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ABSTRACT This work mainly focuses on fleet collaborative control for autonomous mining fleets. In this
paper, we first developed a double-layer coupling model including the intersection platoon (IP) in the upper
layer and the following platoon (FP) in the lower layer and unified the headway calculation and the structure
of the control problem of the two types of platoons. Then, the constant time headway (CTH) spacing
policy is implemented to ensure safety during fleet operation. Next, a controller based on the sequential
distributed model predictive control (SEQ_DMPC) algorithm is proposed to solve the platoon control
problem. To verify the proposed controller, we built a second-order electric truck longitudinal dynamics
model as the actuators and verified the accuracy of the model. Next, we assume that all trucks are permitted
to implement optimization simultaneously at each time step in the simulation and verify the platoon following
stability based on the electric truck dynamic model. Finally, we simulated the fleet production process, and
the results show that the proposed controller performs well in all aspects.

INDEX TERMS Autonomous vehicles, distributed control, intelligent transportation systems, predictive
models, traffic control.

I. INTRODUCTION
In large open-pit mines, transportation costs account for more
than 60% of the overall mine costs [1], and energy consump-
tion accounts for more than half of the transportation costs
[2]. Therefore, reducing energy consumption plays a vital
role in reducing mine production costs and improving the
revenue of open pit mines. During the operation of mining
trucks, energy waste occurs in two main ways: 1. The truck’s
actual trajectory deviates significantly from the desired speed
trajectory due to the weather, road condition, truck condition,
or other influences, thus causing more energy consump-
tion during the operation process. 2. Additional braking and
acceleration maneuvers are taken by trucks to avoid traffic
conflicts at intersections, which contribute more energy con-
sumption. Therefore, solving the problems mentioned above
is important to reduce fleet energy consumption as well as
mining production costs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

In open-pit mining production, the transportation tasks for
each truck are assigned in advance by the dispatch system.
When the transportation fleet consists of automated trucks,
the optimal speed trajectory of the trucks can also be pre-
defined in the dispatch system and combined with the fleet
transportation tasks to generate the operating schedule with
optimal efficiency and fuel consumption. Therefore, in the
actual production process, fleet productivity and energy con-
sumption can be optimized if themine fleet can strictly follow
the operating schedule.

At present, the studies for eliminating traffic conflicts in
closed areas are mainly focused on the AGVfleet in container
terminals [3], [4] or logistics parks [5], [6], [7], [8] and train
formation in railway networks [9], [10], [11]. The main solu-
tions for AGV fleets are mainly predicting potential traffic
conflicts and thus changing the trajectory of the involved
vehicles. For the management of train formations, the main
solutions consist of the following steps: First, the transporta-
tion paths are divided into multiple sections according to a
fixed length.Meanwhile, the intersection area and its adjacent
paths are also treated as sections. Next, the priority of train
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FIGURE 1. Schematic of the open-pit mine transportation path network.

formation is determined through certain rules. After that,
the relevant railway section is locked to prevent other trains
from entering, thus avoiding traffic conflicts. However, there
are some shortcomings of current studies: the objective of
the existing algorithms is to avoid traffic conflicts between
vehicles or trains without considering saving energy con-
sumption. This solution for AGVs tends to make the vehicle
take on more braking and restarting processes, resulting in
more energy consumption. At the same time, the solutions for
train formation are unable to maximize railway utilization,
and reduce transportation efficiency. For mining trucks, the
curb mass and load capacity are extremely large, and the
change in speed trajectory has a huge impact on energy con-
sumption. Hence, the analysis of truck energy consumption
mechanisms cannot be ignored when designing the mining
transportation fleet control algorithm.

Fig. 1 shows a schematic diagram of the production and
transportation path network of an open-pit mine. In the
network, all platoons can be classified into two categories
according to the path section on which the trucks are located,
namely intersection platoon (IP) and following platoon (FP).
IP refers to the queue of all trucks that are about to cross the
same intersection, as shown in Fig. 2. Such platoon control
issues are the focus of attention for the abovementioned AGV
fleet control issues and train formation issues. FP refers to the
queue formed by all vehicles sequentially arranged within the
same path section, as shown in Fig. 3, and typical scenarios
follow queues on highways [12], [13]. The objective of the
problems is to reduce the overall fleet energy consumption
while maintaining the desired spacing and speeds within the
fleet. However, in the open pit mining fleet operation process,
the relative spacing, speed, and energy consumption of the
fleet need to be considered at the same time. Therefore,
in this paper, we unified the IP control problem into the FP
control problem, which not only ensures the safety of the
IP through the intersection but also enables the platoon to
maintain the established speed trajectory and achieve optimal
energy consumption.

FIGURE 2. Example of IP.

FIGURE 3. Example of FP.

Research on the FP operation process can be traced back as
far as the PATH project in the 1980s [14]. The program pro-
posed an integrated longitudinal and lateral control algorithm
for the operation of automated trucks in platoons, with an
experiment using eight trucks on a two-lane freeway. The
research content includes the control target of the platoon,
sensing, and execution, and the solution framework of the
fleet collaboration algorithm is also proposed. Since then, the
problem of cooperative fleet control has received extensive
attention and has yielded rich results in terms of air drag
reduction [13], fleet stability [15], communication topology
[16], and fleet operational safety [17].

The fleet collaborative controller is divided into a lower
controller and an upper controller [18], where the lower con-
troller is responsible for the truck dynamics control, aiming
to make the trucks complete the path tracking according to
the given trajectory, while the upper controller is the fleet
controller, aiming to achieve the collaborative control of the
fleet with the goal of optimal energy efficiency of the fleet
under the premise of ensuring the safety of the fleet operation
by giving the target position, target speed, and target accelera-
tion information of all trucks. The upper controller is the core
part of the whole fleet collaborative controller, which mainly
contains three parts: fleet spacing policy, communication
topology, and fleet operation controller.

The spacing policy is used to describe the relative positions
of different trucks in a platoon. Each truck must follow its
preceding truck and satisfy the relative spacing defined by
the spacing policy. There are usually two types of spacing
strategies: the constant spacing strategy (CSP) [19] and the
variable spacing strategy (VSP) [20]. CSP is the simplest and
most commonly used strategy. Compared to CSP, the desired
distance in VSP varies with truck speed and can improve
road transport efficiency [21]. To ensure fleet stability, VSP
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FIGURE 4. Communication topology type.

requires a minimum time spacing, called constant time head-
way (CTH) [22].

