be seen in Fig. 11. A student’s t-test
was conducted to compare the overtaking distance obtained
from Glennon’s model and the empirical data. The null and
alternative hypotheses formulated are:

• Ho: There is no significant difference between the over-
taking distance obtained from Glennon’s model and
empirical data.

• Ha: A significant difference exists between the over-
taking distance obtained from Glennon’s model and
empirical data.

For a dataset of 23 overtakings, the test statistic was
obtained as t(22) = 4.04, p = 0.0002(< 0.05). This sug-
gests sufficient evidence to reject Ho, indicating a significant
difference between the overtaking distance from Glennon’s
model (M = 53.53 m, SD = 16.19 m) and the empirical
data (M = 78.19 m, SD = 23.64 m). Therefore, it is evident
that Glennon’s model cannot replicate the field manoeuvres
precisely. This can be attributed to the driving behaviour
during field overtaking manoeuvres, which may differentiate
how two drivers pass under similar conditions. A driver who
has experienced prolonged car-following and sporadic gaps
may pass using a shorter distance than a driver travelling
at the same speed in more favourable conditions. Moreover,
this difference can be attributed to the lateral motion of the
vehicle and vehicle dynamic response during an overtake,
which Glennon neglects. This was probably due to the focus
being on deriving PSD. However, it becomes essential to
model the vehicle’s lateral motion and dynamic response to
comprehend the overtaking process, which involves two-lane
changes where the vehicle is subject to lateral motion.

VI. ANALYTICAL MODEL FOR PSD
As seen in the previous sections, the PSD values obtained
from Glennon’s model are lower by a large margin than
those obtained from IPG-CM. Moreover, the model cannot
replicate the scenario in the field. This motivates the need to
understand the passing manoeuvre of a vehicle on a two-lane
highway at the microscopic level in the interest of safety. This
section proposes an analytical model which can be tuned to
obtain safe values of PSD. This could lead to more advanced
analytical models for developing two-lane highway safety
standards.

Yang et al. [49] proposed using a cubic polynomial tra-
jectory for lane-change manoeuvres and deemed it the best
approximation of a vehicle’s lateral movement. This also
agrees with the empirical data used in the previous section,
where the lane change manoeuvres fit reasonably well as
cubic polynomials. The use of such a trajectory for modelling
vehicle motion in mixed traffic was further studied in [50]
with suitable constraints on the trajectory. This trajectory
model is adapted here to suit the conditions on a two-lane
highway in the presence of an oncomer.

A. TRAJECTORY MODEL
The calculation of PSD using the currently proposed analyti-
cal model involves a reverse approach, where the desired final
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FIGURE 10. Architecture of the instrumented vehicle equipped with Video Vbox, VLP-16 LIDAR, and supplemented with UAV for empirical data collection.

FIGURE 11. Scatter plot indicating the overtaking distance from
Glennon’s model and empirical data.

positions of the vehicles are used to estimate their feasible
positions at the start of the reverse lane-change manoeuvre.
According to the definition of critical PSD, the longitudinal
distance between the passer and the oncoming vehicle is
measured at the point beyond which completing the passing
manoeuvre would not be possible. Thus, the case where the
passing manoeuvre was completed from the critical position
is considered here, as shown in Fig. 12.
The first step is finding xp, which indicates the minimum

longitudinal distance for completing the return lane change
manoeuvre per vehicular constraints. This is based on the
maximum limit on the curvature of the trajectory, Kmax ,

FIGURE 12. Analytical model for PSD with a cubic polynomial trajectory.

which is taken as the minimum of the following values [50],

Kspeed =
µlatg
v2

, (4)

Ksteer =
δmax

l + ku v
2

g

, (5)

Kcomf =
acomf
v2

. (6)

Here, Kspeed is the maximum limit on the curvature of the
trajectory due to lateral traction, Ksteer is the limit due to the
maximum steering angle of the wheels, and Kcomf is the limit
based on the maximum comfortable lateral acceleration. It is
expected thatKcomf would generally be the most conservative
value, but the others are included to account for all possible
scenarios. The lateral traction depends on the lateral friction
coefficient, µlat . The other variables are the maximum vehi-
cle steering angle δmax , the speed of the passer v, the distance
between the front and rear axles l, and the comfortable lateral
acceleration maintained by the driver acomf . The lateral accel-
eration is a configurable parameter that varies based on the
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vehicle’s speed as deemed safe by the driver. The understeer
gradient of the vehicle, ku, in equation (5) is used to obtain a
relationship between the curvature of the turn and the steering
angle required for the turn and is given as

ku =
mpg(bCr − aCf )

2lCf Cr
, (7)

where, mp is the mass of the passing vehicle, Cf and Cr are
the cornering stiffness of the front and rear tire, respectively, a
and b are the distance of the centre of gravity (CoG) from the
front and rear axle respectively, and g represents acceleration
due to gravity. The values of these parameters are shown in
Table 3.

