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ABSTRACT Nonlinear acoustics is a critical area of study with practical applications in fields such
as underwater communications, medical imaging, non-destructive testing, and sonar. This paper offers a
comprehensive analysis of theWestervelt and Burgers equations, alongwith their related boundary problems,
and investigates the characteristics of parametric generation, thereby making substantial advancements in
the theoretical comprehension of nonlinear acoustic waves. Our analysis sheds new light on the dynamics
of nonlinear acoustic waves and their behavior in various media, providing valuable insights into the
physics of sound propagation. Finally, parametric effects can be intelligently exploited for communication
applications. Thus, through the appropriate selection of encodings, it is possible to develop underwater
acoustic communication systems with greater directivity and range than classical systems.

INDEX TERMS Nonlinear acoustic, Westervelt equation, Burgers equation, parametric effect, acoustic
communication, underwater acoustic, ultrasound, signal processing.

I. INTRODUCTION
Most known acoustic phenomena are associated with linear
elastic properties of the medium [1], [2], [3], [4], [5], [6].
The interaction of an acoustic signal with the medium
is said to be linear if the response of the medium and
the intensity of the output signal vary linearly with the
intensity of the input signal. However, when the intensity
of the input signal is large, or in the case of materials
with special properties, a series of new nonlinear effects
appear, such as distortion of the acoustic wave shape due
to the propagation velocity of the wave as a function of
amplitude, generation of upper harmonics, generation of sum
and difference frequencies of the emitted signals, among
others. Knowledge of nonlinear effects is important for the
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development of new applications in high-intensity acoustics,
since these effects are increasingly used in nondestructive
characterization of materials [7], [8], [9], [10], medical
acoustics [11], [12] and underwater acoustics [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22].

The problems of nonlinear acoustics has been studied
since the 18th century [23]. Several early developments
were compiled by Beyer [24] in a collection of reference
papers on nonlinear acoustics. Between the 1960s and 1970s,
underwater applications of nonlinear acoustics based
on the parametric effect technique were investigated in
detail, focusing on the development of parametric arrays
[25], [26], [27], since their main feature is that they present
an extremely narrow directional pattern (their characteristic
width is 1° – 3°) for low-frequency acoustic signals. In this
sense, the beamwidth of a parametric array is almost
constant over a wide frequency band, while the side lobes
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TABLE 1. List of variables.

are absent [28]. In the early 1970s, parametric arrays
were used in both civilian and military applications, and
much research was carried out in this field [29], [30].
Considerable theoretical advances in the understanding of
nonlinear acoustic phenomena were also achieved during this
period [31], [32], [33], [34], [35], [36]. Thus, authors such as
Hamilton and Blackstock [23] and Enflo and Hedberg [37]
provided reviews on the theory and some applications of
nonlinear acoustics.

Recently, the development of mathematical simulation
techniques has led to an increase in attempts to better
understand this behavior and thus improve the various
existing applications [38], [39], [40], [41], [42], [43].
This paper presents a comprehensive study of nonlinear

acoustics, which solves the one-dimensionalWestervelt wave
equation using the Burgers equation to understand nonlinear
wave propagation. This analysis compares linear and non-
linear effects on the frequency spectrum to demonstrate the
impact of nonlinearity on the frequency spectrum.

The rest of the paper is organized as follows. Section II
primarily focuses on the effects related to nonlinearity, where
the authors demonstrate the propagation of Gaussian pulse
with initial condition, for linear and nonlinear case. In Sec-
tion III, the hydrodynamic model is introduced to derive the
fundamental equations of sound. The authors analyze the
first and second order approximations (linear and nonlinear
order) used to obtain the Westervelt and Burgers equations.

Section IV presents the development of the one-dimensional
Westervelt equation, which leads to the viscous Burgers
equation. This model is widely used due to its simplicity
in observing the formation of collision singularities within
a finite time, which distinguishes nonlinear equations from
linear ones. In Section V, various boundary problems
with different excitations are studied to demonstrate the
spectral evolution over the propagation distance. Section VI
discusses the parametric effect and provides an experimental
measurements regarding the directivity benefits of this
technique, particularly useful for sonar and communication
applications [44], [45], [46], [47], [48], [49], [50], [51],
as shown in Section VII. Finally, Section VIII presents the
concluding remarks.

II. EFFECTS ASSOCIATED WITH NONLINEAR
PROPAGATION
To facilitate comprehension and tracking of the work, the
authors present Table 1, which describes the list of variables
used in this paper.

For simplicity, the one-dimensional case will be discussed.
The propagation of waves in the +x-direction is governed by
the linear wave equation of first order1:

∂p(x, t)
∂t

+ co
∂p(x, t)

∂x
= 0, (1)

where co is the speed of acoustic wave measured in small
amplitude. In a finite medium, the absence of boundary
conditions will be considered. The general solution of the
first-order wave equation (1) is:

p(x, t) = f (x − cot), (2)

where f (x) is a function given by the initial conditions of the
Cauchy problem, f (x) = p(x, 0).
Since co is a constant, the solution (2) has the property of

keeping its shape throughout the propagation. In other words,
for each time t the curve f (x) shifts to the right without
deformation, an amount cot . This behavior is characteristic
in a linear regime.