The communication topology ensures the integrity of the
information flow and determines the design of the fleet
controller. Lyapunov controller stability does not guarantee
the stability of the platoon [23]. Errors and delays can be
amplified as they travel with the platoon. This will lead to
a worsening energy economy and even rear-end collisions.
The most commonly used communication topologies are
predecessor following (PF) [15], [18], predecessor-leader fol-
lowing (PLF) [24], general topologies [25], and other hybrid
topologies [26], as shown in Fig. 4. Research shows that the
PF communication topology does not guarantee the stability
of the vehicle platoon [27], [28]. PLF can ensure platoon
stability [29], as the information of the lead vehicle has
a great impact on the stability of the fleet operation [30].
Furthermore, researchers have also given solutions for time
delays [31] and dropout [26] to compensate for the drawbacks
of communication characteristics.

Fleet operation controllers have matured over decades of
development. The main control methods currently include
PID control [31], robust control [32], sliding mode control
[33], machine learning [34], and model predictive control
[35]. Compared with other control methods, model predic-
tive control (MPC) is not only effective in overcoming the
uncertainty and nonlinearity of fleet systems but also more
convenient in dealing with various constraints on the system
state variables and control variables. Therefore, MPC has
been widely used in various fields since it was proposed in
the 1970s [36]. However, fleet cooperative control systems,
as large systems with more complex coupling and numerous
constraints, lead to too many decision variables for predictive
control, which causes difficulties for the controller solution.
At the same time, the geographical dispersion of the fleet
also makes centralized control of the fleet difficult. These
factors have promoted the development of distributed model
predictive control [37]. Kianfar et al. [38] added the target of
minimizing the controller output into the objective functions,
as well as minimizing the status error and control error,
to ensure the smoothness of the vehicle’s operation. There-

after, terminal constraints on status and control errors [29]
and fluctuations of errors [39] are also added to the objective
function to further improve the smoothness of the vehicle.
Dai et al. [40] added the deviation of distance between the
target vehicle and the preceding vehicle to the objective,
which further improved the fleet operation efficiency by
maintaining fleet spacing while ensuring smooth vehicle
operation. However, with the continuous complexity of the
objective function, especially when the objective function has
multiple dimensional objectives, it is necessary to set weights
for different objectives and find the optimal solution. There-
fore, a large number of computational resources are needed,
which leads to the degradation of the real-time performance
of the algorithm. To solve this problem, Kianfar et al. [39]
designed the multiobjective MPC (MOMPC) algorithm with
the objectives of vehicle economy, safety, and stability by
using Pontryagin’s maximum principle (PMP). Zavala and
Flores-Tlacuahuac [41] designed the utopia point based on
the Pareto optimality, solved the multiobjective problem, and
selected the Pareto optimal objective.

However, the current research mainly focuses on road
freight truck queues, while there is a paucity of truck fleets
for open pit mines. The main differences between the two are
as follows: 1. Road freight trucks operate in an open road
network, where there are a large number of other vehicles
and random factors, and it is impossible to grasp real-time
information of all vehicles in the network, so it is also impos-
sible to completely avoid possible traffic conflicts during
operation and to make a complete prediction of the fleet
operation process. In open pit mines, the transportation path
network is a closed area, and the information of all trucks is
known or predictable, so it is feasible to completely eliminate
traffic conflicts. 2. As mentioned above, the information of
all vehicles on the network is not available. The control
objective of road freight truck queues is to reduce fleet energy
consumption by minimizing vehicle spacing to reduce air
resistance while ensuring platoon safety. Otherwise, in open-
pit mines, all conflicts can be eliminated in advance, and an
operational schedule can be obtained. Therefore, the con-
trol problem is focused on making all the trucks in the
transportation path network operate according to the sched-
ule, and the objective function is to minimize the deviation
between the actual trajectory and command trajectory in the
schedule.

In summary, existing research has the following short-
comings: 1. The objective functions of existing collaborative
controllers for vehicle platoons are mainly to eliminate traffic
conflicts without considering the energy consumption, which
is crucial for reducing the production costs of open-pit mines.
2. The existing research on collaborative control is limited to
local areas, and there is no relevant research on the real-time
control of vehicle platoons on a large scale in open road net-
works or on a global scale in closed road networks. 3. There
are major differences between open-pit mining trucks and
road freight vehicles. Therefore, the existing control methods
cannot be directly used for mining trucks. To the best of our
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knowledge, research on real-time control of transportation
fleets in open-pit mines has not yet been conducted.

In this paper, we design a fleet collaborative controller for
real-time control of an autonomous open pit mine production
fleet real-time control based on a mining dispatching system
and fleet operation schedule. First, we design a two-layer
fleet coupling model based on the characteristics of the
path network, in which the upper model couples all trucks
that will pass through the intersection (IP) and the lower
model couples all trucks that are arranged backward and
forward on the same path section (FP). Next, we determine
the constant time headway (CTH) spacing policy according
to the actual requirements of the mine production protocol
to enable the fleet to have different minimum following dis-
tances at different speeds, which not only ensures the safety
of the fleet but also improves transportation efficiency as
much as possible. After that, we introduced the proposed
fleet controller. To ensure the stability of the fleet operation,
we use the general topology in Fig. 4(c). The input of the
controller is the desired status and speed obtained from the
schedule, and the objective is to minimize the status and
control error. Finally, it gives the command speed of the truck.
The algorithm is based on the sequential distributed model
predictive control algorithm (SEQ_DMPC) [42].
The main contributions of this paper are as follows:
1) A double-layer couple model is proposed. This model

can connect all trucks in the path network and thus control
the whole fleet.

2) A novel fleet controller is designed, and the
SEQ_DMPC algorithm is proposed. By implementing the
proposed DMPC algorithm, both the recursive feasibility of
the optimization problem and the platoon stability of the
whole system are guaranteed.

This paper follows the following structure: In the sec-
ond section, the truck dynamic model is first proposed.
Then, we introduce the methods which are made up of three
parts: the fleet coupling model, spacing policy, and the fleet
controller. After that, we explain the parameters of the exper-
iment, operational scenarios, and key performance indicators
(KPIs) in the third section. Finally, the results using the
proposed model are analyzed in the fourth section, and we
derive conclusions and further work in the fifth section.