It is assumed that the trajectory traced by the vehicle
during the lane change can be approximated using a cubic
polynomial trajectory. The equation of the trajectory is given
by [49]

y = c1 x + c2 x2 + c3 x3, (8)

where,

c1 = tan(θi),

c2 =
3 yp − 2 xp tan(θi)

x2p
,

c3 =
xp tan(θi) − 2 yp

x3p
. (9)

Here, θi is the initial heading angle, which is the slope
of the trajectory, (xp, yp) is the final desired waypoint, and
the heading angle at the desired waypoint is assumed to be
zero [51].

As shown by [49] and [50], the value of xp is obtained from
the maximum curvature of the cubic polynomial trajectory,
Kmax , as

Kmax =

∣∣∣∣2xp tan(θi) − 6 yp
(xp)2

∣∣∣∣ . (10)

Assuming the initial heading angle of the vehicle, θi, to be
zero,

Kmax =

∣∣∣∣−6 yp
(xp)2

∣∣∣∣ , (11)

where yp is the distance moved laterally, equal to the lane
width of 3.5 m. The safe gap maintained by the driver, dx is
calculated by assuming the model as

dx = ct (v+ vo) + βLi, (12)

where, β is a calibrated parameter that denotes the weight
given to the margin in vehicle lengths. ct is the clearance time
taken as 0.75 s. This value has been set higher than what is
reported in the literature for moderate-high traffic volumes
(0.6 s, [52]) to ensure a higher level of safety. At the same
time, ct is not as high asGlennon (1 s) to reflect advancements
in braking systems and provide a realistic estimate. Li is
the length of the impeding vehicle, the same as that of the
oncoming vehicle. After tuning, β was set as 1 to provide a
minimum safety margin of one-vehicle length.

FIGURE 13. Box plots indicating the distribution of comfortable
acceleration and change in lateral position during lane change.

Further, the longitudinal distance travelled by the oncom-
ing vehicle is estimated by using the time required for the
passer to complete its lateral manoeuvre, given as

xo =
voLtotal

v
, (13)

where vo is the speed of the oncoming vehicle, taken to be the
same as v here. Hence, xo = Ltotal in this case. The length of
the trajectory, Ltotal , is calculated by integrating segments ds
of the trajectory as [49] and [50]

Ltotal =

∫ xp

0
dsdx, (14)

where

ds =

√√√√1 +

(
x
6yp
x2p

− x2
6yp
x3p

)2

. (15)

This gives the critical PSD as

Sc = xp + dx + Ltotal . (16)

More details of modelling using this framework can be
found in [49] and [50].

B. COMPARISON WITH IPG-CM
The resulting PSD values from this preliminary analytical
model are shown in Table 8. With these considerations, the
difference in the PSD values with IPG-CM reduces to as low
as 3.4%, with the highest difference being 4.7%. The primary
reason is the consideration of proper safe gaps, which can
be calibrated as per driving behaviour. Typical models con-
sider a fixed headway maintained when overtaking, but the
consideration of reaction time incorporates the constraints of
the driver and vehicle. This consideration forms the term dx ,
as seen in (12). Further, changing the lane requires some lon-
gitudinal distance based on the vehicle’s capabilities, which
is not accounted for in conventional PSD models. It can
form a substantial part of the PSD, which is the term xp
in (16). This parameter is affected by the consideration of the
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FIGURE 14. Scatter plot comparing overtaking distance from Glennon’s
model, empirical data, and analytical model.

FIGURE 15. Comparison of TTC from Glennon’s model, empirical data,
and analytical model.

dynamic parameters of the vehicle, which are encapsulated
in the curvature of the trajectory, Kmax , as seen in (4) to (11).
While IPG-CM has a higher-order vehicle model considering
all vehicle dynamic parameters, the analytical model offers a
few simple, configurable parameters to obtain the PSD. At the
same time, considering the actual trajectory of the vehicle for
passing ensures that the constraints on the manoeuvres are
maintained, which leads to reasonably close values.

