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ABSTRACT A mobile service robot operates in a constantly changing environment with other robots
and humans. The service environment is usually vast and unknown, and the robot is expected to operate
continuously for a long period. The environment can be dynamic, leading to the generation of new routes
or the permanent blocking of old routes. The traditional path planner that relies on static maps will not
suffice for a dynamic environment. This work is focused on developing a reinforcement learning-based path
planner for a dynamic environment. The proposed system uses the deep Q-Learning algorithm to learn the
initial paths using a topological map of the environment. In an environmental change, the proposed βββ-decay
transfer learning algorithm trains the agent in the new environment. This algorithm uses experience vs.
exploration vs. exploitation-based training depending on the similarity of the old and new environments.
The system is implemented on the Robotic Operating System framework and tested using Turtlebot3 mobile
robot in the Gazebo simulator. The experimental results show that the reinforcement learning system learns
all the routes based on the initial topological map of different service environments with an accuracy of over
98%. A comparative analysis of the βββ-decay transfer learning and non-transfer learning agents is performed
based on various evaluation metrics. The transfer learning agent converges twice faster than the non-transfer
learning agent.

INDEX TERMS Path planning, mobile robots, service robot, navigation systems, reinforcement
learning, deep Q-Learning, Q-learning, transfer learning, dynamic environment, machine learning, artificial
intelligence, incremental learning, lifelong learning.

I. INTRODUCTION
The Mobile Robotics field is one of the most popular
domains among robotics researchers. An essential mobile
robot subsystem is a navigation system. A navigation system
perceives the environment and enables the robot to navigate
autonomously to perform autonomous tasks [1]. There is a
vast range of applications in which mobile robots are being
used, such as surveillance, automation in industries, museum
guides, elderly care, hospital care, home assistance, servers
in restaurants, and so on. Mobile robots are classified based
on their form factor, such as wheeled, legged, flying, and so
on [2]. Wheeled mobile robots, in particular, can be effective
and simple to be used in flat indoor terrain.

The associate editor coordinating the review of this manuscript and
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A mobile service robot performs autonomous tasks in
service environments like homes, restaurants, hospitals,
etc. [3]. A service environment is unique, unlike other
environments, based on a few features of the environment.
To name a few, vast square footage, moving obstacles (robots
and humans) [4], prone to environmental changes over some
time, and augmenting (adding extra sensors) the environment
to support the autonomous operation is not possible. A path
planner is essential for an autonomous mobile robot to plan
an efficient path given the source and destination.

A path planner is as good as its understanding of the
environment. Initially, the main focus of the path-planning
research community was to achieve optimal paths given
different levels of environmental awareness. These works are
categorized based on the environmental information available
to the path planners [5]. One of the main concerns of a
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service robot’s path planner is environmental changes that
will hinder its performance. A path planner uses the initial
environment configuration to identify efficient paths, and this
configuration will not be valid if the environment changes.
Hence a path planner which can dynamically plan the path
based on the latest configuration of the environment is
necessary to tackle this problem. This type of path planner
is classified as a dynamic path planner, which considers
environmental changes throughout its lifetime.

A dynamic path planner continuously monitors envi-
ronmental changes and updates itself to provide efficient
paths. Using machine learning (ML) techniques for dynamic
path planning has recently gained more traction among
researchers. In particular, Reinforcement Learning (RL) [6]
is a type of machine-learning technique that uses the Markov
Decision Process (MDP) to learn to interact in an environ-
ment. The main reason to use RL for path planning is it can
be modeled as anMDP intuitively, and the fact that it does not
need massive labeled data for training. In most of the work in
RL-based path planning, the agent’s state space is considered
as images or sensory information. While this is a reasonable
approach to defining the state space on an RL agent, the
shortcoming is the bigger state space. The bigger the state
space, the more time to converge in the learning phase.

Lifelong learning [7] is a factor that is considered to
keep any artificial intelligent agent learning and evolving
continuously based on the various changes over a long
period. Transfer Learning(TL) is an ML technique that
uses previous experience to learn and perform well in a
similar situation. A TL algorithm can efficiently make the
RL agent dynamic with lifelong learning ability. Given the
variations in the environment configuration, the transfer
learning approach can be used to achieve lifelong learning.
In this context, the source states are the old environment’s
topological information, and the target states are the new
altered environment’s topological information. There will be
differences in the state space, and all the other RL-agent
parameters will remain the same. TL approaches considering
only the state difference between the source task, and target
task is minimal. So a novel transfer learning technique that
considers only state space difference is proposed in this
article.

