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ABSTRACT A farmer faces several challenges associated with fruit rot disease in the areca nut crop.
Weather factors, including rainfall and temperature, largely influence the disease severity and spread of
infection in crops. Significant growth has been achieved using RNN models for time series forecasting in
the past few decades, but these models are not applied to fruit rot disease prediction. This study introduces
Vanilla GRU, Stacked GRU, Bidirectional GRU, and Bidirectional LSTM models for the inaugural prediction
of fruit rot disease scores using past weather data. The current investigation also involves the mitigation
and comparison of forecast inaccuracies by utilising weight optimisation algorithms like Adam, Adagrad,
RMSprop, and Genetic algorithms. Meteorological and disease score data are gathered from the Agricultural
Research Station in Brahmavar, Karnataka, and CPCRI Kasargod, Kerala. These datasets are combined
using a rule-based algorithm to train and evaluate the proposed model. Empirical outcomes reveal that
the vanilla GRU model, when fine-tuned with the Adam algorithm, exhibits a diminished Mean Squared
Error (MSE) value of 0.0009, an exceptionally minimal Mean Absolute Error (MAE) value of 0.02, and
an elevated R-squared (R2) score of 0.99. Similarly, the Bidirectional LSTM model, optimised through
RMSprop, yields an impressively low Root Mean Squared Error (RMSE) value of 0.033. Generally, the
optimised Deep Learning (DL) models consistently demonstrate enhanced predictive precision compared to
alternative models. In conclusion, the anticipation of areca nut disease, as facilitated by this study, stands to
aid farmers in curtailing unnecessary fungicide application and achieving more favourable yields.

INDEX TERMS Areca nut, deep learning, disease prediction, fruit rot disease, genetic algorithm, gated
recurrent unit, optimisation, weather.

I. INTRODUCTION

The areca nut is the predominant industrial crop giving
economic security to many people in India. Areca nut
cultivation offers many job opportunities for small-scale
industries. India produces 57% of total production, while
China, Bangladesh, Myanmar, and other countries produce
the remaining 43% of areca nut [32]. There are only a few
locations in the country where areca nuts are grown, but
the consumption of areca nuts is widespread. The country’s
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areca nuts are grown in the south and northeast, comprising
Karnataka, West Bengal, Kerala, Assam and Tamil Nadu.
Every part of the areca catechu is beneficial for humankind.
Areca flowers are used for worship; areca leaf is used
for plate, bowl and spoon making; areca palm is used for
furniture making and many more.

Many pharmacological benefits of areca nut have been
documented, including anti-bacterial, anti-parasitic, anti-
inflammatory, anti-fungal, and analgesic properties [8], [35].
There has been growing evidence that areca catechu is
effective in controlling fascioliasis due to its molluscicidal
properties against snails [22]. The by-product of areca nut
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is areca tannin which is used as a colouring agent in many
products, for dying clothes and tanning leather. However,
the areca nut is highly prone to attack at all stages due to
biotic and abiotic stress. The areca nut is highly susceptible
to fungal diseases since climatic conditions promote fungal
growth and activity there. Fruit rot disease is one among them,
and it results in the complete death of the palm individually
or attacks the entire plantation area. Nagappa et al. [27]
discussed the problems experienced by farmers in areca nut
cultivation. A significant production constraint in areca nut
growing is high costs, limited labour availability, and a lack
of knowledge about managing pests and diseases. Hence,
predicting fruit rot disease is essential to take precautionary
measures.

Deep learning algorithms generalise the data and make
predictions on data that has not yet been seen. In these
algorithms, the inputs are mapped to the outputs. An opti-
misation algorithm aims to find the weights that minimise
the error when mapping inputs to outputs. Hence the
optimisation algorithm is commonly used to select the best
hyperparameter combination for neural network training.
Different types of optimisation algorithms can be used
to train the network. Gradient-based algorithms (Adam,
RMSprop, Adagrad, Adadelta, stochastic gradient, etc.) and
swarm intelligence-based algorithms (ant colony optimisa-
tion, genetic algorithms, Particle swarm optimisation, etc.)
are commonly used to optimise the neural network (NN).

A. MOTIVATION OF THE RESEARCH

Being predominantly agrarian, India relies heavily on cash
crops as a primary source of sustenance for its populace.
The application of pesticides becomes imperative due to
the susceptibility of areca nut yields to fruit rot disease,
particularly during the monsoon season. Given the farmers’
strong reliance on these yields, they resort to recurrent
pesticide spraying to boost production and counteract disease
incidence. However, this practice leads to a cascade of issues:

1) FINANCIAL INEFFICIENCY
Repetitive pesticide application results in monetary wastage.

2) ENVIRONMENTAL CONTAMINATION
The environment suffers from increased pollution due to
excessive pesticide use.

3) SOIL DEGRADATION
Soil quality deteriorates due to the accumulation of pesti-
cides.