However, if the signal’s amplitude is not negligible, the
linear model is no longer valid. In this case, the nonlinear
model will be considered. To describe the nonlinear behavior,
the Burgers equation will be taken as a starting point. The
Cauchy problem for the Burgers equation is expressed as:{

∂p(x, t)
∂t

+ c(p)
∂p(x, t)

∂x
= 0 (3a)

p(x, 0) = f (x) (3b)

1The one-dimensional linear wave equation of the second order:

∂2p(x, t)

∂t2
− co

∂2p(x, t)

∂x2
= 0

can be factored by means of the operators:

L+
=

(
∂

∂t
+ co

∂

∂x

)
, L−

=

(
∂

∂t
− co

∂

∂x

)
,

where the sign + corresponds to waves propagating to the right and the
sign − to waves propagating to the left. Thus, the second-order one-
dimensional wave equation gives rise to two first-order wave equations.
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FIGURE 1. Each pi remains constant moving with a certain speed c(pi ).
At the instant t the pressure pi will have traveled a distance c(pi )t where
x ′

i = xi + c(pi )t .

where c(p) is a given function that depends in turn on the
solution itself p = p(x, t).

The mathematical form of the Burgers equation (3a) is
observed to be identical to the linear equation (1), with the
only difference being that the velocity c(p) is no longer a
constant. When the velocity c depends on p, it gives rise to
a nonlinear first-order wave equation.

The first consequence of nonlinearity is that the superpo-
sition principle is not fulfilled. A second consequence is that
the methods used to solve linear differential equations (sep-
aration of variables, Laplace transform, Fourier transform,
Green function, among others) can not be applied to nonlinear
problems.

The Cauchy problem, expressions (3a) to (3b), admits a
solution that is known as a solution or Riemann wave and is
given by:

p(x, t) = f [x − c(p)t] (4)

The linear solution (2) and the nonlinear solution (4) have
the same shape but very different behaviors. Indeed, the
functional dependence of c with p implies that each point of
the initial curve p(x, 0) = f (x) will propagate at different
speeds. This behavior is illustrated in Figure 1. When the
wave has a profile p(x, 0) = f (x) at time t = 0, it undergoes
changes over time and develops a distinct profile p(x, t) after
a certain duration. In this scenario, we are dealing with a local
wave velocity c(p).
As a consequence of the above, the wave profile will

be deformed until the solution becomes multivalued and,
therefore, lacks physical meaning (the solution must be a
single-valued function of position). As the wave breaks
(the wave breaking), a discontinuous solution is considered,
which is called a shock wave. The shock wave (sh) occurs at
a certain position xsh and at a certain instant of time tsh (the
breaking time). The equation (3a) will only be valid if t ≤ tsh.
For t > tsh the equation (3a) does not adequately describe the
physical phenomenon, and it is necessary to review some of
the initial approximations and assumptions. Mathematically,

the existence of this singularity can be verified in (4) by
changing of variable:

ξ = x − c(p) t H⇒ p(ξ ) = f (ξ ) (5)
∂p
∂t

=
df
dξ

∂ξ

∂t
= −

(
c+ t

dc
dp

∂p
∂t

)
df
dξ

(6)

∂p
∂x

=
df
dξ

∂ξ

∂x
=

(
1 − t

dc
dp

∂p
∂x

)
df
dξ

(7)

Solving for the first derivatives ∂p/∂t and ∂p/∂x results in:

∂p(x, t)
∂t

= −
c(p)f ′(ξ )

1 + c′(p)f ′(ξ )t
(8)

∂p(x, t)
∂x

=
f ′(ξ )

1 + c′(p)f ′(ξ )t
(9)

where the prime index (′) denotes derivatives with respect
to their variables. These derivatives diverge giving rise to a
vertical tangent (tv), if the denominators go to zero at some
place or time. This happens if 1 + c′(p) f ′(ξ ) t = 0. From
where:

ttv =
−1

c′(p) f ′(ξ )
(10)

The smallest value of ttv is what is considered tsh:

tsh =
−1

c′(p) f ′
min(ξ )

, (11)

To illustrate these concepts and make them more specific,
Section II-A studies the propagation of a Gaussian pulse.

A. PROPAGATION OF A GAUSSIAN PULSE WITH INITIAL
CONDITIONS
Let us consider the Cauchy initial value problem for the
Burgers equation whose initial wave profile is a Gaussian
pulse of amplitude Po, and the local wave velocity c(p) is
a linear function of p:

∂p(x, t)
∂t

+ (co + ap)
∂p(x, t)

∂x
= 0

p(x, 0) = Poe−x
2

(12)

where co > 0 and a ≥ 0 are constants that are assumed to be
known.