This work aims to design and develop a Deep Reinforce-
ment Learning (DRL) based path planning framework. The
proposed framework uses a Deep Q-Learning algorithm to
learn the initial paths based on the topological map of the
environment. A novel βββ-decay TL algorithm is proposed to
achieve lifelong learning. This algorithm uses an incremental
learning approach to update the RL agent based on the
changes in the environment dynamically for lifelong. The key
contributions of the work are:

• Design and development of a scalable DQL path
planning framework for a mobile service robot.

• Incorporating βββ-decay TL algorithm to continuously
evolve the RL agent based on environmental changes
and achieve lifelong learning.

• The RL agent’s scalability and the TL algorithm’s
learning efficiency are tested and proved.

The remainder of the paper is presented as follows; a
summary of the related work in path planning is described in
section II. The problem formulation is defined in section III.
Section IV describes the proposed RL and TL framework in
detail. Results and analysis of various test cases are depicted
in section V. The article is concluded, and future directions
are identified in the last section.

II. RECENT AND RELEVANT WORK
The path planning problem can be categorized into two
classes of problems, global and local path planning [8].
Global path planning is planning a path from a source to
a destination, given the environment map. Local planning
is planning the path if an unforeseen scenario (obstacle)
occurs while traversing the global path. Rapid development
in artificial intelligence and machine learning techniques has
led to using it to solve path planning problems [8], [9], [10].
Artificial intelligence techniques like fuzzy logic [11], neural
networks [12], and hybrid solutions like neuro-fuzzy infer-
ence systems [13] are used for local path planning as there
are very efficient in dynamic problem-solving. Evolutionary
techniques like particle swarm optimization [14] and genetic
algorithms [15] are used for global path planning to optimize
the path length and planning time.

One of the recent advancements in path planning research
is using Reinforcement learning-based techniques. Unlike
other machine learning algorithms, an RL agent can be
trained with a minimal dataset. This is one primary reason
to use RL in the path planning domain. Q-learning(QL)
and Deep Q-Learning (DQL) are two of the most used
RL algorithms for path planning. In QL, the Q-value is
calculated based on the Bellman equation. In [16] and [17]
QL agent is used for planning the path. The drawback in
Q-learning is scalability; as the environment size increases,
the memory complexity also increases. In DQL, the Q-value
is predicted using a neural network, which makes the system
scalable. In [18], [19], and [20], planning a path in a grid
world environment using DQL is presented. The environment
information regarding the obstacle location is available,
and the RL agent learns to avoid all the static obstacles
and plan the path efficiently. DQL-based algorithm for
dynamic environment path planning is proposed in [21] and
[22]. A dynamic environment is considered to have moving
obstacles, and the obstacle location is unknown. Another
approach to explore in an unknown environment is to use
sensor values to train the RL agent [23], [24], [25].

One critical factor in any machine-learning algorithm is
convergence time, i.e., the time the agent takes to learn the
task. There have been considerable efforts to reduce the
convergence time of DRL-based path-planning algorithms.
In [26], convergence time is reduced by pre-training the
RL agent using a 2D simulator environment and later using
this experience to train in a real-time 3D environment.
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A Q-learning system with general information about the goal
and current states is proposed in [27]. This knowledge is
used efficiently while training to reduce the training time
significantly. In article [28], the authors propose the use of
RL and particle swarm optimization to increase the agent’s
convergence rate.

Researchers have made numerous attempts to solve
lifelong learning in various domains. In [29], a notion
similar to lifelong learning called concept drift is described,
and a solution is proposed to use previous experience to
learn new similar concepts. Correspondence learning is
yet another attempt to use old experience in a new task
efficiently. In [30], correspondence learning uses previously
learned skills to solve new tasks in an Atari ping-pong
game environment. Transfer learning(TL) is a technique
that is applied to evolve machine learning models toward
lifelong learning. A TL algorithm transfers the source task
knowledge to a target model. In [31], RL and TL tracking
in stationary environments is proposed. Key points to be
considered while applying transfer knowledge are the source
task and target task similarity, mapping between source
states and target states, and the type of knowledge to be
transferred [32], [33]. Applying TL between the source and
target tasks with different states and actions, the challenge lies
in mapping the source states to target states. In articles [34]
and [35], authors proposed a simple approach to provide the
mappings as subject experts manually. While this is a simple
solution, there can be practical difficulties in obtaining human
experts mapping in all the applications. Inter-task mapping
can be considered as required or learned automatically to
address this shortcoming. If no explicit mapping is required,
the agent attempts to learn the abstraction of the MPD,
which are invariant even though actions and state variables
change [36], [37]. Another approach is to learn inter-task
mapping automatically [38], [39] using novel mapping
learning methods. Applying heuristics in transfer learning
is proven to have reasonable acceleration in target task
learning. In article [40], heuristics is obtained by exploring
the environment. Obtaining the heuristics as different cases
based on source task learning and using it in target learning
is proposed in articles [41], [42].