4) HEALTH CONCERNS
Health problems arise for both farmers and consumers due to
pesticide exposure.

The sole solution to mitigate the cycle of excessive
spraying rests in predicting fruit rot disease occurrences
through forecasted weather data. Consequently, the current
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research introduces a pioneering methodology: predicting the
areca nut disease score by leveraging weather data via deep
learning models. Notably, the accuracy of these predictions
is enhanced by implementing diverse weight optimisation
techniques for the first time.

Several aspects of this present study that contribute original

knowledge to the literature are:

o A GRU network-based approach was used for the first
time in this study to forecast areca nut disease. These
networks have successfully predicted many other prob-
lems due to their robustness, efficiency and reliability.

« Different optimisation techniques are used to compare
the model’s performance.

o For the first time, a genetic algorithm has been
proposed as an optimisation tool for forewarning fruit
rot incidence.

« Implementation of GRU networks involved increment-
ing neurons in the hidden layer and several epochs. Thus
it determines the impact of the number of neurons and
epoch number on forecast accuracy and computation
time in the hidden layer.

o This study uses data from the (Brahmavar) Karnataka
and (Kasargod) Kerala regions between May and
October for 50 years to analyse the weather and disease
patterns for the first time.

« Using the proposed approach, researchers should also
be able to predict fruit rot disease incidence in other
regions.

o This study can solve the problem of disease uncertainty
in farming by making the precautionary decision to
spray fungicides based on requirements.

The main aim of this research is to use the GRU-based deep
learning models in areca nuts’ fruit rot disease incidence
score prediction and optimise these models to get more
accuracy in prediction. Our main aim is to forecast the areca
nut disease rate as it reduces crop yield worldwide. Section |
describes the importance of areca nut and the research
requirement in this domain. Section II states the existing
models in crop disease prediction weight optimisation models
used in neural network and RNN deep learning models
applications. Section III depicts the methodology used in
areca nut disease prediction. Section IV represents the
proposed work’s experimental analysis and is compared with
the existing deep learning models. The final conclusion is
given in the V section.

Il. LITERATURE REVIEW

Much research is being done on areca nut-related issues,
such as yield prediction, disease management, chemical and
analytical aspects, image-based disease prediction, detection,
and classification. Still, very little research is being done on
weather-based areca nut disease prediction. Recently authors
[20] and [34] detected areca nut disease using a convolution
neural network model and classified it as a healthy and
diseased crop based on images. In recent years many journals
and conference articles have been published on the different
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optimisation algorithms and deep learning techniques used to
solve real-world problems.

A. OPTIMIZATION ALGORITHMS

Haji and Abdulazeez [16] compared the different types of
gradient descent optimisation techniques and published a
review article. Stochastic gradient, Adagrad, Adam, and
RmsProp are compared in terms of their training speed,
convergency rate, performance and pros and cons. The
efficiency of the algorithm varies based on the dataset used.
Jais et al. [21] evaluated the adam optimisation algorithm
effect on broad and deep neural networks. They considered
the breast cancer dataset from the UCI ML repository to find
the best accuracy.

Wibowo et al. [39] used different stochastic gradient
optimisation algorithms to train the neural network for
classifying cancer microRNA biomarkers. They concluded
with Adam and RMSProp as the best optimisation techniques
for the given dataset, with an accuracy of 98.5%. Huk
[19] used the RMSprop stochastic algorithm to optimise
contextual neural networks and multilayer perceptron to
solve real-life classification problems. The generalised
backpropagation (GBP) algorithm is merged with RMSprop
optimisation. The Armstrong, Golub, SRBCT, Sonar, Heart
C, and Crx datasets from the UCI ML repository are
considered for experimentation. The author concludes that
GBP RMSprop performs better than GBP stochastic gradient
descent optimisation technique. Shao et al. [36] forecasted
wind speed using the LSTM network, optimised by the
fireworks algorithm. Initially, they predicted the wind speed
using the LSTM model with Adam optimiser. The two hidden
LSTM layers are used to experiment with loopback value
15. Then the fireworks algorithm is used as an optimiser to
fine-tune the network attributes like weights and learning rate
to reduce the losses. Compared to other optimisers, fireworks
have a fast convergence rate. They found promising results
with 0.64 as the RMSE value and 0.46 as the MAE value.
Krishna et al. [24], [33] used machine learning and deep
learning techniques to predict areca nut fruit rot disease
based on weather parameters. The authors have created and
validated the dataset by integrating disease data and historical
weather data. MLR, SVR, RFR, DTR, and LSTM models are
used and achieve good disease prediction accuracy.

Suksri and Kimpan [37] designed a temperature fore-
casting model using historical weather data. The model
is developed on neural network technology. The network
is optimised with the help of the fireworks algorithm.
They conducted multiple experiments by varying the neural
network parameters and firework algorithm. The prediction
accuracy with the training set is 81.48%, and with testing,
itis 73.79%.