According to (3a) and (3b) it turns out to be:

c(p) = co + ap, 0 ≤ p ≤ Po (13)

f (x) = Poe−x
2

(14)

It can be observed that the local wave velocity c(p) grows
from a minimum value co (for p = 0) to a maximum value
co + aPo (for p = Po). Next, we will consider the cases,
a = 0 and a > 0.
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1) LINEAR CASE, A = 0
If a = 0, the problem reduces to a linear problem whose
solution is given by (2):

p(x, t) = f (x − cot) = Poe−(x−cot)2 (15)

Since co is a constant, the Gaussian wave profile prop-
agates without deformation with velocity co as shown in
Figure 2.

FIGURE 2. Propagation in a linear regime. The pulse propagates without
deformation.

2) NONLINEAR CASE, A > 0
If a > 0, the solution to the initial value problem (12) is a
Riemann wave given by (4):

p(x, t) = f [x − c(p)t] = Poe−[x−c(p)t]2

= Poe−[x−(co+ap)t]2 (16)

As the local wave velocity c(p) = co+ap grows from co to
co+aPo the curve will slope to the right because the points of
greatest pressure are also those of higher speed. This behavior
is shown in the Figure 3. At a certain point, the curve will tilt
to such an extent that it becomes multi-valued, leading to the
emergence of a shock wave or wave break, as mentioned in
the preceding section.

By utilizing the expression (11), we can determine the
moment at which the shock wave occurs. Nevertheless, in this
context, we will approach the problem differently. We begin
with the inverse of the function (16), which is:

x(p, t) = (co + ap)t ±

√
ln
Po
p

, 0 ≤ p ≤ Po (17)

where the sign + corresponds to the right branch and the
sign − to the left branch with respect to the maximum of the
function. It is evident that the crash occurs in the right branch.
Therefore, it will be enough to consider only the + sign in
the function (17). Using the derivative of the inverse function
(a t constant) we obtain:

∂p(x, t)
∂x

=

[
∂x(p, t)

∂p

]−1

=

2p
√
ln Pop

2apt
√
ln Pop − 1

(18)

FIGURE 3. Propagation in a nonlinear regime. The pulse deforms due to
the local wave velocity c(p) = co + ap. The red color curve corresponds to
the linear regime shown in the (Figure 2).

The collision occurs when the derivative becomes infinite.
That is, if:

2apt

√
ln
Po
p

− 1 = 0 ⇒ t(p) =
1

2ap
√
ln Pop

(19)

To obtain the pressure and time values where the shock
occurs (defined as psh and tsh), the absolute minimum of the
function t(p) must be calculated. This calculation can be done
by equating the first derivative to zero:

dt(p)
dp

=

1 − 2 ln Pop

4p2a
[
ln Pop

] 3
2

= 0 H⇒ 1 − 2 ln
Po
p

= 0

(20)

from where,

psh = e−
1
2 Po ≃ 0.607 Po (21)

substituting (21) in (19) we obtain:

tsh =
e
1
2

√
2

1
aPo

≃
1.166
aPo

(22)

It remains to determine the position where the colli-
sion occurs. This position is obtained by substituting the
results (21) and (22) into (17):

xsh =
1

√
2

(
2 + e

1
2
co
aPo

)
(23)

In Figure 4, the wave profile is depicted at the moment of
the shock and at a subsequent time. To plot this figure, the
following numerical values were taken:

Po = 1 MPa, co = 1481.44 m/s, a = 6.753 · 10−6 m2s/kg

Substituting these values in (21), (22), and (23) we get

psh = 0.607 MPa, tsh = 0.173 s, y xsh = 257.167 m
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FIGURE 4. For t > tsh the curve becomes so steep that it is multivalued.

It can be observed that, for t > tsh the function is no longer
undervalued and the solution is no longer valid. Therefore,
the Cauchy problem (12) is physically acceptable only
if t ≤ 0.173 s.
In viscous fluids (dissipative or lossy fluids), the wave

can develop a vertical slope but the solution never becomes
multivalued. The nonlinear behavior of waves in viscous
fluids will be analyzed in the following sections.

III. HYDRODYNAMIC MODEL
The hydrodynamic model is the starting point to derive the
fundamental equations of acoustics. Unfortunately, the full
set of hydrodynamic equations has not yet been solved, not
even in the computational case (due to the large number of
required operations and instability problems). Therefore, it is
necessary to simplify the model in order to obtain closed
analytical or numerical solutions.

Depending on the problem under consideration, several
models with different degrees of approximation can be used.
Here we will use the Continuity and Navier-Stokes equations,
which will be approximated to second order.

In addition, the Westervelt equation is widely used in
the field of nonlinear acoustics, and it is obtained from
the hydrodynamic model under certain assumptions and
approximations. It is important to know these approximations
to bound their limits and range of validity.

• Continuity equation: It mathematically states the
principle of conservation of mass and in differential
form. It is expressed as:

∂ρ

∂t
+ ∇⃗ · (ρu⃗) = 0, (24)

where ρ = ρ(r⃗, t) is the mass density and u⃗ = u⃗(r⃗, t) the
velocity vector associated with the motion of the fluid
particles.