III. PROBLEM DEFINITION
Consider a wheeled mobile robot performing autonomous
tasks in an indoor service environment. To perform tasks
autonomously, the robot should be capable of navigating
from one location to another. A typical service robot is
required to work in the environment for a long period,
during which the environment configuration can change.
Environment configuration is the location of all the static
obstacles, doorways, pathways, etc. To cope-up with the
environmental changes, the mobile robot should be able to
perform lifelong learning. This will enable the robot to plan
a path based on the current environment configuration rather
than the old environment configuration. This can be achieved
using Reinforcement learning.

FIGURE 1. Sample environment and its topological map.

TheRL agent will be themobile robot, and the environment
will be the service environment. The proposed path planner
is based on the Deep Q-learning algorithm. The DQL agent
will be pre-trained based on the topological map of the service
environment. A topological map is a high-level connectivity
tree with all the critical locations in the environment. The
topological map can be generated manually or automatically
as proposed in [43]. The techniques to generate a topological
map are out of the scope of this work. There are many
techniques in the literature to obtain a topological map of an
environment. A few techniques to generate a topological map
are explored in our previous works [43], [44], [45]. Fig. 1
depicts a sample environment with paths and its topological
map. The Home nodes refer to the charging point for the
robot, the ‘‘Vx’’ nodes are waypoint nodes, and the ‘‘Dx’’
nodes are the destination locations. The map is represented in
the form of a ternary tree, each node in the map is a location,
and all the destination locations are the leaf nodes. Each node
in the tree can have a maximum of three branches (left, right,
forward). The direction to reach from the parent node to a
child node is encoded as the branch of a node. For example,
if a parent node has a left child node, then reaching that node
is by taking the left direction from the parent node.

Lifelong learning can be achieved using transfer learning in
the proposed DQL agent. In a practical scenario, the changes
in the environment will be gradual. For example, furniture
can be added or removed, which might block a current
path. Such changes will lead to environment configuration
changes, and the topological map can be updated based on
the new configuration [46]. The process of obtaining the new
topological map is not in the scope of this article. Consider a
permanent obstacle placed between node ‘‘home’’ and ‘‘V1’’
in the sample environment shown in Fig. 1; this will affect
the path from these two nodes. The sample environment
with obstacle and its topological map is depicted in Fig. 2
with dotted lines to indicate the change in path. Given
this new topological map, the RL agent should re-learn the
new environment. Training the RL agent to learn the new
environment configuration from scratch will require more
time than using the TL technique to jump-start the training
process. This can be achieved by efficiently transferring the
old knowledge and training the RL agent.
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FIGURE 2. Sample environment and its topological map with obstacle.

IV. DESIGN OF THE FRAMEWORK
The proposed system is a path planner for a mobile service
robot with lifelong learning ability. The overall system
consists of two modules DRL module and the TL module.
DRL module is used to train an RL agent with the initial
environment configuration to plan the paths efficiently.
TL module is used to re-train the RL agent if there is any
configuration change in the environment.

A. DEEP REINFORCEMENT LEARNING FRAMEWORK
RL is a class of ML algorithms that uses an agent to learn a
task by interacting with the environment through its actions.
An agent with its current state s takes action a and reaches
another state s′. The agent receives a reward of r for every
action in the environment, which can be positive or negative.
The reward will be based on the action and the agent’s current
state. The agent’s ultimate goal is to maximize the reward that
will indirectly train the agent to perform the task. A Deep
Q-learning-based RL algorithm implements the path planner,
and the mobile robot is the RL agent. DQL uses a neural
network to predict the best action given the current state. The
parameters of the DQL framework are initialized based on the
topological map used to train the RL agent.

1) STATES - S
States are all the possible configurations of an RL agent.
In the mobile robot domain, states can be the location of the
mobile robot. The state space S of the agent can be defined set
of all the nodes in the topological map. The current state can
be defined as s ∈ S, where s is the robot’s current location,
a subset of all the possible locations.

2) ACTIONS - A
Actions are considered as the interaction of the agent in the
environment. The result of such interaction is the agent’s
transition from one state to another. An action is defined as
a ∈ A. The action spaceA is the set of all the possible actions a
mobile robot can take, A = (left, right, forward, backward).