II. APPROACHING
A complete mining intelligent transportation system (ITS)
framework is shown in Fig. 5. It includes a fleet dispatching
system and a fleet real-time control system. The dispatch-
ing system is responsible for planning and assigning the
operation tasks of the mining fleet and giving the fleet opera-
tion schedule. The schedule includes the transport paths and
sequences of all trucks, as well as the desired trajectory and
input control at each moment within the transport shift. The
real-time control system determines the optimal input control
of the trucks at the nextmoment based on the current real-time
status. Afterwards, optimal input control is used as an input
to the truck dynamic control, and the latest state is updated

FIGURE 5. Framework of ITS.

after the simulation of the dynamics model. In this paper,
we mainly focus on the fleet collaborative controller (upper
controller) in the fleet real-time control system. We introduce
the architecture of the controller in this section. At the same
time, to verify the performance of the controller, we also
established a truck dynamics controller (lower controller).
In this chapter, we first introduce the electric truck dynamic
model as the basis of the lower controller. Then in the second
part, we present the framework of the fleet collaborative
controller, which includes the fleet coupling model, spacing
policy and proposed SEQ_DMPC controller algorithm.

A. MODEL OF ELECTRIC TRUCK DYNAMIC
In this paper, a second-order longitudinal truck dynamics
model for electric trucks is used for the optimal control
algorithm and simulation. To strike a balance between accu-
racy and simplicity, we make the following assumptions:

1) The body is rigid and symmetric from left to right;
2) The truck is on a flat and dry road surface, and the

longitudinal tire slip is neglected;
3) Drive and brake torques are integrated into one single

control input.
4) Only longitudinal dynamics are considered and not

lateral dynamics.
Let x (t), v (t) , acc (t) denote the position, longitudinal

speed and acceleration of the truck, respectively. Then, the
truck dynamics are represented by:

ẋ (t) = v (t) (1)

v̇ (t) = acc (t) (2)
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To use this dynamic model within our optimization, the
dynamics are discretized in time, using a forward Euler
approximation for v and x in (3) and (4).

v (k + 1) = v (k) + acc (k) 1t (3)

x (k + 1) = x (k) + v (k) 1t + acc (k) 1t2/2 (4)

where 1t is the time step.
When the speed and acceleration of the truck are deter-

mined, the longitudinal force required for the truck is given
in (5):

Flong = Macc + F roll + Fwind + Fgrd (5)

whereM is the mass of the truck and F roll , Fwind and Fgrd are
the rolling resistance, wind resistance, and slope resistance,
respectively, and are presented in (6) to (8).

F roll (t) = MgCroll cosα (t) (6)

Fwind = ρAwCwv2 (t) /2 (7)

Fgrd = Mgα (t) (8)

where g is the gravity acceleration, Croll is the rolling resis-
tance coefficient, α (t) is the slope of the position in the
transportation path where the truck is located at time t , ρ is
the air density, Aw is the windward area of the truck, and Cw
is the wind resistance coefficient.

For both the optimizations and simulations, we assume that
the output power of the motor is known based on the motor
torque and motor speed. Thus, propulsive force and speed
need to be converted to motor torque and speed in (9) and
(10).

Tmot = Flongrwh/igia (9)

ωmot
= vigia/rwh (10)

where rwh is the rolling radius of the truck’s tires, ig is the
gear ratio, and ia is the final drive ratio.
Finally, the output power of the motor is calculated in (11).

Pmot = Flongv (11)

Moreover, when the units of Pmot , Tmot and ωmot are kW,
Nm and rpm respectively, the calculation of Pmot can be given
as follows:

Pmot = Flong2πrwhωmot igia/60/1000

= 2π/60000Flongrwhigiaωmot

≈ 9549Tmotωmot (12)

B. FRAMEWORK OF FLEET COLLABORATIVE CONTROLLER
In this section, we present our proposed real-time fleet control
algorithm. First, to include all trucks in the controller, we first
design a two-layer fleet coupling model, which treats all
IPs in the transportation path network as the so-called upper
platoon and all FPs as the lower platoon. Then, we trans-
form the IP control problem into an FP control problem,
so that a unified computational framework can be used to
solve the control of both platoons. Next, we introduce the

spacing policy. According to the requirements of the actual
production regulations of the open pit mine, we adopt the
CTH spacing policy, which makes the fleet have different
spacing requirements at different speeds, ensuring the safety
of the fleet operation and improving the efficiency of the fleet
at the same time. Finally, we present our proposed sequential
model predictive control algorithm, including the problem
construction, objective function and related constraints.

First, we introduce the definitions of some terms in this
chapter.
Loading site: Place where a truck loads materials to be

transported.
Dumping site: Place where the materials are dumped.
Path: Trucks traveled between loading sites and dumping

sites.
Intersection: Place where two paths cross each other.
Section: Path between an intersection and a loading site,

a dumping site or another intersection.
Direction: Truck running direction: 1 is from the loading

site to the dumping site and 2 is from the dumping site to the
loading site.

1) FLEET COUPLING MODEL
We classify the fleet in the path network into two cate-
gories: intersection platoon (IP) and following platoon (FP).
We define the two types of platoons in Definition 1 and
Definition 2 and define truck priority in Definition 3.
Definition 1: An intersection platoon (IP) refers to all

trucks with a destination at the same intersection, denoted as
IPint , whichmeans that the target intersection of the platoon is
int . The number of IPs is equal to the number of intersections
in the path network, with a maximum of four trucks for each
IP.

In IP, as shown in Fig. 2, we denote dai (t) as the actual
distance to the entrance of the intersection, and vai (t) as the
actual speed of truck i at moment t .
Definition 2: Following platoon (FP) refers to all trucks

travelling in one section in the same direction, denoted as
FPdirsec, which means that the platoon drives on section sec,
and the direction is dir . There are two FPs in each section.

In FP, as shown in Fig. 3, we denote xai (t) as the actual
distance to the preceding truck, and vai (t) as the actual speed
of truck i at moment t . When truck i is the leading truck in
the platoon, we define dai (t) = ∞.
Definition 3: In each platoon, there is a high or low prior-

ity of trucks, and we define that truck with high priority will
not be affected by trucks with low priority.

