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ABSTRACT To improve the control accuracy and stability of the harmonic drive system under the influence
of nonlinear friction and external disturbances, we have developed an adaptive neural backstepping control
approach with friction compensation. During the design process, we employ a nonlinear observer based on a
novel modified LuGre model with friction compensation. This observer effectively reduces the influence
of nonlinear friction on the harmonic drive system, even under dynamic changes in the environment.
Additionally, we utilize a Chebyshev neural network to approximate unknown disturbances applied to
the harmonic drive system. To prevent violations of output constraints, we introduce a tangent barrier
Lyapunov function. Furthermore, to address the challenges of ‘‘explosion of complexity’’ and poor precision
associated with first-order filters in backstepping, we integrate the inverse hyperbolic sine function tracking
differentiator into this controller. Finally, we employ the Lyapunov criterion to prove that all errors in the
closed-loop system are uniformly bounded. Simulation results confirm the feasibility of the proposed control
scheme and demonstrate better closed-loop behavior compared to that obtained using a radial basis function
dynamic surface controller.

INDEX TERMS Adaptive neural backstepping control, Chebyshev neural network, harmonic drive system,
modified LuGre model, tangent barrier Lyapunov function.

I. INTRODUCTION
The harmonic drive (HD) system is widely utilized in various
fields such as aerospace and industrial robotics due to its
compact structure, high transmission ratio, smooth operation,
and high efficiency [1], [2]. However, the HD system faces
challenges caused by the intricate sliding friction contact
between the wave generator and the inner wall of the flexible
wheel, as well as between the teeth of the flexible wheel and
the teeth of the rigid wheel [3], [4]. These factors contribute
to strong nonlinear friction throughout the reducer, which in
turn makes the system sensitive to unknown external distur-
bances. Therefore, there is immense theoretical significance
and practical value in studying the dynamic characteristics
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of the HD system and devising effective control strategies
to achieve precise compensation for nonlinear friction and
external disturbances.

The LuGre friction model is widely used in model-based
friction compensation of control systems due to its ability to
accurately describe various dynamic and static characteristics
of nonlinear friction, including presliding displacement, fric-
tional lag, and varying break-away force [5]. In LuGre-
model-based friction compensation, the primary control
scheme involves an adaptive control method based on an
observer, which estimates the unmeasurable state variables
of the LuGre model [6]. Various control methods have been
proposed in this context. For example, an iterative learning
control method based on a dual-observer is presented to
ensure that the tracking error converges to zero in the L2-norm
sense [7]. An adaptive control method based on a projection
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observer is introduced to achieve asymptotic tracking [8].
Another adaptive control method employs an observer with
filtered states to guarantee that the tracking error converges
to zero under a persistent excitation condition for the dynam-
ical function of friction [9]. Additionally, adaptive control
methods based on neural networks [10] and parameter identi-
fication [11] are also commonly employed for LuGre-model-
based friction compensation. The aforementioned control
methods primarily address the issues of asymptotic track-
ing [7], [8], [9] when the exact values of parameters in the
dynamic equation of the LuGre model are known, or approx-
imate tracking [10], [11] when all parameters of the LuGre
model are unknown. However, they overlook the dynamic
changes of these parameters under varying external condi-
tions. Therefore, a new focus of research is to develop better
approaches for describing the dynamic behavior of the LuGre
model.

Friction compensation using modified LuGre models
has been extensively studied by researchers. For instance,
an adaptive robust controller based on a modified LuGre
friction observer is proposed for uncertain linear motors to
ensure a sufficiently small tracking error [12]. By utilizing
the modified LuGre model, the vector field of the friction
equation becomes zero when the speed exceeds a preset limit,
leading to improved dynamic friction compensation across a
wide range of velocity regulation. Building upon this, another
modified LuGre model combined with a zero-velocity cross-
ing window is proposed to address lag and model oscillation
in force control systems [13]. Other modification methods,
such as those based on function-based approximation theory,
replace the non-smooth LuGre model with a smooth friction
model [14]. Interested readers can find more information
in [14], [15], and [16]. While the aforementioned modified
LuGre models with friction compensation enhance dynamic
friction performance to some extent, most of them do not
explicitly consider the influence of external disturbances.