3) REWARD - R
The reward system is the key ingredient of RL training that
can make or break an agent. The reward space R(S,A) is
the set of all the possible rewards based on the current state

and action. Equation (1) shows the reward function of the
proposed RL agent. While the value of the reward is constant,
it can be changed as long as the difference between the
different rewards is maintained. A positive reward motivates
the agent to perform a similar action in the future, and a
negative reward is to avoid the action in the future. The
highest reward r1 is to reach the goal state g ∈ G where G
is the set of all the goal states G ⊂ S. The highest negative
reward r4 for reaching an unknown state U /∈ S is given.
A reward r3 is given to the agent to avoid looping. A reward
r2 is given as a step reward; this will converge the agent to
find the shortest path possible.

r(s, a) =


r1, s = g
r2, s = {x|x /∈ (S ∩ G)}
r3, s is previously visited location
r4, s = U

(1)

4) Q-VALUE - Q(s, a)
Q-value is used to determine the quality of an action given the
current state. The DQN neural network is trained to predict
the Q-values for all the possible actions given a state Q(s,A).
The best action a is chosen based on argmax(A).

5) DQN ARCHITECTURE
The DQN architecture consists of an input layer, two hidden
layers, and an output layer with Adam optimizer, as shown
in Fig. 3. The neural network configurations depend on the
states and actions of the RL agent, as shown in (2) and (3).
The total number of input neurons n depends on the number
of states S and the number of goals G, i.e., the input to the
neural network depends on the current state s and desired goal
to reach g.The goal states G ⊂ S denotes all the possible
destination locations obtained from the topological map.
Adding goal states as part of the input layer will enable the
agent to find the optimal path to all the possible destinations.
The output neurons m depend on the number of actions A.
This represents Q-values for all the actions based on the
current state. The best action is based on the output layer’s
maximum Q-value.

n = |S| + |G| (2)

m = |A| (3)

6) TRAINING
The neural network is trained using an experience replay
buffer. Experience e = (s, a, s′, r) is stored after every
iteration in the experience memory. A random experience
batch is used for training. Batch size η is a hyper-parameter.
Equation (4) shows the loss equation, which is the Bellman
error derived from the Bellman equation for Q-Learning.
Q∗(s, a) is the predicted Q value. maxQ′(s′, a′) is the
maximum expected future reward based on the new state
s′ and all the possible actions. γ is the discount rate,
a hyper-parameter controlling the weightage of the future
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FIGURE 3. Proposed DQN architecture.

reward. An RL agent at the early stages of the training
process should explore more to understand the environment
better. After exploring enough, the agent should rely on the
trained network, i.e., exploitation. The hyper-parameter ϵ

manages the exploration and exploitation factor. To set the
ϵ value high to explore initially and reduce it gradually to
exploit, the ϵ-decay algorithm is used. The decay function
in (5) is chosen to be an exponential function based on
the ϵ, current training episode number, ϵ_min, ϵ_initial.
The algorithm gradually reduces (decays) the ϵ value from
ϵ_initial to ϵ_min. A training episode is terminated based on
the current state s of the agent, (6) depicts all the terminating
conditions.

Loss= (Q∗(s, a)−(r+γmaxQ′(s′, a′)))2|e= (s, a, s′, r)

(4)

ϵnew = ϵold · expcurrent_episode

where, exp= total_episodes

√
ϵ_min

ϵ_initial
(5)

s=


terminal_state, s = g
terminal_state, s = U
terminal_state, total visited states == |S|
non-terminal_state, Otherwise

(6)

B. βββ-DECAY LIFELONG LEARNING ALGORITHM
The proposed βββ-decay algorithm is a transfer learning
algorithm applied when a configuration change in the
environment affects the trained DQL path planner. The
Non-TL approach would be to retrain the new RL agent from
scratch. The configuration changes are less likely to be major
and will be gradual. This will affect the number of nodes
in the topological tree, i.e., there will be only a change in
the state space of the RL agent. Considering this fact, the

Algorithm 1 Experience Vs. Exploration Vs. Exploitation
Pseducode
1: Initialize Source and Target DQN network
2: Initialize parameters - ϵ, βββ, episode_count
3: for episode <= episode_count do
4: s = random(S)
5: while s! = terminate_state do
6: if random(0 − 1) < β then
7: Q_value(ssource) = Source.Predict(ssource)
8: a = amax(Q_value(ssource))
9: else if random(0 − 1) < ϵ then
10: Q_value(starget ) = Target.Predict(starget )
11: a = amax(Q_value(starget ))
12: else
13: a = randint(1 − 4)
14: end if
15: end while
16: end for

Non-TL approach would be redundant and time-consuming
as the old agent will have useful information that can be used
to upgrade the new agent to incorporate the new environment
configuration.TL approach will be used to re-train the new
agent using the knowledge of the old agent hence reducing
training time. TL approach considers the old agent path
planner as the source task and the new agent path planner as
the target task.