C. COMPARISON WITH EMPIRICAL DATA
As discussed in Section V, Glennon’s model could not repli-
cate the overtaking scenarios in the field. Consequently, the
overtaking distance required by cars to overtake was lower
by up to 30%, as per Glennon, when compared to actual
distances from the field. The mean absolute error (MAE)
and mean absolute percentage error (MAPE) between Glen-
non’s and field values were 24.67 m and 30%, respectively.
Glennon was found to underestimate the overtaking distances
at all speeds, which indicates collision risks during over-
taking. This agrees with previous studies’ results [23], [33],
which compared design PSD values with empirical data. This

motivated the development of an analytical overtaking model
incorporating vehicle dynamic response. The input parame-
ters were calibrated using field data to compare the empirical
data and the analytical model consistently. This included
considering the actual dimensions and weight of the vehicle
obtained from the field. Moreover, the values of comfort-
able lateral acceleration (acomf ) were calculated using field
manoeuvres. The 95th percentile was selected as 1.2 m/s2 to
ensure the inclusion of most drivers in design. Moreover, the
change in lateral position was used as 1.2 m (95th percentile),
as not all drivers attempt the lane change manoeuvre using
full lane width. The distribution of the parameters calibrated
using field data can be seen in Fig. 13. The overtaking dis-
tance from Glennon, empirical data, and the analytical model
are shown in Fig. 14. The MAE and MAPE between the
analytical model and field values were 15.88 m and 22.76%,
which is lower than Glennon (24.67 m, 30%). The overtaking
distance obtained from the analytical model is closer than
required in the field. Using the ANOVA test to investigate
their differences, a statistical comparison was made between
the PSD values obtained from the three groups- Glennon’s
model, empirical data and analytical model. The following
null and alternative hypotheses were formulated:

• Ho: No significant difference exists among the means of
the three groups - Glennon’s model, empirical data and
analytical model.

• Ha: Significant difference exists among the means of
the three groups - Glennon’s model, empirical data and
analytical model.

The test statistic was obtained as F = 16.26; p = 1.8075e−

06 (< 0.05). This suggests evidence to reject Ho, indicat-
ing a significant difference between the overtaking distance
from Glennon’s model, empirical data and analytical model.
Also, the student’s t-test indicates no significant difference
between the empirical data (M = 78.2 m, SD = 24.17 m)
and the analytical model (M = 86.5 m, SD = 19.8 m)
(t(22) = 1.28, p = 0.206(> 0.05)). This is in contrast to
the comparison between Glennon’s model and the empiri-
cal data, discussed in Section V. Furthermore, a post-hoc
test was conducted to find which pairs differ significantly
among the three - (a) Glennon’s model, (b) Empirical data,
and (c) Analytical model. Tukey’s HSD test [53] was cho-
sen to compare the means of the differences in the three
groups. The test statistics were calculated as: (1) Qab =

5.61, p = 0.001 (< 0.01); (2) Qac = 8.48, p = 0.001
(< 0.01); (3) Qbc = 2.87, p = 0.11 (> 0.01). This sug-
gests that a significant difference exists between Glennon’s
model and empirical data.Moreover, Glennon’s model differs
significantly from the analytical model. However, the differ-
ence between the empirical data and the analytical model is
not significant. Therefore, the analytical model outperforms
Glennon’s model and provides closer estimates of overtak-
ing distance than the field. This signifies the importance of
analysing the microscopic motion of a vehicle, considering
vehicular constraints and driver behaviour. However, some
drivers overtake using lesser distances than what is obtained
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TABLE 8. PSD comparison for analytical model with IPG-CM.

from the analytical model, which indicates aggressive driving
or accepting shorter gaps, possibly motivated by situations
such as prolonged following.

D. SAFETY ANALYSIS
This subsection evaluates the analytical model for its safety
performance, considering head-on collision risks. For this,
we utilise minimum time to collision (TTCmin) as an indicator
to compare the analytical model with empirical data and
Glennon’s model. TTCmin has been employed by researchers
frequently to quantify collision risks [27], [52], [54], [55].
It indicates the remaining time between the passing and
opposing vehicle at the end of the manoeuvre. Mathemat-
ically, it is the ratio of the clearance distance between the
vehicles to their relative speed at the end of the manoeuvre.
The equation for TTCmin can be given as [52]:

TTCmin =
xo − xp − l
vo − vp

, (17)

where xo and xp are the positions of the centre of oncomer
and passer at the end of the pass, respectively, l indicates the
length of the vehicle, vo and vp are the speeds of the oncomer
and passer at the end of the pass. The minimum TTC for the
three cases can be defined as:

• Glennon’s model: Glennon assumes a clearance of 2vp
at the end of the overtake, where vp is the passer’s speed
(equal to vo). It should be noted that Glennon ignores the
length term while computing clearance. Consequently,
TTCmin can be found as 1 s. Therefore, Glennon assumes
a constant TTCmin of 1 s, irrespective of speeds.