The backstepping control (BC) framework, an adaptive
control technique, is a powerful strategy for nonlinear servo
systems under nonlinear friction and external disturbance
conditions. Unlike the sliding-mode control (SMC) frame-
work [17], which suffers from internal chattering that limits
its expansion, BC has been proven to overcome this limita-
tion [18]. Additionally, incorporating specific control tools
in the controller design process can significantly enhance
controller performance. Dynamic surface control (DSC) tech-
nology [19] addresses the ‘‘explosion of complexity’’ in
adaptive backstepping control of high-order nonlinear sys-
tems by introducing a first-order filter (FOF) into the BC
framework. While the FOF can eliminate the drawbacks of
BC, its accuracy is often low. To compensate for this, a track-
ing differentiator (TD) [20] is employed to achieve higher
precision. Neural networks (NNs) [21], [22], [23], [24] are
widely utilized in controller design because they can approx-
imate unknown smooth functions with arbitrary precision.
Common types include radial basis function (RBF) neural

networks and fuzzy basis function (FBF) neural networks.
Furthermore, when combined with DSC, radial basis function
dynamic surface control (RBFDSC) and fuzzy basis function
dynamic surface control (FBFDSC) exhibit notable advan-
tages in solving practical control problems. However, these
NNs often require additional parameters, prior knowledge of
approximation functions, and real-time parameter updates.
In contrast, the Chebyshev neural network [25] offers signif-
icant advantages as its inputs only rely on a subset of Cheby-
shev polynomials. In practical applications, the harmonic
drive (HD) system often needs to consider output constraint
issues. A barrier Lyapunov function (BLF) [26], proposed for
constraint handling in nonlinear systems, is introduced due
to its property of approaching infinity when its arguments
approach certain limits. Previous works on BLF typically
employ logarithmic BLF (BLF-Log) to design control sys-
tems [27]. However, if the constraint of the initial error
approaches convergence to zero, BLF-Log will also converge
to zero and replace the quadratic form. Considering practical
needs and theoretical challenges, constructing the BLF-tan
for the HD system is more appropriate.

Based on our current understanding, the combination of
adaptive BC, NN, TD, and BLF has not been previously
applied to control the friction compensation of the HD sys-
tem. Consequently, in this paper, an adaptive neural backstep-
ping control (ANBC) scheme is designed specifically for the
HD system. The main contributions of this paper are given as
follows:
1. The proposed ANBC scheme in this paper com-

bines the Chebyshev neural network, Inverse Hyper-
bolic Sine Function Tracking Differentiator (IHSFTD),
Tangent Barrier Lyapunov Function (TBLF), and mini-
mum learning parameters. Compared to other neural net-
works [21], [22], [23], [24], the Chebyshev neural network
can approximate unknown functions without the need to
determine the centers of the basis functions. This simpli-
fies the network structure and training process, making it
more efficient. The IHSFTD is preferred over FOF [19]
as it provides a higher accuracy in estimating the virtual
input derivative. This improves the overall performance
of the control system, especially in accurately tracking
the system dynamics. In terms of BLF, the TBLF used
in this study exhibits a wider applicability compared to
other types [27]. The TBLF can handle a broader range
of constraints, making it suitable for a variety of control
scenarios.

2. The ANBC scheme proposed in this paper is built upon a
novel modified LuGre model. One notable advantage of
this model is the ability to anticipate the effects of non-
linear friction in advance. By introducing only two adap-
tive parameters, the influence of external uncertainties
on friction compensation can be mitigated. In traditional
approaches [12], [13], [14], [15], [16], the consideration of
nonlinear friction and the reduction of uncertainties in fric-
tion compensation typically require more complex models
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and a larger number of adaptive parameters. The modified
LuGre model used in the ANBC scheme simplifies the
control process while still accounting for the influence
of nonlinear friction and reducing the impact of external
uncertainties.

This paper is organized in the following manner. Section II
states system formulation and preliminaries. In Section III,
the design of the ANBC is given, and the stability analysis is
executed. Then, in Section IV, simulation analyses are given.
Finally, the conclusion is given in Section V.

II. SYSTEM FORMULATION AND PRELIMINARIES
A. SYSTEM DYNAMIC MODEL
Considering the influence of nonlinear factors such as flex-
ible deformation, nonlinear friction, and unknown external
disturbances, a second-order nonlinear dynamic model can
be established for HD mechanisms [28], as described in
equation (1).{

Jl q̈l + cl q̇l + Ff (q̇l) − K (qm/N − ql) + dl = 0
Jmq̈m + cmq̇m + (K/N ) (qm/N − ql) + dm = u

(1)

where Ff (q̇l) denotes the nonlinear friction torque, Jl, cl, dl
are the rotational inertia, the damping coefficient, and the
unknown external disturbance of the driving mechanism,
Jm, cm, dm are the rotational inertia, the damping coefficient
and the unknown external disturbance of the motor, K rep-
resents the flexible stiffness, N denotes the reduction ratio
of the reducer component, ql, q̇l, q̈l denote the displacement,
speed and acceleration of the drive mechanism respectively,
qm, q̇m, q̈m represent the displacement, angular speed and
angular acceleration of the motor respectively, and u is the
output torque of the motor.