The proposed βββ-decay TL algorithm transfers the knowl-
edge of the source task to the target task based on the βββ

factor. The target task agent will learn from the source task
knowledge or ϵ-decay learning process described in IV-A6.

The higher the βββ value, the higher the possibility of
transferring the source task knowledge. βββ is initialized based
on (7). Starget is the state space of the target task and Ssource
is the state space of the source task. The βββ is initialized
based on the probability of choosing a random state from the
target state space that will be the same as the source state
space. The decay factor is calculated as in (5). Based on the
ϵ and βββ, the proposed TL algorithm chooses between Expe-
rience vs. Exploration vs. Exploitation (EEE) as shown in
algorithm 1.

β =
|Starget ∩ Ssource|

|Starget |
(7)

V. RESULTS AND DISCUSSIONS
The DRL path planner is proposed to be implemented in two
stages: pre-training and lifelong learning. The pre-training
stage trains the RL agent to plan efficient paths based on
the topological map. The lifelong learning stage uses the
βββ-decay Transfer Learning Algorithm to keep the RL agent
in continuous learning mode to update its training based on
environmental changes. The system is implemented in the
ROS2 framework and tested using Turtlebot3 mobile in the
Gazebo simulation environment. Two service environment
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FIGURE 4. House layout and its topological map.

FIGURE 5. Hospital layout and its topological map.

and one benchmark maze environment that is different in
terms of its size are chosen to implement the proposed path
planner. The house layout has 8 destinations and 5 waypoints.
The hospital layout has 28 destinations and 23 waypoints.
The benchmark maze environment has 18 destinations
and 88 waypoints. The environments and corresponding
topological maps are depicted in Fig. 4 and 5. A virtual
node, ‘‘U’’, is added to the topological map. This represents
the unknown state of the agent that will be reached as
a result of an action performed to reach a location not
represented by the topological map. The performance of the
DRL framework is measured based on its training and testing
success rate. The TL module performance is measured based
on three parameters, jumpstart, time-to-threshold, and time-
to-converge.

A. DQL PATH PLANNER PRE-TRAINING
The DQL planner is pre-trained using the topological map
of the environment. The system is trained and tested in two
service environments to prove the path planner’s scalability
and generality.

1) SELECTION OF HYPER-PARAMETERS
One important step to train any RL agent is to tune the
hyper-parameters, which enables the agent to learn the
task efficiently. The hyper-parameters are α-learning rate,
γ -discount factor, ϵ-range exploration factor, and replay
memory batch size. The pace of the agent’s learning is based
on the learning rate. The learning rate is often chosen between
values 0-1. A higher learning rate will result in less learning
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TABLE 1. ϵ-range & batch size success rate.

TABLE 2. Hyper-parameters.

time but at the cost of sub-optimal learning quality. A lower
learning rate will result in optimal learning quality but at
the cost of increased learning time. Since the proposed RL
agent’s trained for a service environment and is carried out
offline, learning quality is chosen over learning time. Hence
α is chosen as 0.001 to achieve stable and quality learning.
The discount factor is used to evaluate the weight of future
rewards. γ is chosen at 0.95 to give importance to future
rewards while learning. The other factors, ϵ range and batch
size are determined by performing single-goal training in the
house layout.

Single goal DQL network differs only in the input layer
size compared to the proposed DQL network. The input layer
size n = |S| for the single goal DQL equals the total number
of nodes in the topological map. In the house layout, the RL
agent is trained to reach two destinations, D1 and D8, for
500 episodes. Batch size values 32 and 16 were chosen as
the NN is trained with numerical values. ϵ range is given
as (initial-min), a range of numbers between min and max
with exponential decay factor calculated based on (5). ϵ-
ranges chosen are (1-0.1) and (0.1-0.001). The evaluation
parameter is the training success rate which indicates the
agent’s convergence. It is calculated based on the ratio of
successful and total training episodes. Table 1 shows the
training success rates of all the training cases, which vary
based on batch size and ϵ range.The test case with batch size
32 and ϵ range of (1-0.1) yielded higher success rates (marked
in red). The final hyperparameters values are tabulated in
Table 2.