• Navier-Stokes equation: It is derived from the law of
conservation of momentum or Newton’s second law for
viscous fluids. In the absence of external forces, the
Navier-Stokes equation takes the form:

ρ

[
∂ u⃗
∂t

+ (u⃗ · ∇⃗)u⃗
]

+ ∇⃗p

= µ∇
2u⃗+

(
µb +

1
3
µ

)
∇⃗(∇⃗ · u⃗) (25)

where p = p(r⃗, t) is the pressure, µb the bulk viscosity
and µ the shear viscosity. The term (u⃗ · ∇)u⃗ is called the
convective or transport acceleration term.

Using the vector identities:

∇⃗ · (ρu⃗) = u⃗ · ∇⃗ρ + ρ∇⃗ · u⃗ (26)

(u⃗ · ∇⃗)u⃗ =
1
2
∇⃗u2 − u⃗×

(
∇⃗ × u⃗

)
(27)

∇⃗(∇⃗ · u⃗) = ∇
2u⃗+ ∇⃗ × (∇⃗ × u⃗) (28)

where u2 = u⃗ · u⃗. We can write the Continuity equation (24)
and the Navier-Stokes equation (25) as:

∂ρ

∂t
+ u⃗ · ∇⃗ρ + ρ∇ · u⃗ = 0

× ρ

[
∂ u⃗
∂t

+
1
2
∇⃗u2 − u⃗×

(
∇⃗ × u⃗

)]
+ ∇⃗p

=

(
µb +

4
3
µ

)
∇

2u⃗+

(
µb +

1
3
µ

)
∇⃗ × (∇⃗ × u⃗) (29)

The variables that appear in these equations are absolute
amounts of pressure, density, and velocity. Assuming the
fluid is initially in equilibrium, the propagation of an acoustic
wave will produce a disturbance, a deviation from the values
at equilibrium. Thus, absolute quantities can be decomposed
as the sum of two terms:

p(r⃗, t) = po + p′(r⃗, t)

ρ(r⃗, t) = ρo + ρ′(r⃗, t)

u⃗(r⃗, t) = u⃗o + u⃗′(r⃗, t) (30)

The subscript zero denotes values at equilibrium and
the prime index denotes disturbed values. For example,
p′ represents the deviation suffered by the pressure from the
equilibrium state po, this disturbance is known as acoustic
pressure.

A homogeneous medium is assumed, thus ρo and po
are constant (independent of position and time). It is also
assumed that the fluid velocity in equilibrium is zero
u⃗o = 0 and, if edge effects are neglected, it can also
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be assumed that the acoustic velocity vector field u⃗′ is
irrotational ∇⃗ × u⃗′

= 0. Under these assumptions, if we
substitute (30) in (29) we obtain:

∂ρ′

∂t
+ ρo∇⃗ · u⃗′

= −u⃗′
· ∇⃗ρ′

− ρ′
∇⃗ · u⃗′ (31)

ρo
∂ u⃗′

∂t
+ ∇⃗p′

= −ρ′
∂ u⃗′

∂t
−

1
2
ρo∇⃗u′2

−
1
2
ρ′

∇⃗u′2
+ µ1∇

2u⃗′ (32)

To facilitate the notation, we have defined the viscosity
term µ1 as:

µ1 = µb +
4
3
µ (33)

It is important to stress that the system of equations (31)
and (32) is a system formed by a scalar and a vector equation.
Therefore, it is an indeterminate system, as it contains four
equations and five unknown variables (p′, ρ′, u′

x , u
′
y, and u

′
z).

For the system to be complete, it is necessary to add one
more equation, this third equation is the equation of state.
Assuming barotropic fluids (the pressure depends only on
the density), the equation of state (to second-order) takes the
form ( [52]):

ρ′
=

p′

c2o
−

1
ρoc4o

B
2A

p′2 (34)

where co is the small-signal sound speed (evaluated at the
equilibrium state) and B/A is a dimensionless quantity known
as nonlinear parameter.

The objective is to solve the system of equations (31), (32)
and (34) assuming that the fluctuations are relatively small
i.e. p′/po, ρ′/ρ, u′/uo ≪ 1. This will make it possible to
disregard terms from a certain order of accuracy. Using the
method introduced by Blackstock [52], the order of a certain
term can be classified according to the following criteria:

• First-order terms are those that are linear with respect
to the disturbance. For example, first-order terms are
all those placed to the left of equality in equations (31)
and (32).

• Second-order terms are all quadratic terms that appear
in the cross products between disturbed quantities. For
example, second-order terms are all those placed to the
right of equality in the equations (31) and (32), with the
exception of the term ρ′

∇⃗u′2, which is of higher order.
• All the rest are higher order terms.