In a platoon, we number the trucks according to their
priority, specifying that the truck with the highest priority
is numbered 1, and the larger the number is, the lower the
priority of the truck in the platoon. In FPdirsec, the leading truck
has the highest priority, as Truck1 in Fig. 3, and the truck
immediately following the lead truck has the next highest pri-
ority, as Truck2 in Fig. 3 and so on. In IPint , the truck priority
is related to the distance of the truck from the intersection
area. The truck closest to the intersection has the highest
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priority, and vice versa. For example, in Fig. 2, if d int1 (t) <

d int2 (t) < d int3 (t) < d int4 (t), we number Truck1 as IPint [1]
and number Truck4 as IPint [1].

2) SPACING POLICY
We set a minimum time headway tcth as the time-headway
spacing policy, which also belongs to a VSP, to follow the
preceding truck with a desired minimum relative distance
ddi (t) between truck i and the preceding truck i−1 is defined
as:

ddi (t) = tcthvai (t) (13)

When the length of the truck is L, the actual distance dai (t)
between truck i and the preceding truck i− 1 in FP, as shown
in fig.3, is calculated by (14):

dai (t) =

{
xai (t) − xai−1, i ∈ {2, 3, 4, . . .}

∞, i = 1
(14)

We assume that d int1 (t) < d int2 (t) < d int3 (t) < d int4 (t) in
IP; then, dai (t) is given by (15):

dai (t) =

{
d inta (t) − d inti−1(t), i ∈ {2, 3, 4, . . .}

d int1 (t), i = 1
(15)

During the fleet operation process, the actual spacing
between trucks should not be less than the desired minimum
relative distance in (16).

dai (t) ≥ ddi (t) (16)

3) FLEET CONTROLLER BASED ON SEQUENTIAL
DISTRIBUTED MODEL PREDICTIVE CONTROL (SEQ_DMPC)
ALGORITHM
In our proposed SEQ_DMPC algorithm, at moment, for each
truck, we denote:

1) Np and Nc are the prediction horizon and control hori-
zon, respectively.

2) si (t) and ci (t) are the actual output trajectory and input
control of truck i at moment t , respectively. They are obtained
from the electric truck dynamic model and are known as
quantities at moment t .
3) si,ref (t) and ci,ref (t) are the reference trajectory and

input control of truck i at moment t , respectively. They are
obtained from the fleet operation schedule and are known as
quantities at moment t .
4) si

(
t ′ | t

)
and ci

(
t ′ | t

)
are the predictive output trajectory

and input control of truck i at moment t ′ by the electric truck
dynamic model when the current trajectory and input control
are si(t) and ci(t), respectively.
5) c∗i (t) is the optimal input control of truck i at moment

t , which is obtained by SEQ_DMPC at moment t − ts.
The system dynamics are discretized using the Euler

method with sampling time ts to obtain:

si (t + ts) = A (t) si (t) + B (t) ci (t) (17)

We define the output trajectory deviation Si (t) and the
input control deviation Ui (t) as:

Si (t) = si (t) − si,ref (t) (18)

Ui (t) = ci (t) − ci,ref (t) (19)

The deviation of the output trajectory can be rewritten as:

Si (t + ts) = A (t) Si (t) + B (t)Ui (t) (20)

Expanding the above equation according to the model
prediction control sequence:

Si
(
t ′ + ts | t

)
= A (t) Si

(
t ′ | t

)
+ B (t)Ui

(
t ′ | t

)
(21)

In addition, the reference trajectory si,ref (t) and input con-
trol ci,ref (t) are obtained by the dispatching system, they also
meet the system dynamics in (17), which is:

si,ref (t + ts) = A (t) si,ref (t) + B (t) ci,ref (t) (22)

For truck i, the objective of the single truck control problem
is to minimize the deviation of the output trajectory and input
control within all prediction sequences while satisfying the
constraints of status and control. The objective function of
the control problem of truck i is defined in (23):

min
{Ui(t)},∈

Ji (t) =

Nc∑
k=0

∥Ui (t + kts | t)∥ 2
Q + ρϵ2

+

Np−1∑
k=1

∥Si (t + kts | t)∥2P

+ ∥Si (t + kts | t)∥2F (23)

Subject to: ci (t | t) = ci (t) (24)

ci (t + kts | t) = ci,ref (t + kts)

+ Ui (t + kts | t) (25)

si (t + (k + 1) ts | t)

= A (t + kts | t) si (t + kts | t)

+ B (t + kts | t) ci (t + kts | t) (26)

cmin ≤ ci (t + nts | t) ≤cmax (27)

1cmin ≤ ci (t + (n+ 1) ts | t)

− ci (t + nts | t) ≤ 1cmax (28)

Si
(
t + Npts | t

)
= 0 (29)

Ui (t) = [Ui (t | t) ,Ui (t + ts | t) ,

. . . ,Ui (t + Ncts | t)] (30)

Np = Nc + 1 (31)

ϵ > 0 (32)

where matrices Q, P and F are the weight matrices of input
control error, output trajectory error and terminal output tra-
jectory error, respectively.
After solving the above problem to obtain the sequence

Ui (t), the optimal input control of truck i at moment t is:

c∗i (t) = ci,ref (t) + Ui (t | t) (33)
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Next, we describe the method for constructing each prob-
lem. In this paper, we use SEQ_DMPC to solve the problem,
and this type of solution method belongs to a class of collab-
orative DMPC [42].

For any platoon, we assume that there are n trucks at
moment t in it and that all trucks have been numbered from
1 to n according to their priority. We denote the objective
function of truck m as Jm (t) in (23) and the optimal control
problem of truck m as DMPCm. Then, the solving strategy of
each platoon is shown as follows:

1) At moment t , the current output trajectory si (t), desired
output trajectory si,ref (t) and actual input control ci(t) of all
trucks are known.

2) Make m = n:
a) Solve the problem DMPCm, and the objective function

of the problem is given by:

min
{U1(t)},{U2(t)},...,{Um(t)}

JDMPCm (t) =

1∑
i=m

Ji (t) (34)

b) Obtain the solution {U1(t)}, {U2(t)}, . . . , {Um(t)}.
c) Obtain the optimal input control of truck m:

c∗m (t) = cm,ref (t) + Um (t | t) (35)

d) If m = 1, stop the algorithm. Otherwise, make m =

m− 1, and return to step a).
When solving the problem, not only should the constraints

(24) to (32) be satisfied but it is also necessary to satisfy the
spacing policy in (16) between different trucks in the platoon.
Fig.6 shows the solution framework of the fleet controller.