2) HOUSE LAYOUT TRAINING
The RL agent is trained to learn paths to all the destinations
in the house layout based on the topological map. The
DQL architecture shown in Fig. 3 is used in the proposed
system. The architecture has two hidden layers with some
neurons twice the input layer size. This is determined by
experimenting with different configurations. Table 3 shows
the three different architectures considered to determine the
ideal hidden layer size and its success rate after training for
2500 episodes. The difference in success rate is marginal;
this can be because the agent is trained based on numerical
data with fewer features. To gain more insight success rate
is plotted and shown in Fig. 6. The success rate plot can be

FIGURE 6. Different DQN architectures training success rate.

FIGURE 7. House layout case-2 episodic reward.

TABLE 3. Success rate of different DQL architecture configuration.

considered as the learning curve of the agent. From the plot,
it can be concluded that case-2 performs better than other
cases. Case-2 configuration is 48 neurons with two layers.
Based on (2), input layer size n for house layout is calculated
to be n = 23(15(states count) + 8(goal states count)), so the
minimum hidden layer size is 1.5 times the input layer size,
i.e., 34. This is the same as case-2, validating the architecture
configuration proposed in IV-A5. The rewards used for the
training are shown in (8).

r(s, a) =


100, s = g
−1, s = {x|x /∈ (S ∩ G)}
−10, s is previously visited location
−100, s = U

(8)

The episodic reward collected during the case-2 training
process is shown in Fig. 7 along with zero and threshold
reward lines. The threshold reward is calculated based on
the difference between the goal reward and the critical
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FIGURE 8. Hospital layout episodic reward[Left], Hospital layout episodic reward(last 2000 episodes)[Right].

FIGURE 9. Reasoning for exponent.

path. A critical path is the biggest path (in terms of node
count) among efficient paths to the destinations. Analyzing
the reward plot reveals two major factors to evaluate the
minimum number of training episodes required to train the
agent effectively. First, the minimum number of episodes
required for training is based on the frequency reduction of
the negative rewards about the zero reward line. Second, train-
ing efficiency is based on the agent by comparing episodic
reward about the threshold reward line. The negative reward
frequency reduction and increased frequency of attaining
episodic rewards about threshold reward are achieved in
2200 episodes. Hence, 2200 episodes are considered the
minimum training episode to effectively train the RL agent
in the house layout.

3) HOSPITAL LAYOUT TRAINING
To verify the scalability of the proposed DQL path planner,
it is used to train the hospital layout, another service environ-
ment. The hospital layout is a bigger environment compared
to the house layout. The DQL architecture is the same as the
case-2 type in the house layout. The input layer size n for
hospital layout is calculated to be n = 81(53(states count) +

FIGURE 10. 2D pathfinding benchmark maze environment with paths.

28(goal states count)), two hidden layers with the size of
128 neurons, and output layer size m = 4 are chosen. The
training hyper-parameters are the same as in Table 2. A plot
on episodic reward during the training process is shown in
Fig. 8. The total number of training episodes required is
over 10,000, so the plot on the left is too small to analyze
the information. A scaled version of the same plot with
the last 600 episodes of training data is depicted on the
right. The RL agent negative reward frequency reduction and
frequency of attaining episodic rewards to threshold reward
is achieved in 11850 episodes. Hence, the nearest upper-
rounded number, 12000, is considered the minimum training
episode to effectively train the RL agent in the hospital
layout.

In both the service environment, the ϵ exponent decay
factor is calculated based on (5). For a hospital layout with
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FIGURE 11. Benchmark maze environment path in four parts).

12000 episodes of training, the proposed exponent value
is 0.9998. This theory is verified by training the agent in the
hospital layout with various exponents close to the proposed
exponent. Fig. 9 depicts the training success rate plot for
three exponent values. From the plot, it can be concluded
that the learning with an exponent value of 0.9998 is efficient
compared to other values.

4) GENERALIZED PARAMETERS
The DQN architecture parameters are chosen based on
the topological map properties for successfully training the
RL agent in two different service environments. Table 4
tabulates all the model parameters, training success rate, and
generalized parameters for both environment models. The
generalized parameter for all the DQN parameters is derived
as the function of topological map properties.

5) TESTING
The proposed DQL path planner is successfully trained in
two service environments. To prove that the model is generic
and scalable, it is essential to test the model for its ability
to plan paths for various destinations given a source. The

TABLE 4. Proposed DQL model parameters and generalized parameters.

test cases considered are all the destination nodes in the
topological map to be sources and destinations for path
planning. The model is evaluated based on the testing success
rate, calculated as the ratio of the successful and total number
of test cases. The testing success rate is more than 98% for
both environments.