The best optimiser is selected for bushfire occurrence
prediction using deep learning by Halgamuge et al. [17].
Real-time and historical weather data like temperature,
pressure, wind speed, direction, daily rain and humidity are
collected from Weather Underground API from 2012 to 2017.
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Different optimisers like Adam, Adagrad, Nadam, RMSprop
and SGD are used to train the neural network, and finally
selected Adagrad as the best optimiser because of its highest
processing speed and accuracy.

Duchi et al. [14] introduced the Adagrad algorithm,
Adaptive Subgradient Method for Online Learning and
Stochastic Optimization. The author has given many abstract
examples in the paper to show that the adaptive method is
better than the non-adaptive method for sparse data. They
considered adaptive proximal functions, diagonal matrix
proximal functions and full matrix proximal functions to
update the parameters. Different regularisation is incorpo-
rated naturally with the AdaGrad family of algorithms,
resulting in very sparse solutions that perform similarly to
dense solutions.

Kingma and Ba [23] introduced the Adam algorithm,
which uses adaptive estimates of lower-order moments
to optimise first-order stochastic objective functions. This
algorithm works well for hyperparameter tuning and is
appropriate for noisy and sparse gradients. The algorithm
combines the advantages of two algorithms, namely AdaGrad
to handle sparse gradients and RMSProp to handle non-
stationary objectives.

Using the fireworks algorithm, Pang et al. [31] developed
a prediction model for electric vehicle relay lifetime. They
have shown how the mapping and mutation function of the
FWA can be modified to increase the neural network model’s
convergence ability and running speed. The prediction results
from the grey model, grey neural network (GNN) model,
FWA GNN model and improved FWA GNN model are
compared and declared the best model. The fireworks
optimisation did not give good prediction results with the
proposed areca nut dataset; hence, we reviewed the genetic
algorithm and its applications for optimisation.

Chung and Shin [12] used a genetic algorithm to optimise
the LSTM network for stock market prediction. They
optimised the window size and the number of LSTM units
because these two parameters play a vital role in prediction
accuracy. They used daily Korean Stock Price Index data for
the experiment, showing that the GA-integrated LSTM model
outperforms other benchmark models. Abdolrasol et al. [1]
published a review article on artificial neural network-based
optimisation techniques. Several parameters have been opti-
mised in this review, including weight optimisations, initial
weight, bias and learning rate optimisations, hidden layers,
hidden nodes, and activation functions. The techniques
like particle swarm optimisation, Artificial bee colony,
Backtracking search algorithm, and genetic algorithm are
used to optimise the ANN and are discussed by taking various
engineering applications.

In buildings, energy consumption is predicted by Luo et al.
[25] using deep neural networks optimised by genetic
algorithm. To extract the features of weather data daily,
clustering techniques were used. A genetic algorithm selects
the best architecture for each set of datasets in a DNN
submodel. The proposed prediction model is unique because
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FIGURE 1. Overall system architecture of the present study.

it combines three artificial intelligence approaches: clustering
for feature extraction, genetic algorithms for architecture
optimisation, and deep neural networks for energy prediction.

Genetic algorithm-based weighted ensembles of deep
convolutional neural networks have been developed by
Ayanetal. [9] to classify crop pests. The top three
best-performing CNN models, Inception-V3, Xception, and
MobileNet, were ensembled to increase the performance
using weighted voting. The genetic algorithm is utilised
to determine the weights, and the model achieved a
classification accuracy of 98.81%.

Noh et al. [28] forecasted the product demand in a supply
chain management system using the gated recurrent unit
with a genetic algorithm. In their approach, GA finds five
GRU hyperparameters: window size, number of neurons in
a hidden state, batch size, epoch size, and initial learning
rate. The proposed GA GRU is compared with k-fold
cross-validation, RNN, GA LSTM, ARIMA, and ANN.
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Using the multi-layer perceptron technique Ecer et al. [15]
predicted the stock price index. Genetic algorithm and
particle swarm optimisation techniques are used to optimise
the weights and biases of the MLP network. RMSE and
MAPE measure the performance of both models.

B. RNN MODELS

Cho et al. [11] proposed a gated recurrent unit first time
in 2014 on the task of translation from French to English.
The idea behind the study is to scale up the computation
and memory requirements of neural networks. Chung et al.
[13] performed an empirical evaluation of LSTM and gated
recurrent neural networks on sequence modelling. The
authors evaluated these models on speech signal modelling
and polyphonic music modelling tasks. Despite this, the
authors could not draw a definitive conclusion about which
gating unit was better.
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Hochreiter et al. [18] developed the LSTM model to
overcome the problem of the traditional RNN model of
storing information over extended time intervals. In addition,
the LSTM algorithm solves tasks with artificial long-time
lags that were previously impossible to solve using previous
recurrent network algorithms.