• Empirical data: TTCmin was computed by taking the
ratio of the clearance between the passer and the
oncomer at the end of overtake when the passer has
completely encroached into his lane, to the relative speed
(vo + vp).

• Analytical model: The clearance at the end of the
manoeuvre was obtained using the difference between
the longitudinal gap at the critical position and the
distance required for a lane change (xp in Fig. 12). The
ratio of the obtained clearance with the relative speed
(vo+vp) will yield TTCmin. The comparison of the TTC
values can be seen in Fig. 15

The mean TTCmin for points in Fig. 15 for Glennon’s
model, empirical data, and the analytical model is given as

1 s, 1.09 s, and 2.12 s, indicating the mean TTCmin provided
by the analytical model is higher than Glennon.Moreover, the
values obtained using the analytical model agree with those
recommended in the AASHTO safety manual (2 s, [56]).
To compare the TTC values obtained from the model with
the empirical data, a one-tailed student’s t-test was con-
ducted. The following null and alternative hypotheses were
formulated:

• Ho: No significant difference exists among the means of
the TTCmin between the empirical data and the analytical
model.

• Ha: TTCmin provided by the analytical model is greater
than the existent TTCmin in field.

The test statistic was obtained as: tstat = 3.26, p = 0.001(<
0.05). Thus, sufficient evidence exists to reject Ho, indicat-
ing that TTCmin provided by the analytical model is greater
than the existent TTCmin in the field. Hence, the analytical
model outperforms Glennon by providing a higher TTCwhen
compared to the actual TTC used by the drivers in the field.
This will increase safety margins, enhancing vehicle safety
during overtaking manoeuvres. To address this, Eq. 12, which
is in line with TTCmin can be applied to calibrate for different
overtaking scenarios.

VII. CONCLUSION
This paper examined existing PSD standards and compared
them with realistic values. A seminal PSD model, Glennon’s
model, was compared with values from IPG-CM. Further-
more, Glennon’s model was evaluated for varying roadway
parameters, including longitudinal gradient and tire-road fric-
tion. The model was then benchmarked using empirical
data to analyse its performance in field conditions. Finally,
an analytical overtaking model is proposed, and its perfor-
mance is tested against empirical data and Glennon’s model.
The insights and implications from our study have been
summarised:

• The deviations between PSD obtained from IPG-CM
and Glennon were as high as 94% for specific road
conditions. This indicates the inadequacy of PSD stan-
dards based onGlennon’smodel and implies the need for
an improved model. This agrees with the conclusions of
previous studies [23], [33].

• PSD was found to increase marginally with an increase
in longitudinal gradient. In contrast, PSD increased with
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a decrease in tire-road friction by 12% at speeds of
70 km/h. Most models did not account for road parame-
ter changes, leading to the values deviating from realistic
ones. Therefore, the fluctuation of road parameters from
standard conditions poses a safety risk within the context
of PSD.

• Glennon’s model was benchmarked against empirical
data from a two-lane highway. The comparison indicated
a significant difference between the overtaking distance,
indicating the inability of Glennon’s model to replicate
the overtaking manoeuvres in the field.

• Owing to the limitations in Glennon’s model, an analyt-
ical overtaking model was proposed to understand the
overtaking process better. Furthermore, the PSD values
from the analytical model were compared with simula-
tions, and the obtained deviation was less than 5%.

• The analytical model performed better than Glennon’s
model when tested against empirical data. The overtak-
ing distances obtained from the analytical model being
closer to the empirical data show the importance of
analysing the microscopic motion of a vehicle, which
also leads to the consideration of vehicular constraints
and driver behaviour.

• The analytical model outperforms Glennon’s model by
providing a higher TTCmin for field overtakes. More-
over, the provided TTCmin agrees with the guidelines (2
s). Adapting guidelines considering overtaking scenar-
ios in the field may provide a balance between safety
and efficiency.