To further verify the correctness of the generalized param-
eters mentioned in Table 4, the proposed RL agent is tested
using a 2D pathfinding maze benchmark map from [47].
These benchmark maps have been used by researchers
worldwide for evaluating path-planning algorithms [48],
[49], [50], [51]. Fig. 10 depicts the benchmark maze
environment with the paths and random destinations. The
topological map for the benchmark maze is shown in Fig. 11
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FIGURE 12. Benchmark maze layout episodic reward[Left], Benchmark maze layout episodic reward(last 1200 episodes)[Right].

with 18 destinations and 88 waypoints, including home and
unknown nodes. There are 108 nodes in total, which is 7x
and 2x times bigger compared to the house and hospital
layouts, respectively. The topological map is too big to fit on
a single page and split into three parts. The DQN architecture
to train the RL agent for the maze environment is based on
the generalized parameters tabulated in Table 4. The input
layer size n for hospital layout is calculated to be n =

126(108(states count) + 18(goal states count)), two hidden
layers with the size of 190 neurons, and output layer sizem =

4 are chosen. The training hyper-parameters are the same as
in Table 2. The RL agent was trained for 56000 episodes with
the ϵ-decay factor as 0.999956 calculated based on (5). The
episodic reward plot is shown in Fig. 12. The episodic reward
was increasingly better as the training episodes reached
56000. The testing success rate is 98.3% for the maze layout.
This is on par with the hospital and the house layouts.
Based on the generalized parameters in Table 4, it can be
concluded that the proposed DQL system is general and
scalable.

In the work [48], a modified Q-learning approach is pro-
posed to overcome the drawback of increased convergence
time of the traditional Q-learning approach. In this article,
the authors have used the benchmark maze environment to
compare their proposed approach with traditional Q-learning
and other path-planning approaches. The system was trained
from a fixed starting point and fixed ending point for over
30 runs, and the averaged comparisonmetrics were evaluated.
The starting point considered is the same as the Home
location, and the ending point is D18. Even though in this
work, a topological map with 19 different destinations is used
to train the RL agent. The final path generated by the RL agent
from Home to D18 is shown in Fig. 13, and it is the same as
the modified Q-learning approach [48].

The house layout DQL agent is also tested in the mobile
robot Turtlebot3 using the Robotic Operating System (ROS)
framework and the Gazebo simulator. Fig. 14 depicts the two
paths, Home to D5 and Home to D4, autonomously generated
by the path planner agent.

FIGURE 13. Path generated from Home to D18 in benchmark maze
environment.

B. TRANSFER LEARNING AND TESTING
The proposedβββ-decay transfer learning algorithm is tested by
adding an obstacle in the house layout gazebo environment.
The obstacle is placed between the V1 and V2 nodes of
the house layout. Fig. 15 depicts the house layout with the
cuboid obstacle in the Gazebo simulator environment and
its topological map. The number of nodes in the topological
map is increased, and all the new nodes are highlighted in
red with dotted edges for their connections. This changes
the environment’s configuration,making the pre-trainedDQL
agent inefficient in this new environment.

The βββ-decay transfer learning algorithm transfers knowl-
edge of the source path planner (pre-trained agent) to the
target path planner (new agent). To validate the proposed
method of initializing the βββ = 0.78 calculated based on (7)
and its decay exponent for 1300 episodes e = 0.9984 based
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FIGURE 14. Simulator paths(in red) for home to D5 (left) and D4 (right).

FIGURE 15. Obstacle added between V1 and V2 in house layout and its topological map.

FIGURE 16. Training success rate for transfer vs. non-transfer training.

on (5) by replacing ϵ with βββ. The DQL agent is trained
using three different TL algorithms, without-βββ, constant-βββ,

and proposed βββ-decay. Table 5 shows the training success
rate for the three TL algorithms after 500 training episodes.
The proposed βββ-decay TL algorithm outperforms the other
two.

The βββ-decay transfer learning algorithm transfers knowl-
edge of the source path planner (pre-trained agent) to the
target path planner (new agent). To validate the proposed
method of initializing the βββ = 0.78 calculated based on (7)
and its decay exponent for 1300 episodes e = 0.9984 based
on (5) by replacing ϵ with βββ. The DQL agent is trained
using three different TL algorithms, without-βββ, constant-βββ,
and proposedβββ-decay. Table 5 shows the training success rate
for the three TL algorithms after 500 training episodes. The
proposed βββ-decay TL algorithm outperforms the other two.
The DQL agent is trained with and without transfer

learning to quantitatively evaluate the proposed transfer
learning approach. The evaluation metrics to evaluate the
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FIGURE 17. βββ-decay agent simulator paths(in red) for Home to D5 (left) and D4 (right) in new environment (with obstacle).