In the part of the fleet coupling model, all trucks in the IP are
the leading trucks in the corresponding FP. The priority of
trucks in all IPs is higher than that of trucks in FP. Therefore,
we first solve the control problems for all IPs using the
strategy above. After that, the optimal input control of all the
leading trucks in FPs are known, and the control problems
DMPC1 in all FPs are ignored. Only the control problems of
other trucks need to be solved by using the same strategy we
proposed.

4) STABILITY AND FEASIBILITY ANALYSIS
Atmoment t , the optimal solution sequence

{
U∗
i (t)

}
, optimal

input control sequence
{
c∗i (t)

}
, and optimal predicted trajec-

tory sequence
{
s∗i (t)

}
of the control problem are as follows:

{U∗
i (t)} =

[
U∗
i (t | t) ,U∗

i (t + ts | t) , . . . ,U∗
i (t + Ncts | t)

]
{c∗i (t)} =

[
c∗i (t | t) , c∗i (t + ts | t) , . . . , c∗i (t + Ncts | t)

]
{s∗i (t)} =

[
s∗i (t + ts | t) , . . . , s∗i (t + Ncts | t) ,

s∗i
(
t + Npts | t

)]
(36)

All components of the sequences above satisfy the con-
straints from (24) to (32).

Without considering noise, the actual trajectory si (t + ts)
and actual input control ci (t + ts) of the system are as
follows:

si (t + ts) = s∗i (t + ts | t)

FIGURE 6. Fleet controller framework.

ci (t + ts) = c∗i (t + ts | t) (37)

According to (29), the predicted terminal trajectory and
the optimal terminal trajectory are the same as the reference
trajectory.

si
(
t + Npts | t

)
= s∗i

(
t + Npts | t

)
= si,ref

(
t + Npts

)
(38)

At moment t , we assume that the objective function corre-
sponding to the optimal solution of control problem (23) for
truck i is J∗

i (t), the objective function corresponding to the
feasible solution is Ji (t), and the relation of J∗

i (t) and Ji (t)
is expressed by (39).

J∗
i (t) ≤ Ji (t) (39)

Similarly:

J∗
i (t + ts) ≤ Ji (t + ts) (40)
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Subtract J∗
i (t) on both sides of (40) simultaneously, and

we donate:

J∗
i (t + ts) − J∗

i (t) ≤Ji (t + ts) − J∗
i (t) = lP + lF + lQ

(41)

where:

lP

=

Np−1∑
k=1

∥∥si (t + ts + kts | t + ts) − si,ref (t + ts + kts)
∥∥2
P

−

Np−1∑
k=1

∥∥s∗i (t + kts | t) − si,ref (t + kts)
∥∥2
P (42)

lF

=
∥∥si (t + ts + Npts | t + ts

)
− si,ref

(
t + ts + Npts

)∥∥2
F

−
∥∥s∗i (

t + Npts | t
)
− si,ref

(
t + Npts

)∥∥2
F (43)

lQ

=

Nc∑
k=0

∥∥c∗i (t + kts | t) − ci,ref (t + kts)
∥∥2
Q

−

Nc∑
k=0

∥∥c∗i (t + kts | t) − ci,ref (t + kts)
∥∥2
Q (44)

Further derivation of equations (42) to (44) yields:

lP =

Np−1∑
k=1

∥∥si (t + ts + kts | t + ts)−si,ref (t + ts + kts)
∥∥2
P

−

Np−1∑
k=1

∥∥s∗i (t + kts | t) − si,ref (t + kts)
∥∥2
P

=

Np−2∑
k=1

∥∥si (t + ts + kts | t + ts)−si,ref (t + ts + kts)
∥∥2
P

+
∥∥si (t + ts +

(
Np − 1

)
ts | t + ts

)
−si,ref

(
t + ts +

(
Np − 1

)
ts
)∥∥2

P

−

Np−1∑
k=1

∥∥s∗i (t + kts | t) − si,ref (t + kts)
∥∥2
P

=

Np−1∑
k=1

∥∥s∗i (t + kts | t) − si,ref (t + kts)
∥∥2
P

−

Np−1∑
k=1

∥∥s∗i (t + kts | t) − si,ref (t + kts)
∥∥2
P

+
∥∥si (t + ts +

(
Np − 1

)
ts | t + ts

)
−si,ref

(
t + ts +

(
Np − 1

)
ts
)∥∥2

P

=
∥∥si (t + ts +

(
Np − 1

)
ts | t + ts

)
−si,ref

(
t + ts +

(
Np − 1

)
ts
)∥∥2

P

−
∥∥s∗i (t + ts | t) − si,ref (t + ts)

∥∥2
P

=
∥∥s∗i (

t + Npts | t
)
− si,ref

(
t + Npts

)∥∥2
P

−
∥∥s∗i (t + ts | t) − si,ref (t + ts)

∥∥2
P ≤ 0 (45)

lF =
∥∥si (t + ts + Npts | t + ts

)
−si,ref

(
t + ts + Npts

)∥∥2
F

−
∥∥s∗i (

t + Npts | t
)
− si,ref

(
t + Npts

)∥∥2
F = 0 (46)

lQ =

Nc∑
k=0

∥∥ci (t + ts + kts | t + ts)−ci,ref (t + ts + kts)
∥∥2
Q

−

Nc∑
k=0

∥∥c∗i (t + kts | t) − ci,ref (t + kts)
∥∥2
Q

=

Nc−1∑
k=0

∥∥ci (t + ts + kts | t)−ci,ref (t + ts + kts)
∥∥2
Q

+
∥∥ci (t + (Nc + 1) ts | t + ts)−ci,ref (t + (Nc + 1) ts)

∥∥2
Q

−

Nc∑
k=0

∥∥c∗i (t + kts | t) − ci,ref (t + kts)
∥∥2
Q

=

Nc∑
k=1

∥∥c∗i (t + kts | t) − ci,ref (t + kts)
∥∥2
Q

−

Nc∑
k=0

∥∥c∗i (t + kts | t) − ci,ref (t + kts)
∥∥2
Q

+
∥∥ci (t + (Nc + 1) ts | t + ts)−ci,ref (t + (Nc + 1) ts)