The nonlinear friction force Ff (q̇l) in the system (1) can
be described by the LuGre friction model as

Ff = σ0z+ σ1ż+ σ2q̇l
ż = q̇l − |q̇l | z/g (q̇l)

σ0g (q̇l) = Fc + (Fs − Fc) e−(q̇l/q̇s)2
(2)

where σ0, σ1, σ2 is the stiffness coefficient, the damping coef-
ficient and the viscous friction coefficient of the bristles in
contact surface, z denotes the average deflection of bristles,
g (q̇l) represents bounded function, qs is the Stribeck angular
speed, Fc denotes the Coulomb friction, Fs denotes the stic-
tion force.

In model (2), for the convenience of calculation, the coeffi-
cients σ0, σ1, σ2 are usually regarded as constants. However,
in actual working conditions, the coefficients σ0, σ1 will vary
with the contact of the micro convex body and the propor-
tion of load the oil film bears, and the coefficient σ2 will
be affected by the changes in the relative velocity and the
temperature. Therefore, in order to more accurately reflect
changes in internal friction of the reducer with the external
environment, parametersω and υ were introduced to improve
the classical LuGre friction model. Then, the modified LuGre

model can be expressed as

Ff = ω (σ0z+ σ1ż) + υσ2q̇l (3)

In the equation (3), ω is used to reflect changes the average
deflection of bristles. υ is used to reflect changes in the
coefficient of viscous friction. They meet 0 < ωmin < ω <

ωmax and 0 < υmin < υ < υmax.
Substituting equation (3) into equation (2) yields

Ff = ω (σ0z+ σ1ż) + υσ2q̇l
ż = q̇l − |q̇l | z/g (q̇l)

σ0g (q̇l) = Fc + (Fs − Fc) e−(q̇l/q̇s)2
(4)

Then, assuming that the actual LuGre model can be repre-
sented as

F f = ω (σ 0z+ σ 1ż) + υσ 2q̇l
ż = q̇l − |q̇l | z/g (q̇l)

σ 0g (q̇l) = Fc +
(
F s − Fc

)
e−

(
q̇l/q̇s

)2 (5)

where σ 0, σ 1, σ 2,Fc,F s,F f , q̇s are the actual value of
σ0, σ1, σ2,Fc,Fs,Ff , q̇s.

However, the actual values of these parameters are difficult
to obtain. If their nominal values are used to represent the
actual model, equation (1) can be rewritten as{

Jl q̈l+cl q̇l+Ff (q̇l)−K (qm/N−ql)+1 + dl =0
Jmq̈m+cmq̇m+(K/N ) (qm/N − ql)+dm=u

(6)

where 1 = F f (q̇l) − Ff (q̇l).
Define the system state variables x1 = ql, x2 = q̇l, x3 =

qm, x4 = q̇m. Then the dynamic equation (1) is rewritten as
follows

ẋ1 = x2
ẋ2 = (1/Jl)

[
−clx2−Ff (x2)+K (x3/N−x1)−dl

]
ẋ3 = x4
ẋ4 = (1/Jm) [u−cmx4−(K/N ) (x3/N−x1)−dm]

(7)

For any given continuous signal x1d , the four dynamics
surfaces are defined as

e1 = x1 − x1d
e2 = x2 − α2

e3 = x3 − α3

e4 = x4 − α4

(8)

where αi, i = 2, 3, 4 is the virtual control inputs.
Control Goal: All the signals of the closed HD system are

uniform and ultimately bounded with the output position sig-
nal x1 is restricted in the set � = {x1 ∈ R ||x1| < a, ∀t > 0 }.
Assumption 1: The reference trajectory x1d is bounded by

−d ≤ x1d ≤ d, (a > d > 0), and the time derivatives
ẋ1d , ẍ1d are bounded.
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B. INVERSE HYPERBOLIC SINE FUNCTION TRACKING
DIFFERRENTIATOR
In order to avoid the explosion of complexity in the controller
design, the tracking differentiator based on inverse hyperbolic
sine function is introduced [29], which is expressed as

v̇1 (t) = v2 (t)

v̇2 (t) = R2
{

−ℓ1arsh [λ1 (v1 (t) − α (t))]
−ℓ2arsh (λ2v2 (t) /R)

}
(9)

where α (t) is the input signal. v1 (t) , v2 (t) are the
state variables of tracking differentiator. R, ℓ1, ℓ2, λ1, λ2
are the positive constants. With properly design constants
R, ℓ1, ℓ2, λ1, λ2 and R is big enough, when the input signal
α passes through the differentiator (9), the following theorem
holds
Lemma 1 [30]: For the following system{

v̇1 (t) = v2 (t)
v̇2 (t) = R2g [(v1 (t) − α (t)) , v2 (t) /R]

(10)

The solution of system (10) satisfies

lim
R→∞

∫ T

0
|v1 (t) − α (t)| dt = 0 (11)

where g (·) denotes a smooth bounded function. R > 0 repre-
sents a design constant. α (t) is a bounded integrable function.
Lemma 1 ensures that when R is large enough, the solution
v1 (t) of equation (10) can fully approximate the input signal
α (t) in arbitrary finite time, thus the following formula holds

v̇1 (t) = v2 (t) = α̇ (t) (12)