TABLE 5. Testing success rate comparison of TL algorithms.

efficiency of the TL algorithm are jumpstart, time-to-
threshold, and time-to-converge. To evaluate the first two
metrics success rate of the training for each training episode
is analyzed. The success rate plot is shown in Fig. 16. The
plot’s overall view shows that the training with a transfer
outperforms non-transfer training. Jumpstart is the agent’s
success rate in the initial few training episodes, and it can
be calculated based on the average success rate of the first
100 training episodes. The time-to-threshold metric evaluates
the learning performance of the agent by the time it takes to
reach the threshold performance. The threshold value chosen
is based on the agent training in the old environment. As there
is only a small incremental change in the new environment
compared to the old environment, this consideration is
reasonable and logical. The threshold success rate value
after 1800 training episodes is 42.5%. The time-to-converge
metric will indicate theminimumnumber of training episodes
required to learn the environment for path planning. This
can be evaluated based on the testing success rate. Testing
is performed by the agent’s ability to plan the path with
source and destinations as destination locations. Table 6
shows the success rate comparison between transfer and
non-transfer learning-based learning. The transfer learning
approach attains a 100% success rate after 1300 episodes,
whereas non-transfer learning attains a 78.5% success rate
after 2500 episodes.

Table 7 compares all the evaluation metrics between
transfer and non-transfer DQL agents with performance
improvement factors. In all the metrics, the DQL agent
with proposed βββ-decay transfer learning outperforms the

TABLE 6. Testing success rate of transfer and non-transfer training.

TABLE 7. Transfer learning evaluation matrices comparison.

non-transfer agent. The convergence time of the transfer
agent is more than two times faster than the non-transfer
agent. The DQL agent with the proposed system is tested in
the Gazebo simulator to navigate two paths, home to D5 and
home to D4. Fig. 17 depicts the paths planned by the path
planner by successfully avoiding the obstacles.

VI. CONCLUSION AND FUTURE SCOPE
A generic and scalable RL-based mobile service robot path
planner with transfer learning is proposed in this work.
Once a service robot is deployed, it is expected to work
for lifelong. A typical path planner will only consider the
initial configuration of the environment to plan the path.
But a service environment is prone to small gradual changes
over some time. A deep Q-learning-based path planner
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with novel βββ-decay transfer learning for lifelong learning
ability is proposed and implemented. The DQL path planner
is initially pre-trained in a service environment using its
topologicalmap. If there are any changes in the environment’s
configuration, the proposed TL algorithm trains a new DQL
agent by efficiently transferring the knowledge of the old
agent. The DQL agent is trained in two service environments:
house and hospital layouts, with a testing success rate
of 100% and 98%, respectively. The hospital environment
is almost three times larger than the house environment
concerning the number of nodes and destinations. This
proves that the proposed path planner is scalable. The DQL
agent’s generality factor is derived for all its architecture
parameters and training hyper-parameters. They are the same
or dependent on the environment’s topological map, proving
the system is generic. The path planner is successfully tested
in the ROS framework with the Gazebo simulator using the
turtlebot3 mobile robot.

The ability to lifelong learning is tested by adding an obsta-
cle in the house environment. The proposed TL algorithm
uses the Experience vs. Exploration vs. Exploitation (EEE)
logic based on the β-decay factor. The correctness of the
proposed TL algorithm’s βββ initial value and decay factor is
evaluated by comparing it with non-βββ TL and constant βββ

TL. It is found to be better than the other two techniques.
The efficiency of the TL algorithm is evaluated based on the
metrics: jumpstart, time-to-threshold, and time-to-converge.
The evaluation metrics are evaluated in comparison with the
Non-TL based agent. The proposed TL method’s speed-up
factor is 20x more in jumpstart testing success rate, more
than three times faster in achieving time-to-threshold, and
converging more than two times faster.

Implementing and testing the proposed system in a
real-time service robot is one future extension of this work.
Methods to improve the efficiency of the TL algorithm can be
explored. The βββ factor is a stochastic factor initialized based
on the total number of similar states in the environment. The
similarity is identified based on the state names obtained from
the topological map. Identifying the similarity based on state
variables can increase the efficiency of the TL algorithm.
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