LSTM and GRU techniques were used by Ozdemir et al
[29] to forecast the medium- to long-term nickel price. From
the study, it is found that the computational time taken for
GRU is less than the LSTM network for the given dataset.
Based on the author’s calculations, LSTM networks averaged
7.060% mean absolute percentage error (MAPE), while GRU
networks averaged 6.986% MAPE. Based on the model,
nickel prices will be predicted for 10 years between 2022 and
2031, with 2026 providing the best forecast performance.

Yamak et al used ARIMA, GRU and LSTM models to
compare the time series forecasting results [40]. Bitcoin’s
price dataset is considered to make the comparisons. ARIMA
is a statistical model that performed well with the dataset,
but GRU performed better than LSTM among deep learning
models. Alguliyev et al. [4] used infected leaves to detect
the disease of 14 species. The aim behind this idea is
early detection of plant disease will prevent disease from
spreading in large areas. The PlanVillage dataset of images
is considered for experimentation, along with CNN and
GRU deep learning models. The proposed CNN+GRU
model performs better compared to ResNet and VGGnet
models.

Stock market values are forecasted by. Althelaya et al.
[7] using stacked and bidirectional LSTMs and GRUs. The
historical data S&P500 downloaded from Yahoo Finance is
used as input to the model, and the Tensorflow package is
used for the implementation. Across short-term and long-
term forecasts, Stacked LSTM demonstrated the highest
performance. Wazrah and Alhumoud [3] used a stacked GRU
model for sentiment analysis of Arabic tweets. The model is
compared with LSTM, SVM model and an ensemble of these
models, in which the ensemble method outperforms all other
methods with an accuracy above 90%.

The stacked bidirectional GRU is used to predict the
COVID-19 cases in India by Ahuja et al [2]. The proposed
model predicts recovery rate, death cases, health index, and
positive cases for the next 30 days. In comparison with
other models, the model is found to be the most accurate.
Alsyaibani et al [6] used bidirectional LSTM and GRU to
increase the accuracy of the intrusion detection system model.
The dataset used in the study is CIC IDS 2017. The Adam
optimisation method is used because of its performance.
Among all implemented algorithms, bidirectional GRU
showed the highest accuracy 97.8% with ReLu as an
activation function.

The GRU model is tremendously used in the agriculture
domain for different purposes, namely crop yield estimation
[5], crop variety recommendation [26], data from satellite
imagery can be used to detect soybean sudden death
syndrome early [10] etc.

110586

The research gaps observed from the literature are listed
below:

o The stacked and bidirectional GRU and LSTM can
be used for time series data forecasting but have not
experimented with the areca nut crop disease dataset.

o Optimization algorithms will help improve the model’s
accuracy that needs to be compared.

« Genetic algorithm helps to optimise the weights required
for neural network training but is not used for fruit rot
disease forewarning.

o Generalizing the model requires evaluating its perfor-
mance with different region-specific datasets.

This study is the first attempt to compare the different
suitable optimisation algorithms to predict the areca nut
disease incidence. Firstly the dataset is preprocessed and
made suitable input for the DL models. Secondly, the disease
prediction model using a gated recurrent unit (GRU), LSTM
and its variants are established. Thirdly, the optimisation
algorithms are used to find the best suitable hyperparameters
to optimise the RNN model. Finally, the model predicts the
fruit rot disease incidence score value.

ill. METHODOLOGY
The overall methodology of the present study is shown in
figure 1.

As shown in the figure, the historical weather and fruit rot
disease data are taken from the agriculture department and
preprocessed. The data is given as input to the different DL
models with different optimisation algorithms. DL models
are vanilla, stacked and bidirectional GRU, and bidirectional
LSTM has solid literature in sequential time series forecast-
ing. Optimisation techniques are Adam, Adagrad, RMSprop
and genetic algorithm, in which genetic algorithm plays an
influential role in neural network weight optimisation. At last,
the results in terms of MSE value, MAE value and R2 score
value are compared and published.

A. DATA SET

In the study, data from two different regions are considered
for experimentation. Historical weather data and areca
nut disease data are collected from Agricultural College
Brahmavar, Udupi, from 2000 to 2020. Also, historical
weather and areca nut disease data are collected from KPCRI
Kasargod from 1960 to 2014. There are no differences in the
weather patterns of the two regions. So the dataset contains
13555 records after combining data from both regions. The
features used in the proposed study are listed in table 1 with
their range of values.

The weather and disease data are integrated using the
rule-based algorithm shown in Algorithm 1. The rule-based
classifier uses various if...else rules to generate the score
value in the areca nut crop. The disease score value is
considered the target value in the proposed models.

Table 2 shows the sample records with dependent (disease
score value) and independent variables (weather data) from
the dataset.
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TABLE 1. List of features used in the dataset and its range.