Lemma 2 [31]: If the condition v1 (t) − α (t) ≤ κ with
κ > 0, then it has positive constant lv2 which satisfies the
following inequality

|v2 (t) − α̇ (t)| ≤ lv2 (13)

Assumption 2: For facilitating controller design and
avoiding the explosion of complexity. Assuming that x1d =

α1, so α̇i, i = 1, 2, 3, 4 can be written by letting pass through
the IHSFTD as:

v̇i1 = vi2
v̇i2 = R2i {−ℓi1arsh [λi1(vi1 − αi)]
−ℓi2arsh (λi2vi2/Ri)}

(14)

where |vi2 − α̇i| ≤ lvi2, and Ri, ℓi1, ℓi2, λi1, λi2, lvi2 are the
positive design constants

C. CHEBYSHEV NEURAL NETWORK
The Chebyshev polynomial can be obtained from the follow-
ing second order recursive equation [25]

Ti+1 (X) = 2XTi (X) − Ti−1 (X) , T0 (X) = 1 (15)

where X ∈ R,T1 (X) is usually expressed as X , 2X , 2X−1 or
2X + 1.

The Chebyshev neural network is capable of approximat-
ing any nonlinear continuous function F∗ (x) over a compact
set to any degree of accuracy. A strengthened pattern about
the Chebyshev multinomial for X = [x1, . . . , xm]T ∈ Rm is
presented as

ζ (X) =

[
1,T1 (x1) , . . . ,Tn (x1) , . . . ,

T1 (xm) , . . . ,Tn (xm)

]
(16)

where Ti
(
xj

)
, i = 1, . . . , n, j = 1, . . . ,m, n stands for the

order,m denotes the Chebyshevmultinomial, ζ (x) represents
the Chebyshev multinomial basis function vector.
According to the above descriptions, the arbitrary unknown

nonlinear function can be formulated as

F (X) = W ∗T ζ (X) + δ (17)

whereW ∗ denotes the desired weight vector, δ is the approx-
imation error, and there exists known constants δ0, which
satisfies 0 < |δ| < δ0.
W ∗ can be defined as

W ∗
= arg min

W∈�W

{
sup
X∈Dx

∣∣∣F (X) − Ŵ T ζ (X)

∣∣∣} (18)

where �W and DX are the compact set of reasonable bounds
of W and X , respectively.
Assumption 3: There is a positive constant δM which sat-

isfies |δi| ≤ δM , i = 1, 2.

D. TANGENT BARRIER FUNCTION
For the sake of ensuring that system state is bounded in a
desired region, a tangent barrier function y tan (y) is employed
in this paper, where tan (·) stands for the tangent function.
It is obvious that the tangent barrier function satisfies the
characteristics listed as below:

+∞ > y tan (y) ≥ 0 for y ∈ (−π/2, π/2) (19)

According to the above descriptions, we can formalize the
results for general forms of tangent barrier function in Lya-
punov synthesis satisfying y tan (y) → ∞ as y → −π/2 or
y → π/2.

III. ADAPTIVE CONTROL BASED ON BACKSTEPPING
A. CONTROLLER DESIGN
According to the above-mentioned dynamics system, the
whole design process consists of four phases. Then, the con-
troller design process is described in detail.
Step 1: Choosing the first Lyapunov function as

V1 = e1 tan
(

π

2r1
e1

)
(20)

where the design parameter r1 = a− d > 0 (a > d) denotes
the constraint on e1. That is, e1 ∈ (−r1, r1).

With (20), the time derivative of V1 is expressed as:

V̇1 = ė1

[
tan

(
π

2r1
e1

)
+

π

2r1
e1 sec2

(
π

2r1
e1

)]
= (x2 − ẋ1d )M (21)

whereM = tan
(

π
2r1
e1

)
+

π
2r1
e1 sec2

(
π
2r1
e1

)
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Then, according to (21), the virtual control input α2 is
defined by the following equality:

α2 = −k1M + v12 (22)

where k1 > 0 is the design constant.
Substituting (22) into (23), one has

V̇1 ≤ −

(
k1 −

1
2

)
M2

+ e2M +
1
2
l2v12 (23)

Step 2: Choosing the second Lyapunov function as

V2=V1+
1
2
Jle22+

1
201

ϑ̃2
1 +

1
2
ωz̃2+

1
2η1

ω̃2
+

1
2η2

υ̃2 (24)

where 01 > 0, η1 > 0, η2 > 0 are designed control
parameters, ω̃ = ω̂ − ω, υ̃ = υ̂ − υ, ϑ̃1 = ϑ̂1 − ϑ1, and
ω̂, υ̂, ϑ̂1 denote the estimate value of ω, υ, ϑ1.