A. APPROXIMATION OF FIRST ORDER (LINEAR
ACOUSTICS)
For signals of small amplitude, the characteristic displace-
ment of the magnitudes of the fluid with respect to their
equilibrium values is very small. This condition defines the
hypothesis of linear acoustics. Under this hypothesis, with
a good degree of approximation, we can neglect in the
equations (31), (32), and (34) the terms of order greater

than one. Under these conditions, the Continuity equation,
Navier-Stokes equation and the equation of state reduce to:

∂ρ′

∂t
+ ρo∇⃗ · u⃗′

= 0 (35a)

ρo
∂ u⃗′

∂t
+ ∇⃗p′

= µ1∇
2u⃗′ (35b)

ρ′
=

p′

c2o
(35c)

These system of equations is the mathematical basis of
linear acoustics propagation in lossy media. The system
consists of two coupled differential equations (35a) and (35b),
and a third equation (35c) that links them linearly. This allows
one of the three variables to be solved to obtain a decoupled
equation. For p′, we obtain:

∇
2p′

−
1
c2o

∂2p′

∂t2
= −

δ

c2o

∂

∂t

(
∇

2p′

)
(36)

which is the well known linear wave equation in viscous
fluids, and δ ≡ µ1/ρo is called the diffusivity of sound.

Without loss of generality, the system will be limited to the
one-dimensional case, for which the equation (36) takes the
form:

∂2p′

∂x2
−

1
c2o

∂2p′

∂t2
= −

δ

c2o

∂

∂t

(
∂2p′

∂x2

)
(37)

For plane harmonic waves,

p′(x, t) = Poej(kcx−ωot) (38)

It is easy to show that the complex dispersion relation takes
the form:

kc =
ωo

co

(
1 − j

ωoδ

c2o

)−
1
2

≃

≃
ωo

co

(
1 + j

δωo

2c2o

)
≡ ko + jαo (39)

with ko = ωo/co the wave number, and αo the attenuation
coefficient at the frequency ωo:

αo =
δω2

o

2c3o
(40)

The inverse of αo is called the absorption length and is
denoted by the symbol La, that is:

La =
1
αo

(41)

Substituting (39) in (38) and taking the imaginary part,
we obtain the form of an attenuated linear wave:

p′(x, t) = Poe−αox sinωo

(
t −

x
co

)
(42)

It can be observed that, when x = La, the amplitude of the
signal is attenuated by a factor Po/e. It can also be observed
from (40) that the attenuation coefficient αo depends on the
square of the frequency. For this reason, higher frequency
waves will dissipate faster than lower frequency waves.
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On the other hand, for plane harmonic waves, it is easy to
prove that the structure relationship between p′ and u′ is given
by:

p′

u′
= ρoco

√
1 +

δ2ω2
o

2c3o
e
j tan−1

(
δωo
2c2o

)
(43)

which is called complex acoustic impedance. For lossless
media, it reduces to:

p′

u′
= ρoco (44)

B. APPROXIMATION OF SECOND ORDER (NONLINEAR
ACOUSTICS)
In large amplitude signals, the linear model is no longer valid
and it will be necessary to consider higher order terms. Most
of the applications of interest can be formulated with a good
degree of accuracy under a second order approximation.

In the equations (31), (32) and (34), all the terms involved
are second order except the term ρ′

∇⃗u′2 which is third order.
Thus, for a second order approximation we have:

∂ρ′

∂t
+ ρo∇⃗ · u⃗′

= −u⃗′
· ∇⃗ρ′

− ρ′
∇⃗ · u⃗′ (45)

ρo
∂ u⃗′

∂t
+ ∇⃗p′

= −ρ′
∂ u⃗′

∂t
−

1
2
ρo∇⃗u′2

+ µ1∇
2u⃗′ (46)

Next, it is necessary to make use of the substitution
corollary which indicates that any second order relation can
be substituted by its first order approximation, since the
resulting error is of third order [52]. Thus, we can use the
first-order linear model equations (35a), (35b), and (35c)
(taking µ1 equal to zero) to approximate the second-order
terms in the equations (45), (46). After some algebra, the
result is: 

∂ρ′

∂t
+ ρo∇⃗ · u⃗′

=
1

ρoc4o

∂p′2

∂t
+

1
c2o

∂L
∂t

(47a)

ρo
∂ u⃗′

∂t
+ ∇⃗p′

= −
δ

c2o

∂

∂t

(
∇⃗p′

)
− ∇⃗L (47b)

ρ′
=

p′

c2o
−

1
ρoc4o

B
2A

p′2 (47c)

where L is called the second-order Lagrangian density and it
is defined as:

L ≡
1
2

(
ρou′2

−
p′2

ρoc2o

)
(48)

According to the linear relationship (44), it can be observed
that, for plane harmonic waves in lossless media, L = 0.