Feature Proper Name Range

Name

RF Rainfall 0 to 260 (mm)

Max T Maximum temperature 18 to 39 (Celcius)
Min T Minimum temperature 4 to 31 (Celcius)

RH 1 Relative humidity (Morning) | 36 to 140 (percentage)
RH?2 Relative humidity (Evening) | 36 to 100 (percentage)
Cl2 Wind speed 0 to 8 (km/h)

SS Sunshine 0to 11 (hrs)

DS Disease score value 0 to 35 (Unit)

Algorithm 1 Dataset Integration
if RF > 15and Max T < 24°C and RH 1 > 90 then
DS++;
else
if RF > 5 and SS > 5 then
DS++;
else
if RF < 10 and Max T> 24°C then
DS—;
else
DS =DS
end if
end if
end if

TABLE 2. Weather parameters and disease score of the dataset.

Date RF |Max |MinT |RH |[RH |[Cl2 |SS |DS
T 1 2
01-05-1960 | 0.0 |34.3 |26.7 83.0(78 (232 |10.5
02-05-1960 | 17.8 | 34.8 |29.0 76.0 |78 |232 |93
03-05-1960 | 9.1 |35.2|24.1 88.0 |78 |232 |8.0
04-05-1960 |42.4 |32.1 |24.1 80.0 |78 [232 |42
05-05-1960 | 5.3 |33.2|23.4 91.0 |78 232 |45

NN — O

Data preprocessing is essential in learning as the model’s
outcome heavily depends on the proper data. So, the weather
data in our dataset contained the missing values; all the
missing values are filled with column mean. As listed in the
table, the features have different ranges of values. So to make
learning easy, the min-max scalar is used to shrink the data
from O to 1.

B. TECHNIQUES USED

The GRU deep learning model and its variants are used
to predict the disease incidence score in the areca nut
crop. Stochastic algorithms like RmsProp, Adagrad, genetic
algorithm and Adam are used to optimise the model. The
optimisation and learning algorithms are explained below.

1) ADAGRAD

This algorithm uses a different learning rate for each iteration.
It is constructive because the dataset contains sparse and
dense features. Adagrad reaches convergence at a very high
speed. The formula used to calculate the new weights is given
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FIGURE 2. Flow diagram of genetic algorithm.

in equation 1.

W(t+1) _ W(t) _ Ui )

i i 7 2 8t,u
v D=1 8%,i

The n is a constant and g; is the learning rate for each
iteration. The learning algorithm receives a single example at
each iteration in the Adagrad optimisation setting [ 14]. At the
end of a single pass through the training data, the learning
algorithm outputs a predictor measured by online loss and
test set performance.

2) ADAM

Adam derives its name from adaptive moment estimation.
The update of network weights is realised using this
optimisation algorithm, a variant of stochastic gradient
descent. Each network weight is updated individually by the
Adam optimiser. This algorithm inherits both the features
of Adagrad and RMSprop algorithms. This algorithm works
best with extensive data and/or parameter problems [23].
Adagrad’s performance should theoretically be similar to
Adam’s with 1/./¢ decay on its stepsize.

3) RMSPROP

The RMSprop (Root Mean Square propagation) opti-
miser also contributes to the advancement of AdaGrad
since it reduces the monotonically decreasing learning
rate. This algorithm accelerates the optimisation process.
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TABLE 3. The MSE value of four deep learning techniques when multiple
optimisation techniques are used.

DL Technique Adam RMSprop | Adagrad |GA
Vanilla GRU 0.0009 0.001 0.003 0.0014
Stacked GRU 0.001 0.001 0.002 0.0015
Bidirectional GRU 0.0013 0.0012 0.008 0.0014
Bidirectional LSTM 0.0012 0.0009 0.0023 0.0025
0.009
0.008
0.007
o 0.006
< o005
: 0.004
g 0.003
0.002
0.001
. N [l
Adam RMSprop Adagrad GA
= Vanilla GRU Stacked GRU Bidirectional LSTM Bidirectional GRU

FIGURE 4. MSE value for different DL models.

It was proposed by Tieleman and Hinton [38] to decouple
coordinate-adaptive learning rates from rate scheduling.
In RMSprop, the learning rate has to be applied manually.
The formula for calculating the weight using the RMSprop
technique is given in equation 2.

M+1=%—L(8E") @)

\/V]; +¢ 8_w]

Gradient descent is adaptively adjusted by taking the partial
derivative of error E over connection weight w.

4) GENETIC ALGORITHM

A genetic algorithm was first introduced by Holland in
1975. This technique is based on the mechanisms of
natural selection and uses stochastic global adaptive search
optimisation. Using GA, operators can mimic the crossover
and mutation processes found in nature. Many researchers use
the GA for a variety of purposes. Genetic algorithms calculate
the fitness value F as shown in equation 3 based on the neural
network topology structure and predicted results [12].

F=k Z()’i —0)? 3)
i=1
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FIGURE 6. Adagrad: Loss in stacked GRU model.

Figure 2 illustrates six stages in processing the GA: ini-
tialisation, fitness calculation, termination condition check,
selection, crossover, and mutation.