∥∥2
Q

=
∥∥ci (t + (Nc + 1) ts | t + ts)−ci,ref (t + (Nc + 1) ts)

∥∥2
Q

−
∥∥c∗i (t | t) − ci,ref (t)

∥∥2
Q (47)

According to (37), we expand s∗i
(
t + ts + Npts | t + ts

)
and si,ref

(
t + ts + Npts

)
with the system dynamic in (17) as

follows:

s∗i
(
t + ts + Npts | t + ts

)
= A (t + ts + Ncts) s∗i (t + ts + Ncts | t)

+ B (t + ts + Ncts) c∗i (t + ts + Ncts | t)

= si,ref
(
t + ts + Npts

)
= A (t + ts + Ncts) si,ref (t + ts + Ncts)

+ B (t + tss+ Ncts) ci,ref (t + ts + Ncts) (48)

Reorganizing the above formula yields:

B (t + ts + Ncts)
(
ci,ref (t + ts + Ncts)

−c∗i (t + ts + Ncts | t + ts)
)

= A (t + ts + Ncts)

×
(
s∗i (t + ts + Ncts | t + ts) − si,ref (t + ts + Ncts)

)
(49)

Hence:

lQ =
∥∥ci (t + ts + Ncts | t + ts) − ci,ref (t + ts + Ncts)

∥∥2
Q

−
∥∥c∗i (t | t) − ci,ref (t)

∥∥2
Q

= −
∥∥c∗i (t | t) − ci,ref (t)

∥∥2
Q ≤ 0 (50)

Substituting (45), (46), and (50) into (41) yields:

Ji (t + ts) − J∗
i (t) ≤0 (51)
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FIGURE 7. Transportation path network of the open pit coal mine.

TABLE 1. Parameters of the mining path network.

For control problem DMPC1, there is:

JDMPCm (t + ts) =

1∑
i=m

Ji (t + ts) ≤

1∑
i=m

Ji (t) = JDMPCm (t)

(52)

Therefore, the problem is asymptotically stable. At the
same time, in order to ensure the asymptotic stability
of the problem (34), it is necessary to add terminal constraints
to the objective function in (29).

III. DESIGN OF EXPERIMENTS
A. PARAMETERS
1) PARAMETERS OF THE OPEN-PIT MINE TRANSPORTATION
PATH NETWORK
We consider the transportation fleet in a transportation net-
work of an open-pit coal mine in China. For confidentiality
reasons, we only provided the relative position of the network
without real location information, and the network is shown
in Fig.7. There are three loading sites (A, B and C) and
two dumping sites (a and b) as well as three intersections
in the entire path network. In this network, there is only one
connecting path between each loading site and each dumping
site, which is the transportation path. Therefore, there are a
total of six transportation paths in this network. The related
information is shown in Table 1.

According to the mining operation regulations, the slope
of the transportation path is not greater than 8%, and the
actual slope measurement is between 7% and 8.5%. We set
the slope of all transportation paths to 8%. At the same time,
the operation regulations require that the minimum following
distance on the transport path shall not be less than 100 m, the
stopping minimum following distance shall not be less than
50 m, and the speed limit for trucks with no load is 50 km/h,
and 35 km/h for full load. According to (13), the minimum
time headway is 7.2 s. To ensure the safety and stability of
fleet operation, in this paper, we set tcth equals 5 s.

2) PARAMETERS OF THE ELECTRIC TRUCK
In this paper, we have established a dynamic model for the
TR50E mining truck, and the parameters of the truck are
listed in Table 2.

B. EXPERIMENTAL SCENARIOS
In this paper, we deploy an electric truck fleet in a
mining transportation path network and use our designed
SEQ_DMPC algorithm to dynamically control and simulate
fleet operation. The quality of the truck dynamics model has a
significant impact on the production indicators of fleet trans-
portation, and it also affects the evaluation of the real-time
control algorithm performance of the fleet. Therefore, to ver-
ify the performance of our fleet control algorithm, we first
verify the accuracy of the electric truck model. Afterwards,
we verified the operational stability of the platoonsmentioned
under the designed algorithm proposed in this paper. Finally,
we conducted a complete simulation of the transportation
process of one shift of the transportation fleet in the trans-
portation path network to verify the algorithm for the fleet.

1) VERIFICATION OF THE ELECTRIC TRUCK DYNAMIC
MODEL
The speed trajectory following verification of the dynamic
model of electric trucks mainly includes speed following
performance, acceleration and deceleration performance. The
conditions for truck operation are divided into uphill, flat, and
downhill conditions. At the same time, we believe that mining
trucks do not actively accelerate or decelerate during uphill or
downhill processes. For this purpose, we designed a custom
expected speed trajectory to validate the dynamic model we
established. This speed trajectory includes all possible oper-
ating conditions of mining trucks. The initial status of the
truck is set to xi (0) = 0; vi (0) = 0, and the desired speed
trajectory is given in Fig.8. Then, we verified the following
performance of the dynamics model for the optimal speed
trajectory in the mining transportation paths. The travel times
of the optimal speed trajectories for trucks on different paths
are shown in Table 3.

2) VERIFICATION OF PLATOON FOLLOWING CONTROLLER
STABILITY
In this part, we verify the platoon following stability in which
the following trucks can adjust their speed accordingly when
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TABLE 2. Parameters of TR50E electric truck.

the leading truck suddenly slows down and maintain a safe
distance or time headway due to unexpected reasons during
the operation process. We designed two scenarios for the
verification as follows:

1) The leading truck slows down suddenly for a short time
period and is restored to the original speed.

2) The leading truck slows down suddenly and is unable to
restore the original speed.

For each scenario, we considered a FP consisting of four
electric mining trucks. In a FP, all trucks have the same load-

FIGURE 8. Custom desired speed trajectory of the electric truck dynamic
model.

TABLE 3. Travel time of optimal speed trajectory in different paths.

ing status, so we verified an empty platoon and a full platoon
in each scenario for a total 4 experiments. We numbered the
trucks as 1, 2, 3 and 4 based on the definition of truck priority
as shown in Fig.3.