The three equations (47a), (47b) and (47c) are the basic
equations of second-order nonlinear acoustics in lossy media.
As in the linear case, now we remove p′ and obtain the wave

equation for the acoustic pressure:

∇
2p′

−
1
c2o

∂2p′

∂t2
= −

δ

c4o

∂3p′

∂t3

−
β

ρoc4o

∂2p′2

∂t2
−

(
∇

2L+
1
c2o

∂2L
∂t2

)
(49)

where β is called the coefficient of nonlinearity and it is
defined as:

β = 1 +
B
2A

(50)

IV. WESTERVELT AND BURGERS EQUATION
Westervelt’s equation [53] is perhaps the best known equation
in the field of nonlinear acoustics, whose study was based
on the ‘‘scattering of sound by sound’’. This equation is
obtained by making the approximation L = 0 in the wave
equation (49). The Lagrangian densityL can be omitted when
cumulative nonlinear effects dominate over local nonlinear
effects [52], [54]. Making this approximation, the Westervelt
equation takes the form:

∇
2p′

−
1
c2o

∂2p′

∂t2
= −

δ

c4o

∂3p′

∂t3
−

β

ρoc4o

∂2p′2

∂t2
(51)

From the one-dimensional form of theWestervelt equation,
the Burgers equation is derived [54]:

∂p′

∂x
=

βp′

ρoc3o

∂p′

∂τ
+

δ

2c3o

∂2p′

∂τ 2
(52)

where τ = t − x/co is the delay. For lossless media (δ = 0),
the Burgers equation is known as inviscid Burgers equation.
Undoing the change of temporal variable in (52), the inviscid
Burgers equation takes the form:

∂p′

∂t
+ c(p′)

∂p′

∂x
= 0 (53)

with

c(p′) = co

(
1 −

βp′

ρoc2o

)−1

≃ co + ap′ (54)

where a = β/ρoco. It can be observed that (54) is the local
wave velocity that was used in the Cauchy problems (12).
The inviscid Burgers equation is one the most popular

nonlinear one dimensional wave equations and is widely
used as it is a simple model in which the formation of
shock singularities is observed in finite times. The formation
of these singularities is one of the phenomena that best
distinguishes nonlinear equations from linear ones.

V. BURGERS EQUATION: BOUNDARY VALUE PROBLEMS
Analytical solutions for Burgers equation are well known
and documented in the literature. In this section we analyze
several boundary value problem for the viscous Burgers
equation which will allow us show clearly the parametric
effect and its applications to underwater communications.
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A. MONO-FREQUENCY HARMONIC EXCITATION:
MENDOUSSE SOLUTION
In this section, we consider the boundary value problem for
the viscous Burgers equation (52) with a mono-frequency
harmonic boundary condition:

∂p′

∂x
=

βp′

ρoc3o

∂p′

∂τ
+

δ

2c3o

∂2p′

∂τ 2

p′(0, t) = Po sinωot

(55)

This problem supports an explicit solution known as the
Mendousse solution [55], which is shown in equation (56), as
shown at the bottom of the page.

This solution is valid ∀x, being In the modified Bessel
function of the first kind and order n and 0 the so-called
Gol’dberg number defined as:

0 =
La
xsh

=
2βPo
δωoρo

(57)

where La is the absorption length given in (41) and xsh
the shock distance (distance where the wave will develop a
vertical slope) given by:

xsh =
ρoc3o

βPoωo
(58)

The Mendousse solution (56) is represented in Figure 5
with different observation planes. For this, the following
numerical values were taken:

co = 1481.44 m/s, ρo = 999.6 kg/m3, β = 10,

δ = 0.005 m2/s fo = 0.1 MHz, Po = 1 MPa

From these values we obtain: xsh = 51.72 cm,
αo = 0.30 m −1, La = 3.29 m, and 0 = 6.37.
In Figure 5, it can be observed that at x = 0 theMendousse

solution reproduces the initial wave profile given by the
boundary condition in (55). At x = 0.5 xsh, the wave
undergoes deformation as anticipated compared to the linear
solution. At x = xsh, the shock wave occurs, resulting in
the development of vertical slopes in the curve. Between
x = xsh and x = 3xsh, the wave progressively transforms,
eventually taking on a sawtooth shape. Beyond x = 3xsh, the
wave continues to evolve as a sawtooth, gradually attenuating
due to dissipation. Finally, for x ≫ La, the wave gradually

returns to its initial profile, albeit with a significantly reduced
amplitude.

This figure illustrates the distortion and spectral change of
a nonlinear wave. Despite what it may seem, these effects
are not a disadvantage, but quite the opposite. The spectral
richness of nonlinear waves can be exploited in a variety
of practical applications, particularly in the field of acoustic
communications.

B. BI-FREQUENCY HARMONIC EXCITATION: LARDNER
SOLUTION
Let us consider the boundary problem for the viscous Burgers
equation (52) with a bi-frequency harmonic boundary
condition: 

∂p′

∂x
=

βp′

ρoc3o

∂p′

∂τ
+

δ

2c3o

∂2p′

∂τ 2

p′(0, t) = Pa sinωat + Pb sinωbt
(59)

ωa and ωb must be positive integer multiples of a certain
frequency ωo, that is:

ωa = aωo, ωb = bωo (60)

where a and b are two natural numbers. Moreover, for anyPa
and Pb it is always possible to choose a value Po such that:

Pa = APo Pb = BPo (61)

with A and B being real numbers.
This boundary problem supports the solution of expres-

sion (62), as shown at the bottom of the page, known as
the Lardner solution [37], [56], which is the bi-frequency
extension of the Mendousse solution of expression (56).