To conclude, this study aimed to develop an analytical over-
taking model that can provide safe PSD estimates closer
to field values. An analytical model such as this takes the
best of mathematical and field data-based models by apply-
ing physical vehicle constraints and allowing for specific
configurable parameters. Therefore, the model incorporated
vehicle dynamics and driver behaviour to simulate overtak-
ing manoeuvres more accurately. Furthermore, the developed
model was tested against a benchmark model using real-
world data. The results indicated significant improvements
in feasibility (overtaking distance) and safety (TTCmin).
By achieving superior performance over established models,
the proposed analytical model demonstrates that the objec-
tives have been met. The findings from this study make
several contributions to the research field:

1) Research: The validity of Glennon’s Model (state-of-
the-practicemodel) was evaluated using simulation and
empirical data. By comparing the model’s estimates
of overtaking distance, we provided insights into the
model’s performance, indicating the need for improve-
ment. Towards this, we propose an overtaking model
that accurately replicates the overtaking behaviour.
Furthermore, the proposed model is flexible to account
for vehicle and roadway parameters, making it more
adaptable to various situations. Therefore, researchers
can employ the proposed model to obtain accurate

PSD estimates and predict overtaking behaviour for
connected and autonomous vehicle applications.

2) Safer geometric design: The proposed model can be
applied to gather insights into overtaking manoeuvres.
Road designers can use themodel to compute a safe and
optimised PSD for various scenarios. The calculated
PSD can be provided in sections with frequent unsafe
overtakes by providing additional passing zones and
improving visibility. This will enhance road safety.

3) Improved traffic operations: Traffic planners can use
the proposed model in congested sections to optimise
the traffic flow. This will improve the average travel
speed and level of service on the roadway facility.

4) Policymaking: The proposed model can be incorpo-
rated in a traffic micro-simulation to study the effect of
a planned decision on the overtaking manoeuvres and
its impact on the safety and operations of the roadway
facility.Moreover, this will help mitigate potential risks
that may occur with changes in roadway design and
traffic rules.

5) Application in ADAS systems: Sensors mounted on
a vehicle can analyse the traffic conditions, roadway
geometry and environmental conditions. By providing
this data to a controller integrated with the proposed
model, overtaking alerts can be issued to drivers.
This will assist the drivers in making safer overtaking
decisions considering a wide range of factors.

This study has merits which differentiate it from previ-
ous studies. Firstly, a vehicle-dynamics-based simulation was
employed in this study to enable a controlled environment
for testing various scenarios. The effect of multiple variables
(such as gradient and tire-road friction), which are cumber-
some to evaluate in the field, was now possible using the
simulation. Secondly, this study used a novel data collection
methodology where an instrumented vehicle was supple-
mented with a UAV to collect the field data. The sensors
installed in the instrumented vehicle offer limited detection
only in the vehicle’s vicinity. The use of a UAV enabled
us to overcome this limitation. Moreover, it assisted in the
collection of overtaking trajectories involving other vehicles
in the traffic stream. Hence, integrating the data frommultiple
sources (instrumented vehicle and UAV) helped enhance the
reliability of the recorded data. Finally, empirical data used
for benchmarking was a definite improvement over previous
studies, which did not validate their results using field data.
Furthermore, empirical data enabled us to make a three-way
comparison between the existing model and the proposed
model, which also helped establish the performance of the
proposed model.

Notwithstanding the study’s strengths, it is essential to
recognise its limitations. Firstly, this study used trajectory
data collected from a two-lane highway in India to val-
idate the proposed model. This may impact the model’s
generalizability to varying traffic conditions and driving
behaviour. Secondly, assumptions such as uniform road con-
ditions and rational driver behaviour may restrict the model
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from capturing the complexity of field scenarios and could be
relaxed for improved performance.

The future scope lies in the further tuning and adaptation of
the model to different road scenarios and driving behaviours
by appropriately choosing the configurable parameters. This
will ensure the model’s performance in various conditions.
The impact of environmental factors on overtaking behaviour,
such as visibility and weather conditions, can be another
avenue to explore. The model can be applied to ascertain
changes in roadway design, such as speed limits, signage, and
visibility. The effectiveness of these policy interventions on
the safety and operations of the two-lane roads needs to be
studied. The model can be integrated with ADAS systems to
issue alerts to the drivers. Calibrating such systems to work
precisely with a range of vehicles and drivers’ characteristics
can be explored. Further, the model can also be adapted to
consider the longitudinal capabilities of other vehicle classes,
such as trucks.
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