Here, the model weights are considered as the initial
population. The GA model gives the best weights as output
solutions after the selection, crossover and mutation process.
It stops as soon as the algorithm reaches the maximum
number of iterations.

5) RNN MODELS
Gradient explosion or gradient disappearance can be solved
using a GRU, a type of recurrent neural network. It is
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difficult for traditional neural networks to process time series
information. Still, GRU and LSTM can combine historical
data with current data to predict future events based on
historical data. The GRU unit is shown in figure 4.

The LSTM has a feedback connection and three gates to
maintain the state over time. Among the three gates, the
input gate updates the cell status, the output gate gives the
value of the next hidden state and the forget gate decides
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FIGURE 12. Adam: Loss in bidirectional LSTM model.

which information has to be ignored. GRU contains an update
and reset gate to link the hidden information with the future
prediction. It is possible that the GRU unit will discard some
historical information if the reset gate is close to 0, which
means that it will not preserve the current output of the hidden
layer. In the update gate, the amount of information to store in
the output of the hidden layer at time t is determined [30]. The
layers in the DL model use the L1 regularisation to simplify
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FIGURE 13. RMSprop: Loss in vanilla GRU model.
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FIGURE 14. RMSprop: Loss in stacked GRU model.

the network model and to prevent the overfitting problem.
The dropout regularisation technique is used with a value of
0.2. In this technique, it randomly selects and removes some
nodes at every iteration. So, a model with dropout performs
better than a normal neural network model. 50 epochs are
considered to train and test the model.

Stacked GRU: Several GRU units create stacked GRU in
multiple layers. If the hidden layers are more, data overfitting
is possible. Therefore, fewer GRU layers are placed one after
another to create a stacked GRU.

Bidirectional GRU: This contains two GRU layers, one
taking the input in the forward direction and the other in
the backward direction. Here, the data sequence is processed
in both forward and backward directions. Hence, it is more
suitable for large-scale data.

Bidirectional LSTM: This contains two LSTM layers, one
taking the input in the forward direction and the other taking
the input in the backward direction. Here, the data sequence
is processed in both forward and backward directions. Hence
it is more suitable for large-scale data. LSTM units contain
one more gate than GRU units; hence, the time taken for
processing is longer in the bidirectional LSTM model.
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FIGURE 15. RMSprop: Loss in bidirectional GRU model.
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FIGURE 16. RMSprop: Loss in bidirectional LSTM model.

TABLE 4. The R2 score value of four deep learning techniques when
multiple optimisation techniques are used.

DL Technique Adam RMSprop | Adagrad |GA
Vanilla GRU 0.99 0.98 0.96 0.98
Stacked GRU 0.98 0.98 0.97 0.98
Bidirectional GRU 0.98 0.99 0.89 0.98
Bidirectional LSTM 0.98 0.99 0.97 0.97

1

0.98

0.96

o 0.94

E 0.92

g 08

0.88

0.86

0.84

Adam RMSprop Adagrad GA

m Vanilla GRU  mStacked GRU Bidirectional LSTM Bidirectional GRU

FIGURE 17. R2 score value for different DL algorithms.

C. PERFORMANCE INDEX

Measurement is necessary to evaluate our proposed model’s
prediction performance against other state-of-the-art meth-
ods. The mean absolute error (MAE), mean square error
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TABLE 5. The MAE values of four deep learning techniques when
multiple optimisation techniques are used.

DL Technique Adam RMSprop | Adagrad |GA
Vanilla GRU 0.02 0.027 0.04 0.026
Stacked GRU 0.023 0.022 0.03 0.029
Bidirectional GRU 0.022 0.021 0.03 0.039
Bidirectional LSTM 0.023 0.023 0.07 0.027
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0.12

MAE value
= =
= o =
=1} ca Ll

0.04 ._’__.—’/‘\‘
0.02
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Adam RMSprop Adagrad GA
=—e—Vanilla GRU Stacked GRU Bidirectional LSTM Bidirectional GRU

FIGURE 18. MAE value for different DL algorithms.

TABLE 6. The RMSE values of four deep learning techniques when
multiple optimisation techniques are used.

DL Technique Adam RMSprop | Adagrad
Vanilla GRU 0.034 0.034 0.047
Stacked GRU 0.033 0.034 0.051
Bidirectional GRU 0.034 0.039 0.06
Bidirectional LSTM 0.034 0.033 0.045

(MSE), root mean square error (RMSE) and R2 score are used
to evaluate the benefits and drawbacks of the DL models. R2
score is closely related to MSE.

The definition of MSE is given in equation 4.

MSE = 1/n> (X; — Y))? 4)
i=1

where X is the actual value, Y is the predicted value, and n is
the number of observations. In addition, MSE is measured
in units equal to the square of the target variable, while
RMSE is measured in units equivalent to the target variable’s
value. The formula used to calculate RMSE is given in the
equation 5.