With (24), the time derivative of V2 is expressed as the
following inequation:

V̇2 ≤ −

(
k1 −

1
2

)
M2

+ e2M +
1
2
l2v12

+ Jle2

{
1
Jl

[
−c1x2 − Ff − dl + K

(x3
N

− x1
)]

− α̇2

}
+

1
01

ϑ̃1
˙̂
ϑ1 + ωz̃

(
˙̂z− ż

)
+

1
η1

ω̃ ˙̂ω +
1
η2

υ̃ ˙̂υ (25)

By using the Chebyshev neural network to approximate the
unknown external disturbance dl , it can be obtained that

dl = θT1 ξ1 + δ1 (26)

where δ1 is the approximation error and satisfies |δ1| ≤ δM .
By utilizing the Young’s inequality, one can obtain

e2dl = e2
(
θT1 ξ1 + δ1

)
≤

1

2m2
1

e22ϑ1ξ
T
1 ξ1 +

1
2
m2
1 +

1
2
e22 +

1
2
δ210 (27)

where ϑ1 = ∥W1∥
2

= W T
1 W1, which can reduce the numbers

of weights for the Chebyshev neural network, ϑ1 and ∥·∥ are
the unknown variable and the 2-norms of W1, respectively,
and m1 is the design constant.

Substituting (27) into (25) yields

V̇2 ≤ e2

 −c1x2 − Ff + K
(x3
N

− x1
)

+M

+
1

2m2ϑ1e2ξT1 ξ1 +
1
2
e2 − Jl α̇2


−

(
k1 −

1
2

)
M2

+
1
2
l2v12 +

1
01

ϑ̃1
˙̂
ϑ1 +

1
2
m2
1 +

1
2
δ210

+ ωz̃
(
˙̂z− ż

)
+

1
η1

ω̃ ˙̂ω +
1
η2

υ̃ ˙̂υ (28)

Since the average deflection of bristles cannot be measured
directly, a nonlinear state observer is used to estimate z, one
has

˙̂z = x2 −
|x2|
g (x2)

ẑ−

(
σ0 − σ1

|x2|
g (x2)

)
e2 (29)

where ẑ is the estimated value of z, and z̃ = ẑ − z is the
estimation error of z.

The estimated value of friction torque is:

F̂f = ω̂
(
σ0ẑ+ σ1 ˙̂z

)
+ υ̂σ2x2 (30)

where F̂f is the estimated value of Ff .

Then, the virtual control input α3 and adaptive law
˙̂
θ1, ˙̂ω, ˙̂υ

are given as follows

α3 =
N
K

 c1x2 + F̂f + Kx1 −M

−
1

2m2
1

ϑ̂1e2ξT1 ξ1 −
1
2
e2 − k2e2 + Jlv22

 (31)

˙̂
ϑ1 =

1

2m2
1

01e22ξ
T
1 ξ1 − c1ϑ̂1 (32)

˙̂ω = −η1e2


(

σ0 − σ1
|x2|
g (x2)

)
ẑ+ σ1x2

−σ1

(
σ0 − σ1

|x2|
g (x2)

)
e2

 (33)

˙̂
ξ = −η2e2σ2x2 (34)

where k2 > 0 and c1 > 0 are the design constants.

Noting that −
c1
01

ϑ̂1ϑ̃1 ≤ −
c1
201

∣∣∣ϑ̃1

∣∣∣2 +
c1
201

|ϑ1|
2, using

Young’s inequality and combining equations (28), (31), (32),
(33) and (34), we obtain

V̇2 ≤ −

(
k1 −

1
2

)
M2

−

(
k2 −

1
2

)
e22 +

K
N
e2e3 +

1
2
δ210

+
1
2
m2
1 −

c1
201

∣∣∣ϑ̃1

∣∣∣2 +
c1
201

|ϑ1|
2

+
1
2
l2v12 +

1
2
J2l l

2
v22 − ωhz̃2 (35)

where h = |x2| /g (x2) is bounded.
Step 3: Choosing the third Lyapunov function as

V3 = V2 +
1
2
e23 (36)

Computing the derivative of V3, it gives

V̇3 ≤ e3 (x4 − α̇3) −

(
k1 −

1
2

)
M2

−

(
k2 −

1
2

)
e22

+
K
N
e2e3 +

1
2
δ210 +

1
2
m2
1 −

c1
201

∣∣∣ϑ̃1

∣∣∣2 +
c1
201

|ϑ1|
2

+
1
2
l2v12 +

1
2
J2l l

2
v22 − ϕhz̃2 (37)

Then, defining the virtual control α4 as

α4 = −k3e3 −
K
N
e2 + v32 (38)

where k3 > 0 is the design constant.
Substituting (38) into (37), one has

V̇3 ≤ −

(
k1 −

1
2

)
M2

−

(
k2 −

1
2

)
e22 −

(
k3 −

1
2

)
e23

+ e3e4 +
1
2
δ210 +

1
2
m2
1 −

c1
201

∣∣∣ϑ̃1

∣∣∣2 +
c1
201

|ϑ1|
2

+
1
2
l2v12 +

1
2
J2l l

2
v22 +

1
2
l2v32 − ϕhz̃2 (39)
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Step 4: Choosing the fourth Lyapunov function as

V4 = V3 +
1
2
Jme24 +

1
202

ϑ̃2
2 (40)

where 02 > 0, and the definition ϑ̃2 = ϑ̂2 − ϑ2 is similar to
that of ϑ̃1.