The Figure 6 shows the Lardner’s solution to the boundary
problem of expression (59) with the following numerical
values:

co = 1481.44 m/s, ρo = 999.6 kg/m3, β = 3.5,

δ = 0.0016 m2/s, fo = 0.1 MHz, Po = 2 MPa,

ωa = 9ωo, ωb = 7ωo, A = B = 1

The red curve presents the linear solution:

p′(x, t) = Pae−αat sinωa

(
t −

x
co

)
+ Pbe−αbt sinωb

(
t −

x
co

)
(63)

p′(x, t) = −Po
40−1

∞∑
n=−∞

n (−1)n In
0

2
e−n

2αox sin
(
nωo

(
t −

x
co

))
Io

0

2
+ 2

∞∑
n=−∞

(−1)n In
0

2
e−n2αox cos

(
nωo

(
t −

x
co

)) (56)

p′(x, t) = −Po
20−1

∞∑
l=−∞

∞∑
m=−∞

(la+ mb)(−1)l+mIl
( A
2a0

)
Im

( B
2b0

)
e−(la+mb)2αox sin(lωa + mωb)

(
t −

x
co

)
∞∑

l=−∞

∞∑
m=−∞

(−1)l+mIl
( A
2a0

)
Im

( B
2b0

)
e−(la+mb)2αox cos(lωa + mωb)

(
t −

x
co

) (62)
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FIGURE 5. Mendousse solution in different observation planes. The red curve shows the linear solution of expression (42).

where αa and αb are the attenuation coefficients at the
frequencies ωa and ωb, respectively.

In the Figure 6, it can be observed that during propagation
frequencies are generated that are linear combinations of
the primary frequencies ωa = 9ωo and ωb = 7ωo. It is
important to note that for x > 1 m the dominant frequency
is the difference frequency (9 −7 = 2) and the higher order
harmonics have been strongly attenuated. With x = 3 m,
the signal is basically a mono-frequency signal oscillating
at the difference frequency 2ωo. The signal maintains this
shape for a large distance until it finally transfers its energy
to the fundamental mode ωo. This evolution is shown in the
Figure 7.

C. MODULATED EXCITATION IN A VISCOUS MEDIUM
As a last example, we consider the contour problem for
the viscous Burgers equation whose boundary condition is a
sinusoidal function of amplitude Ac and frequency ωc (carrier
frequency) modulated in amplitude by a function E(t):

∂p′

∂x
=

βp′

ρoc3o

∂p′

∂τ
+

δ

2c3o

∂2p′

∂τ 2

p′(0, t) = AcE(t) sinωct
(64)

In order to obtain an analytical solution, the simplest case
of all possible cases will be taken as modulating function,
a cosine function of frequencyωm(< ωc). Thus, the boundary
condition in (64) takes the form:

p′(0, t) = Ac cos(ωmt) sin(ωct)

=
Ac
2

sin(ωc + ωm)t +
Ac
2

sin(ωc − ωm)t

= Po sinωat + Po sinωbt (65)

with Po = 1/2Ac, ωa = ωc + ωm and ωb = ωc − ωm. The
problem is reduced to a bi-frequency boundary condition as
discussed in the previous section. In order to use Lardner’s
solution (62), ωa and ωb are required to be natural multiples
of a certain frequency ωo. Consequently:

ωc + ωm = aωo
ωc − ωm = bωo (66)

Solving for ωc and ωm from the system of equations (66),
we have:

ωc =
a+ b
2

ωo (67)

ωm =
a− b
2

ωo (68)
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FIGURE 6. Lardner’s solution with ωa = 9 ωo, and ωb = 7 ωo.

The expression (68) shows that the difference fre-
quency is equal to twice the modulating frequency.
This is:

ωa − ωb = (a− b)ωo = 2ωm (69)

As a numerical example, the following modulated signal is
considered:

p′(0, t) = Ac cos(ωmt) sin(ωct)

Ac = 4 MPa, fm = 50 kHz, fc = 650 kHz
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FIGURE 7. At large distances from the boundary, all the energy of the bi-frequency signal is transferred to the fundamental mode ωo.

From expressions (67) and (68), it is straightforward to
show that with the problem is reduced to a bi-frequency
excitation with:

p′(0, t) = Po sin(ωat) + Po sin(ωbt)
Po = 2MPa, fo = 100kHz ωa = 7ωo, ωb = 6ωo

The Figure 8 presents the evolution of the modulated signal
in a medium defined by the following values:

co = 1481.44 m/s, ρo = 999.6 kg /m 3,

β = 3.5, δ = 0.0016 m2/s

Figure 8 shows that for x >3m the dominant frequency
is the difference frequency ωd = ωa − ωb = (7 − 6)ωo.
As expected, according to expression (69), the difference
frequency is twice the modulating frequency ωd = 2ωm
(2 · 50 kHz = 100 kHz).

VI. PARAMETRIC EFFECT
The solution to the boundary problem (59) reveals that when
two nonlinear harmonic waves with frequencies ωa and ωb
propagate in the same direction, they mutually interact due
to nonlinearity. This interaction gives rise to secondary
waves with frequencies that are linear combinations of the
sum and difference of the primary frequencies. Additionally,
the dissipative properties of the medium cause higher
frequency waves to attenuate and eventually vanish over
long propagation distances exceeding the absorption length.
Consequently, the wave with a frequency difference ωd ≡

ωa − ωb propagates the farthest distance. This phenomenon
is referred to as the parametric effect, and the wave with the
frequency difference ωd is known as the parametric signal.