RMSE = | 1/n ) (X; — Y;)? 5)
i=1

The R2 score is:

totalVarianceByModel [totalVariance

So, the higher the value, the higher the correlation between
actual output and predicted output.
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TABLE 7. MSE value of proposed optimised DL model is compared with
other benchmark models developed using ML and DL technique.

Support vector regression 6.1
Random forest regression 1.9
ML [24] Decision tree regression 34
MLP regression 3.3
Vanilla LSTM 1.5
Stacked LSTM 1.8
DL [33] Vanilla GRU 13
Bidirectional LSTM 1.8
Vanilla GRU 0.0009
Stacked GRU 0.001
Proposed Models | ;i ectional GRU 0.0012
Bidirectional LSTM 0.0009
Bidirectional GRU [
S
Bidirectional LSTM Sl
S —
Adagrad
Stﬂfked GRU A b Rmsurup
T mAdam
Vaﬂi”a GRU A
TE—

=

001 002 003 004 005 006 007
RMSE Value

FIGURE 19. RMSE value for different DL algorithms.

MAE is the main component to measure the regression
model, and the formula used is shown in equation 6.

MAE = (X; = Y)/n (6)

where X is the actual value, Y is the predicted value, and n is
the number of observations.

The following are the parameters and tools used for the
experiment:

o Learning rate - 0.001 and 0.005
o Stepsize -4 and 5

« Activation function - ReLu

o Training and testing ratio - 70:30
« No of generation in GA - 100

o Platform - Tensorflow

o IDE - Jupyter Notebook

IV. RESULTS AND ANALYSIS

DL models like vanilla GRU, stacked GRU, bidirectional
GRU and bidirectional LSTM have experimented on two
region-specific fruit rot disease datasets from Karnataka
and Kerala. Different optimisation algorithms, like Adam,
Adagrad, RMSprop and Genetic algorithms, are applied to
these models to compare the performance. The training loss
and validation loss for different models is shown graphically.
The dataset contains feature values in different ranges
and units. Feature scaling is necessary for deep learning
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FIGURE 20. Actual and predicted value of areca nut fruit rot disease incidence when Adam optimiser used.
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FIGURE 21. Actual and predicted value of areca nut fruit rot disease incidence when Adagrad optimiser used.

models to interpret these features similarly. Therefore, it is
preprocessed using a min-max scalar method. Five-fold
cross-validation is used to estimate the performance of the DL
models. It helps to avoid the problem of overfitting. Table 3
contains the MSE values of four deep learning techniques
when multiple optimisation techniques are used. As five-
fold cross-validation is used, the average error values are
considered. The table shows that the Adam algorithm gives
less MSE value of 0.0009 with the vanilla GRU model, hence
more accurate fruit rot disease incidence prediction results.
Adagrad algorithm gives the highest MSE value of 0.008 with
the bidirectional GRU model. Hence it can not be suggested
further. Bidirectional LSTM with RMSprop algorithm is the
best combination to get less error value of 0.0009 for the
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present dataset. According to our study, the genetic algorithm
is comparable to all of the DL models used in the experiment
in terms of accuracy.

The graphical representation of the MSE value is shown in
figure 4.

Figs 5,6,7 and 8 show the graph for validation and training
losses with respect to multiple epochs in vanilla, stacked and
bidirectional GRU and LSTM when Adagrad optimisation
is used. The graph shows that training and validation loss
decreases as the epochs increase, but the validation loss is
slightly less than the training loss.

Figs 9,10,11, and 12 show the graph for validation and
training losses for multiple epochs in vanilla, stacked and
bidirectional GRU and LSTM when Adam optimisation is
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FIGURE 22. Actual and predicted value of areca nut fruit rot disease incidence when RMSprop optimiser used.
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used. The graph shows that training and validation loss
decreases as the epochs increase; the validation loss is almost
the same as the training loss.

Figs 13,14,15, and 16 show the graph for validation
and training losses concerning multiple epochs in vanilla,
stacked and bidirectional GRU and LSTM when RMSprop
optimisation is used. The graph shows that training and vali-
dation loss decreases as the epochs increase; the validation
loss is slightly less than the training loss. But it has been
experimented that loss is stable after 100 epochs.

Table 4 contains the R2 score values of four deep learning
techniques when multiple optimisation techniques are used.
R squared is a statistical method of measuring the regression
model. If the R2 score value is 100%, then the actual and
predicted values are appropriately correlated. The table 4
shows that bidirectional GRU and bidirectional LSTM mod-
els give a good R2 value of 0.99 with RMSprop optimisation
and the Vanilla GRU model with Adam algorithm. But
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bidirectional GRU optimised by Adagrad gives less 12 score
value of 0.89. All the DL models used in the experiment
perform well with the genetic algorithm. Figure 17 depicts
the graphical visualisation of the R2 scores across various DL
models, each paired with different optimisation techniques.