We denote vrefi as the desired speed trajectory of truck, and
the desired speed trajectories for the full platoon and empty
platoon in Scenario 1 are shown in (53) and (54), respectively.

vref0 =


35 km/h t ≤ 10s
20 km/h 10s < t ≤ 20s
35 km/h t > 20s

vrefi = 35km/h i = {2, 3, 4} (53)

vref0 =


50 km/h t ≤ 10s
35 km/h 10s < t ≤ 20s
50 km/h t > 20s

vrefi = 50 km/h i = {2, 3, 4} (54)

The desired speed trajectories for the full platoon and
empty platoon in Scenario 2 are shown in (55) and (56),
respectively.

vref0 =

{
35 km/h t ≤ 10s
20 km/h t > 10s

vrefi = 35 km/h i = {2, 3, 4} (55)
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TABLE 4. Path index for electric mining truck fleet transportation task.

vref0 =

{
50 km/h t ≤ 10s
35 km/h t > 10s

vrefi = 50 km/h i = {2, 3, 4} (56)

In the simulation, we set the minimum following time
headway tcth = 5s. At moment t , we denote the actual time
headway and the actual distance between the following truck
i and the preceding truck i− 1 as Ti,i−1 (t) and Si,i−1 (t). The
calculation of Ti,i−1 (t) is given by:

Ti−1,i (t) = Si−1,i (t) /vi (t) (57)

where vi (t) is the actual speed of truck i at moment t .

3) FLEET PRODUCTION SIMULATION
In the actual production process of open-pit mines, 18 electric
mining trucks of the same model are involved in transporta-
tion operations. In this section, we simulate the transportation
process of the fleet through three transportation cycles. All
truck transportation task paths are shown in Table 4.

C. KEY PERFORMANCE INDICATORS (KPIs)
To evaluate the performance of our proposed SEQ_DMPC
algorithm, we need to use some key performance indicators
(KPIs). The important KPIs, based on which we evaluate the
performance of our model in the next subsections, are listed
in Table 5.

The explanations of the KPIs are as follows:
1) Speed error at time t: The difference between the actual

truck speed and the desired speed at moment t .

TABLE 5. Key performance indicators.

FIGURE 9. Actual speed and speed error of the EV dynamic model.

FIGURE 10. Optimal speed trajectory following performance with no
load.

2) Speed error at distance s: The difference between the
actual truck speed and the desired speed when the truck is
located in position s.

3) Distance delay: The difference between the actual posi-
tion of the truck and the desired position at moment t .

4) Time delay: The difference between the actual time
of the truck and the desired time when the truck reaches
position s.
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FIGURE 11. Optimal speed trajectory following performance with full
load.

FIGURE 12. Full platoon following performance in Scenario 1.

All the KPIs are divided into three categories: the first
category characterizes the performance of the truck dynamics
model, including speed error at time t and speed error at
distance s. The first one indicates the dynamic response speed
of the dynamics model, while the second one reflects the

FIGURE 13. Empty platoon following performance in Scenario 1.

accuracy of the trajectory tracking of the dynamics model,
which has a direct impact on the efficiency and energy con-
sumption of the truck during operation. The second category
characterizes the stability of the FP and includes the time
headway from the proceeding truck, which ensures the safety
of the fleet operation. That is, the algorithm always ensures
that the time headway between trucks is greater than the
minimum time headway when the platoon is stable. The third
category characterizes the efficiency of the fleet production
operation process, including distance delay and time delay.
Since the reference trajectory is obtained from the operation
schedule, it ensures the optimization of the fleet production
efficiency. Therefore, the smaller the time delay and distance
delay are, the closer the fleet production efficiency is to the
optimization goal.

IV. RESULT
A. EV DYNAMIC SPEED TRAJECTORY FOLLOWING
PERFORMANCE
Fig. 9 shows the following results of the electric truck dynam-
ics model for the custom speed trajectory in Fig. 8. Under
the no-load condition, the actual acceleration of the model
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FIGURE 14. Full platoon following performance in Scenario 2.

is less than the desired speed trajectory when the speeds are
greater than 35 km/h and the acceleration is a = 0.8m/s2,
resulting in the actual speed being less than the desired speed,
with a maximum error of 4.5 km/h (1.25 m/s). For the rest of
the conditions, the speed error is within 1km/h (0.28 m/s).
Under the full load condition, when the speed is greater than
20km/h and the acceleration is set to a = 0.4m/s2, the speed
error is 2 km/h (0.56 m/s). At beginning of the truck entering
the ramp, the speed error is also 2km/h (0.56 m/s), and then
the error gradually decreases. The speed error in the rest
of the conditions is within 1km/h (0.28 m/s).

Figs. 10 and 11 show the simulation results of the optimal
speed trajectory following of the electric mining truck in
the path network under no-load and full-load optimal speed
trajectory following performance with no load conditions,
respectively. In the process of no-load transportation, the
speed error increases gradually during the first 50 meters of
the beginning stage, i.e., during the speed from 0 to the max-
imum speed, and the maximum speed error is 2.3 m/s. After
that, the speed error decreases and remains within 0.5 m/s.
The actual travel time is less than 1 s ahead of the optimal
speed trajectory travel time. The full-load transportation pro-

FIGURE 15. Empty platoon following performance in Scenario 2.

cess is similar to the no-load transportation process, except
for the starting phase, the speed error is always kept within
1 m/s, and the travel time error is within 1s. In summary,
we believe that the model can better simulate the actual
operation of an electric mining truck.

B. PLATOON FOLLOWING STABILITY PERFORMANCE
Figs. 12 to 15 show the actual speed of the platoon and the
time headway between the following truck and the preceding
truck in the prescribed 4 experiments. In all 4 experiments,
the initial time headway is set to 5 s, Truck 0 is the leading
truck, and Trucks 2 to 4 are following trucks.

In the experiments of Scenario 1, when the speed of the
leading truck suddenly decreases, the following trucks will
also start to slow down in sequence. After the leading truck
begins to accelerate to its original speed, the following trucks
also gradually return and stabilize to their original speed.
Among the three following trucks, the higher the priority
of the truck is, the earlier it begins to decelerate due to the
influence of the leading truck, the earlier it begins to reaccel-
erate, and the greater the deceleration amplitude, as shown
in Figs. 12(a) and 13(a). During the operation of the platoon,
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FIGURE 16. Speed error distribution of different trucks in the production
process.

the initial time headway is 5 s. As the platoon begins to slow
down, the time headway slightly increases. When the platoon
returns to the original speed, the time headway returns to
approximately 5 s, as shown in Figs. 12(b) and 13(b).