Next, the time derivative of V4 is calculated as

V̇4 ≤ e4

[
u− c2x4 −

K
N

(x3
N

− x1
)

− dm − Jmα̇4

]
−

(
k1−

1
2

)
M2

−

(
k2−

1
2

)
e22−

(
k3−

1
2

)
e23+e3e4

+
1
02

ϑ̃2
˙̂
ϑ2 +

1
2
δ210 +

1
2
m2
1 −

c1
201

∣∣∣ϑ̃1

∣∣∣2 +
c1
201

|ϑ1|
2

+
1
2
l2v12 +

1
2
J2l l

2
v22 +

1
2
l2v32 − ϕhz̃2 (41)

By using the Chebyshev neural network to approximate the
unknown external disturbance dm, it can be obtained that

dm = θT2 ξ2 + δ2 (42)

where δ2 is the approximation error and satisfies |δ2| ≤ δM .
Similarly, utilizing the Young’s inequality, it obtains

e4dm = e4
(
θT2 ξ2 + δ2

)
≤

1

2m2
2

e24ϑ2ξ
T
2 ξ2 +

1
2
m2
2 +

1
2
e24 +

1
2
δ220 (43)

where m2 > 0 is the design constant and ϑ̂2 =

∥∥∥Ŵ2

∥∥∥2.
Substituting (43) into (41), one has

V̇4 ≤ e4

 u− c2x4 −
K
N

(x3
N

− x1
)

+
1

2m2
2

e4ϑ2ξ
T
2 ξ2 + e3 +

1
2
e4 − Jmα̇4


−

(
k1 −

1
2

)
M2

−

(
k2 −

1
2

)
e22 −

(
k3 −

1
2

)
e23

+
1
02

ϑ̃2
˙̂
ϑ2 +

2∑
i=1

1
2
δ2i0 +

2∑
i=1

1
2
m2
i −

c1
201

∣∣∣ϑ̃1

∣∣∣2
+

c1
201

|ϑ1|
2
+

1
2
l2v12 +

1
2
J2l l

2
v22 +

1
2
l2v32 − ϕhz̃2

(44)

Then, the control input u with adaptive law ˙̂
ϑ2 is designed

as

u = c2x4 +
K
N

(x3
N

− x1
)

−
1

2m2
2

e4ϑ̂2ξ
T
2 ξ2

− e3 −
1
2
e4 + Jmv42 − k4e4 (45)

˙̂
ϑ2 =

1

2m2
2

02e24ξ
T
2 ξ2 − c2ϑ̂2 (46)

where k4 > 0 and c2 > 0 are the design constants.

Noting that −
c2
02

ϑ̂2ϑ̃2 ≤ −
c2
202

∣∣∣ϑ̃2

∣∣∣ +
c2
202

|ϑ2|
2 and using

Young’s inequality, equation (45) can be simplified as

V̇4 ≤ −

(
k1 −

1
2

)
M2

−

(
k2 −

1
2

)
e22 −

(
k3 −

1
2

)
e23

−

(
k4 −

1
2

)
e24 −

c1
201

∣∣∣ϑ̃1

∣∣∣2+ c1
201

|ϑ1|
2
−

c2
202

∣∣∣ϑ̃2

∣∣∣2
+

c2
202

|ϑ2|
2
+

2∑
i=1

1
2
δ2i0+

2∑
i=1

1
2
m2
i +

1
2
l2v12+

1
2
J2l l

2
v22

+
1
2
l2v32 +

1
2
J2ml

2
v42 − ϕhz̃2 (47)

B. STABILITY ANALYSIS
For any given constant p, the closed sets can be defined as

51 = {(e1) : 2V1 ≤ 2p}

52 =

{(
e1, e2, ϑ̂1

)
: 2V1 + e22 +

1
01

ϑ̃2
1 ≤ 2p

}

53 =


(
e1, e2, e3, ϑ̂1

)
:

2V1 +

3∑
i=2

e2i +
1
01

ϑ̃2
1 ≤ 2p


54 =


(
e1, e2, e3, e4, ϑ̂1, ϑ̂2

)
:

2V1 +

4∑
i=2

e2i +

2∑
i=1

1
0i

ϑ̃2
i ≤ 2p





(48)

Theorem 1: For the HD system (7) subject to output con-
strained under Lemmas 1-3 and Assumptions 1-3, the con-
troller (45) and the adaptive laws (32), (33), (34), (46) are
obtained. If initial conditions satisfy 5i, r1(0) ∈ (−r10, r10),
where i = 1, 2, 3, 4, Then the raised control scheme can
guarantee that all the objectives are realized.