Table 5 contains the MAE values of four deep learning
techniques when multiple optimisation techniques are used.
The table shows that Vanilla GRU gives less MAE error
value of 0.02 with the Adam optimisation algorithm, and the
Adagrad optimisation algorithm gives more MAE value of
0.07 with the bidirectional LSTM model. A study of MAE
readings indicates that Adagrad does not perform well with
the present dataset when DL models are experimented with.
Despite this, the genetic algorithm delivered competitive
results in weight optimisation comparison.

The graphical representation of the MAE value is shown in
figure 18 below.

When multiple optimisation techniques are used, the
RMSE values of four deep learning techniques can be found
in Table 6. From table 6, RMSE results indicate that Adam
is the best-optimised algorithm for a given set of DL models,
and Adagrad is unsuitable for the same models. Figure 19
shows the graphical representation of the RMSE value.

The graph which shows the actual value and the predicted
value of fruit rot disease incidence is shown in the figure.
Figure 20 shows the output when Adam optimisation is used;
similarly, figure 21 for Adagrad optimisation and figure 22
for RMSprop optimisation. 30% of the total dataset is used
for testing the proposed model; among them, only the first
50 values are displayed in the graph.

The proposed model can be compared with disease
prediction using ML and DL models [24], [33]. The table 7
will list the MSE value of all the experimented models. It
is evident from Table 7 that the variants of GRU models
outperformed the ML and LSTM-based DL models in terms
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of MSE. Also, there is a huge change in the results generated
by the proposed and existing methods.

Figure 23 shows the graphical representation of all four
performance indices, MSE, RMSE, MAE, and R2.

In summary, adopting the proposed model brings about
a transformative shift in agricultural practices by leveraging
technology to benefit both farmers and the environment.
It aligns with sustainability, efficiency, and responsible
resource management principles in modern agriculture.

V. CONCLUSION AND FUTURE WORK

The emergence of crop disease prediction models has
made notable strides in the agricultural sector. Nonetheless,
a noticeable research gap exists in forecasting fruit rot
disease within areca nut crops through applying deep learning
methodologies. The envisaged predictive model empowers
farmers with proactive measures, enabled by anticipatory
insights gleaned from forecasted weather data. This, in turn,
augments the potential for elevated areca nut crop yields. The
crux of this study revolves around utilising Recurrent Neural
Network (RNN)-based deep learning models to forecast
the incurrence score of areca nut diseases. What sets this
research apart is the utilisation of multiple optimisation
techniques employed and compared to curtail predictive
inaccuracies effectively. The experimental and testing facets
of the study are enriched by datasets drawn from diverse
geographic regions. When juxtaposed with conventional
machine learning approaches, the outcomes underscore the
potency of RNN-based deep learning methodologies in
heightening accuracy by mitigating errors. Performance
evaluation metrics, including MAE, MSE, RMSE, and the R2
value, gauge the efficacy of a regression model in fitting a
given dataset.

Remarkably, the vanilla GRU and bidirectional LSTM
models exhibit the most impressive outcomes, yielding a
substantially reduced MSE value of 0.0009 when coupled
with the Adam and RMSprop optimization techniques,
respectively. In parallel, bidirectional GRU and LSTM
models, when optimized using RMSprop, as well as the
Vanilla GRU optimized with Adam, produce the highest R2
score of 0.99. Notably, models fine-tuned via the genetic
algorithm consistently yield an R2 score of 0.98. However,
Adagrad’s performance seems to falter when employed in
conjunction with DL models and the existing dataset. The
analysis reveals a noteworthy minimum RMSE value of
0.033 in the stacked GRU model with Adam optimization,
as well as in the bidirectional LSTM model utilizing
RMSprop optimization. Furthermore, the bidirectional GRU
model, when optimized through the RMSprop algorithm, and
the vanilla GRU model with Adam optimization, showcase
commendable performance, each yielding a minimal MAE
value of 0.02.

Certainly, here are the potential avenues for future work
that can be explored based on the developed prediction
model:
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« Regional Generalization: Extend the applicability of the
developed prediction model to regions characterised by
diverse climate patterns compared to those examined
in the current study. This would offer insights into
the model’s adaptability across different environmental
conditions.

« Enhanced Optimization: Investigate the possibility of
enhancing and validating the accuracy of network
models by experimenting with a broader range of
optimisation algorithms. This exploration could lead to
discovering even more effective ways to fine-tune the
models.

o Severity Classification: Extend the predictive capabili-
ties by delving into the classification of disease severity
based on the score values. This expansion could give
farmers a more nuanced understanding of disease risk
and potential impact on crop yield.

« Real-time Validation: Incorporate the real-time weather
data collection to validate and refine the existing fruit
rot disease prediction models. This would bridge the gap
between model predictions and real-world observations,
enhancing the model’s practical utility.

These proposed directions for future research can contribute
to the continued advancement and applicability of the devel-
oped prediction model in addressing agricultural challenges
and supporting farmers’ decision-making processes.
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