In the experiments of Scenario 2, after the leading truck
begins to slow down, the following trucks also begin to slow
down, and the speed eventually stabilizes within 0.5 km/h
(full platoon) to 1 km/h (empty platoon) of the leading truck’s
actual speed, as shown in Figs. 14(a) and 15(a). In Figs. 14(b)
and 15(b), it can be seen that the time headway in the platoon
increases to varying degrees as the trucks’ speed decreases,
ensuring the safety of the fleet’s operation.

Therefore, it can be seen that when the speed of the pre-
ceding truck suddenly decreases during the operation of the
platoon with 2 different scenarios, the algorithm can adjust
the speed of the following truck and stabilize it at the speed of
the preceding truck to ensure safe spacing and keep it stable.
It can also be concluded that when the following truck is
catches up with the preceding truck and is close to the mini-
mum safe headway, the algorithm can also reduce the speed
of the following truck to maintain the stability of the platoon

FIGURE 17. Speed error distribution of different transportation cycles in
the production process.

operation. Compared with the previous work in [43], the
following trucks will eventually stabilize to their original
speed. However, in this paper, when the leading truck reach
the target speed, it takes nearly 30 s for all following trucks to
stabilize at the target speed, and the time headway becomes
larger in Scenario 2, while the controller proposed in the
literature [43] takes only 5 s to achieve the final state, and
the time headway stays the same in all scenarios. The reason
for the large response gap is related to the accuracy of the EV
dynamics model, the control performance of the controller,
and the difference in the dynamic characteristics of mining
trucks and passenger cars.

C. FLEET PRODUCTION SIMULATION
Fig. 16 shows the speed following error distribution of dif-
ferent trucks in the fleet during the production process. More
than half of the time, the speed error of the fleet stays within
0.05 m/s (subfigure(a)), and only a very few times does the
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FIGURE 18. Distance delay distribution of different trucks in the
production process.

FIGURE 19. Distance delay distribution of different transportation cycles
in the production process.

speed error exceed 2m/s (subfigure(b)). It can be seen that the
speed following of the fleet ismore stable, and the distribution
of speed errors does not differ significantly between trucks.
Fig. 17 shows the distribution of fleet speed following errors
in different cycles during the whole production process. The
loading status has a large impact on the overall truck mass,
so the distribution of the truck in following speed error is
significantly correlated with the loading status, and the fleet
speed following error is generally smaller and more concen-
trated when it is empty than when it is fully loaded.

Figs. 18 and 19 show the distribution of the fleet tracking
distance error throughout the transportation process among
different trucks and different transportation cycles, respec-
tively. In Fig. 18, almost all trucks have a distance tracking
error within 10 m for more than half of the shift time. How-
ever, there is a difference in the distribution of distance error
among different trucks. The main source of this variation is
due to the different priorities of different trucks in the platoon.

FIGURE 20. Time delay distribution of different trucks in the production
process.

FIGURE 21. Time delay distribution of different transportation cycles in
the production process.

When a truck is the leading truck (e.g., trucks 1, 9, 14), it is
not affected by other trucks in the same FP and therefore
generates less potential traffic conflicts and therefore fewer
travel delay, with a maximum travel delay of 40 m to 50 m.

Fig. 20 illustrates the distribution of the completion time
between different trucks in the fleet. Fig. 21 illustrates the
distribution of the completion time between different trans-
portation cycles. In Figs. 10 and 11, we learned that the
completion time of a single transport task is slightly ahead of
the optimal speed trajectory when the trucks are not affected
by others. In Fig. 20, trucks 4, 5 and 13, as the earliest
trucks departing from different loading sites after the start
of the shift, have been unaffected by other trucks, so these
three trucks can complete their desired transport tasks ahead
of schedule. Conversely, the remains are affected by their
preceding truck departures, so there is a different degree of
time delay for them. The later the start of the shift, the greater
the influence from other trucks and the greater the time delay.
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In Fig. 21, the completion time delay or advance of the fleet
also gradually increases as the transportation cycle increases,
from less than 20 s in the first cycle to 200 s in the last cycle,
as well as for all trucks. However, overall, the percentage of
time delayed by the fleet does not increase significantly and
always stays within 5% of the total operation time.

V. CONCLUSION AND FURTHER WORK
In this paper, we propose a sequential distributed model
predictive control algorithm (DMPC) for solving the control
problem of an automated mining transportation fleet. The
algorithm uses the fleet operating schedule obtained from
the dispatching system as a reference, and the second-order
dynamics model of the electric mining truck is controlled
with the objective of minimizing the deviation between
the actual state of the truck and the operating schedule.
To evaluate the effectiveness of our proposed algorithm,
we simulated the stability of the fleet following operation and
fleet production processes, while verifying the validity of the
electric truck dynamics model. The remarkable conclusions
and further research directions of implementing the proposed
sequential DMPC algorithm in the case study are as follows:

1) A second-order electric truck dynamic model is built
and validated to be controlled as the actuators. The speed
error of the model remains within 0.2 m/s under steady-state
operating conditions, and increases to 2 m/s only when the
operating conditions change.

2) Our proposed algorithm can guarantee the stability of
the platoon’s safe spacing. When the leading truck changes
the target speed, it takes nearly 30 s for all following trucks
to stabilize at the target speed, and the time headway becomes
larger in Scenario 2.

3) During the fleet production and transportation process,
the algorithm ensures that the fleet runs according to the fleet
operation schedule within a reasonable error margin. Over
three fourths of the operation time, the speed error of the
fleet is within 0.2m/s, and the distance delay is within 40 m,
with a maximum of less than 70 m, accounting for less than
0.05% of the total operating mileage. The maximum time
delay is approximately 180 s, accounting for 5% of the total
transportation time. Moreover, the priority of trucks in the
platoon has a direct impact on operation delays, and the lower
the priority is, the greater the resulting delay.

4) Compared to the existing passenger car controller, the
controller proposed in this paper makes the platoon reach the
steady state more slowly, but the reason for this phenomenon
is not clear due to the large number of influencing factors.
In our future work, we will investigate this issue.

5) It is necessary to add terminal constraints to the objec-
tive function for the asymptotic stability of the SEQ_DMPC
algorithm proposed in this paper.
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