Proof: The differentiation of the Lyapunov function can-
didate in relation to t is derived as

V̇ = −

(
k1 −

1
2

)
M2

−

(
k2 −

1
2

)
e22 −

(
k3 −

1
2

)
e23

−

(
k4 −

1
2

)
e24 −

2∑
i=1

ci
20i

∣∣∣ϑ̃i∣∣∣2 − ϕhz̃2 + 4 (49)

Namely

V̇ ≤ −βV + 4 (50)

where

β = min


2

(
k1−

1
2

)
, 2

(
k2 −

1
2

)
, 2

(
k3−

1
2

)
,

2
(
k4−

1
2

)
, c1, c2, 2H

>0 and

4 =

2∑
i=1

ci
20i

|ϑi|
2
+

2∑
i=1

1
2
δ2i0 +

2∑
i=1

1
2
m2
i

+
1
2
l2v12+

1
2
J2l l

2
v22 +

1
2
l2v32+

1
2
J2ml

2
v42
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Let β > 4/p, when V = p, it has V̇ ≤ 0, therefore, V ≤ p
is an invariant set. That is ∀t ≥ 0, if V (0) ≤ p, it has V (t) ≤

p.
Solving equation (50) yields:

0 ≤ V (t) ≤
4

β
+

(
V (0) −

4

β

)
e−βt (51)

Equation (51) indicates that V (t) is ultimately bounded
by β > 4/p. Therefore, all errors

(
ei, ϑ̃j, z̃

)
, j = 1, 2 in

the closed-loop system are ultimately uniformly bounded.
In addition, by adjusting the value of ki, 0j,mj, cj,Ri, lij, λij,
the value of 4/p can be arbitrarily small. Therefore, the
position tracking error e1 can be arbitrarily small.
Remark 1: The larger ki and 0j can obtain good tracking

performance. But too ki and 0j can result in large con-
trol input, which may be far beyond physical limitations of
HD systems. Meanwhile, the large Ri and small lij, λij can
improve the accuracy of tracking differentiator. However,
too large Ri can make tracking position have obvious step
oscillation at the beginning. Besides, the relatively large mj
and small cj can improve the approximation performance of
neural network.

IV. SIMULATIONS ANALYSIS
In this section, we validate the stable tracking behav-
ior through numerical simulation to confirm the effective-
ness and robustness of the proposed scheme. Additionally,
we evaluate the tracking performance by comparing three
aspects: the maximum (MAX), the average (AVG), and
the standard deviation (SD) indexes. The nominal dynamic
parameters of the HD system are presented in Table 1, while
the parameters of the LuGre friction model can be found in
Table 2. Next, we describe the main design parameters as
follows: r1 = 0.02, k1 = 20, k2 = k3 = k4 = 50,m1 =

m2 = 100, c1 = c2 = 0.01R1 = 20,R2 = R3 = R4 =

30, ℓ12 = ℓ13 = ℓ14 = 2, ℓ11 = 1, ℓ21 = 1, λ11 = 1,
ℓ22 = ℓ23 = ℓ24 = 1.5, λ12 = λ13 = λ14 = 2, λ21 =

1, λ22 = λ23 = λ24 = 1.5.
In addition, the Chebyshev basis functions are selected by

ζi=


[
1, x1, 2x21−1, 4x31−3x1, x2, 2x22−1, 4x32−3x2

]T[
1, x3, 2x23−1, 4x33−3x3, x4, 2x24−1, 4x34−3x4

]T
,

i = 1, 2,

The external disturbances are applied at the load and motor

ends as follow dl =

{
0 (t < 2)
50 (t ≥ 2)

, dm =

{
0 (t < 2)
10 (t ≥ 2)

.

The initial value of the state variables of the system are all set
as x0 = [0, 0, 0, 0], and the reference trajectory is defined as
x1d = 1 − cos (t).

Figs. 1(a)-(b) illustrate the comparison of tracking effects
between ANBC and RBFDSC on reference trajectories under
output constraints, with fixed LuGre friction parameters.
As shown in Fig. 1(a), both ANBC and RBFDSC can accu-
rately track the reference trajectory. However, upon closer

TABLE 1. HD system model parameters.

TABLE 2. LuGre friction model parameters.

FIGURE 1. Trajectory tracking results with fixed LuGre friction
parameters. (a) Angular position tracking curve. (b) Tracking error curve.

inspection in the magnified image, it is apparent that the
trajectory of ANBC closely aligns with the reference trajec-
tory. This observation is further supported by the error data
presented in Table 3 and Fig. 2(b). The MAX, AVG, and
SD of the tracking errors obtained using the proposed ANBC
are smaller than those achieved with RBFDSC. Additionally,
it is worth noting that the tracking error of ANBC remains
within the predefined region bounds, unlike that of RBFDSC.
Consequently, we can deduce that when output is constrained,
ANBC can enhance the tracking performance of a given
signal.

Figs. 2(a)-(b) illustrate the compensation of the neural
network for the external unknown disturbance torques at
both the load and motor ends. As observed in Figs. 2(a)-(b),
T2SFNN1 and T2SFNN2 exhibit a swift response, accurately
tracking the desired trajectory with minimal error, even after
the application of an external disturbance torque.
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FIGURE 2. Approximation of T2SFNN to unknown external disturbances.
(a) Approximation to dl at the load end (b) Approximation to dm at the
motor end.

TABLE 3. Comparisons of angular tracking errors e1 with fixed LuGre
friction parameters.

FIGURE 3. Trajectory tracking results with two different reference
trajectory.

To verify the dynamic performance of the proposedANBC.
We reset the reference trajectory as follows:

Case 1: x1d is reset as a mix frequency sinusoidal function
x1d = 1 − cos (2t) + 0.75 sin (0.25t).

Case 2: x1d is reset to a square wave function with
Amplitude =1 and Frequency =0.25.
Fig. 3 shows that the ANBC can still achieve effective

tracking when the reference trajectory is set as the mix fre-
quency sinusoidal function or a square wave function.

To further validate the robustness of the proposed adaptive
control algorithm, we analyzed the tracking performance on

TABLE 4. LuGre friction model dynamic parameters.

TABLE 5. Comparisons of angular tracking errors e1 with dynamic LuGre
friction parameters.

FIGURE 4. Trajectory tracking results with dynamic LuGre friction
parameters. (a) Angular position tracking curve. (b) Tracking error curve.

the LuGre model with dynamic parameters. The dynamic
changes in the LuGre frictionmodel parameters were selected
and are listed in Table 4.

Figs. 4(a)-(b) demonstrate the position tracking and track-
ing errors of the two controllers when the parameters of the
LuGre friction model dynamically change. Observing these
figures, it is evident that the RBFDSC controller deviates
noticeably from the desired trajectory, while the ANBC con-
troller effectively tracks the desired signal. Additionally, the
tracking error of ANBC remains within the predefined region
bounds. Moreover, as indicated in Table 5, the ANBC con-
troller outperforms the RBFDSC controller in terms ofMAX,
AVG, and SD of the tracking error in the same scenario.

Figs. 5(a)-(b) showcase the friction compensation effects
and friction compensation errors of the two controllers
under dynamic parameter changes in the LuGre model. It is
observed that when the parameters of the LuGre model
change dynamically, the proposed modified adaptive method
accurately compensates for the actual friction force, while
the RBFDSC method, without modified parameters, exhibits
more pronounced deviations in friction compensation.

96100 VOLUME 11, 2023



Y. Xia et al.: Adaptive Neural Backstepping Control for HD System

FIGURE 5. Friction compensation of Lugre model with dynamic
parameters. (a) Friction compensation curve. (b) Friction compensation
error curve.

In summary, the simulation results confirm that the pro-
posedANBC controller effectively tracks the desired signal in
the presence of disturbances, output constraints, and dynamic
LuGre friction parameters. Furthermore, the comparative
analysis between ANBC and RBFDSC demonstrates that
ANBC achieves higher precision tracking performance for
the harmonic drive system. These findings support the con-
clusion that the adaptive controller proposed in this paper
enables accurate control and exhibits robustness.

V. CONCLUSION
To address the challenges of nonlinear friction and external
disturbances in the HD system, an ANBC scheme with fric-
tion compensation, incorporating a modified LuGre model,
has been developed. This scheme aims to reduce the effect of
nonlinear friction by introducing average mane deformation
and viscous friction coefficients. Additionally, a Chebyshev
neural network is integrated into the control strategy to
enhance robustness against external disturbances at both the
load and motor ends. Simultaneously, the TBLF ensures that
the tracking error approximates the desired signal within a
small margin, while adhering to certain restrictions. Stability
analysis of the closed-loop HD system is conducted using
the Lyapunov criterion. Simulation results demonstrate that
the proposed ANBCmethod exhibits greater robustness com-
pared to RBFDSC against changes in friction parameters and
external disturbances, leading to enhanced position-tracking
accuracy in the HD system.

Future research will focus on designing adaptive con-
trollers that utilize neural network approximations for friction
compensation while considering the impact of factors such as
hysteresis and nonlinear stiffness on the HD system.
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