Hence, when the primary signals consist of two pure
tones with frequencies ωa and ωb, the resulting parametric
signal manifests as a single-component wave. This particular
manifestation of the parametric effect is referred to as the
dual parametric effect. Figure 9 depicts the evolution of the
dual signal over the propagation distance for two tones with
frequencies ωa/2π = 2.3 MHz and ωb/2π = 2 MHz.
Notably, higher frequencies are swiftly absorbed by the
medium, resulting in a mono-frequency signal oscillating at
the parametric frequency of 0.3 MHz for x > 20 cm. The
figure was generated using Lardner’s solution (62), where
Pa = Pb = 1 MPa and the provided medium parameters:

co = 1481.44 m/s, ρo = 999.6 kg/m3,

β = 10, δ = 0.0016 m2/s

Another method of generating parametric signals is by
using a broadband primary signal, in which case an infinite
number of frequencies interact to generate a broadband
parametric signal. In this case, the parametric effect is called
broadband parametric effect. This would be the case for
a generic boundary condition like the one discussed in the
problem (64):

p′(0, t) = AcE(t) sinωct (70)

where ωc is the carrier frequency and the modulated
amplitude E(t) can be any function that varies slowly
compared to sinωct .
It is commonly understood that generating directional

beams for high frequencies is relatively easier compared to
low frequencies, as the latter often exhibit more omnidi-
rectional behavior. Nevertheless, one notable characteristic
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FIGURE 8. Lardner’s solution for a modulated signal with ωm = 50 kHz and ωc = 650 kHz. The red curve shows the linear solution.

of the parametric effect is that low frequencies, when
generated through parametric means, display a relatively
narrow directivity similar to that of the primary beam. This
can be seen in Figure 10.

Figure 10 illustrates the contrasting theoretical direc-
tivity achieved through linear and parametric approaches.
Notably, the figure highlights the directivity patterns of tra-
ditional communication systems (operating within the linear
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FIGURE 9. Dual parametric effect along the propagation distance (the x axis has been taken on a logarithmic scale from x = 7 cm to x = 25 cm). The red
and blue curves show the linear and nonlinear solution, respectively.

FIGURE 10. Theoretical comparison of directivity between a linear and a nonlinear system.

acoustic realm) at lower frequencies, showcasing their
tendency towards omnidirectional radiation (as depicted
by the red curves). These patterns exhibit an approximate
beamwidth spanning over ±60◦. Conversely, the Figure 10
also showcases the directivity patterns of parametric commu-
nication systems (pertaining to nonlinear acoustic systems),
which demonstrate a remarkable enhancement in radiated
beam concentration, with a remarkably narrow span of ±2◦

(as represented by the blue curves). Comparing the directivity
of the parametric system (blue curves) with the linear
directivity of a high-frequency scenario (visualized by the
green curve) solidifies one of the core attributes of parametric
generation. Specifically, it exemplifies the capability of
parametric systems to attain a highly directional radiation
pattern at lower frequencies, akin to the directional patterns
achieved at higher frequencies. This comparison serves
to underscore the distinctive characteristic of parametric
generation, a capacity to imbue low-frequency radiation
patterns with a level of directionality typically associatedwith
higher frequency domains.

An experimental result of the directivity measurement is
studied and will be discussed in Section VI-A.

A. EXPERIMENTAL STUDY
Airmar P19 plane transducer is used, with an emission
sensitivity of 167 dB re µPa/V @ 1m at the resonance
frequency of 200 kHz and the Reson TC4040 hydrophone.

FIGURE 11. Experimental setup.

The measurements were performed in a 10m deep, 20m
diameter truncated cone-shaped raft with SMARLOGY
positioning system, X-axis servo motor BMH1003P32F2A,
Y-axis servo motor BMH1003P32F2A.

Figure 11 shows that the equipment used was the NI PXIe
5433 function generator, which is connected to the PC and
uses LabVIEW to send the signal to the input of the E&I
1040L RF amplifier, to increase the amplitude of the signal,
and through its output to the transducer.

The measurement is evaluated by a sine modulated signal
with a carrier frequency of 200 kHz corresponding to the
resonance frequency of the Airmar P19 transducer and a
modulating frequency of 15 kHz with a duration of 1ms,
obtaining a parametric frequency of 30 kHz. The signal was
emitted at a distance of 1m.

Figure 12 presents the analysis of the linear signal;
red curve (high frequency – primary beam) and the sig-
nal generated through the parametric effect; blue curve
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FIGURE 12. Experimental directivity for a 30 kHz parametric sine. Primary beam ±6◦, secondary beam ±9◦ at −3 dB.

(low frequency – secondary beam). Using the minimization
of the mean square deviation of the experimental data, they
are fitted to the model of the expression (71) of the flat piston,
since for the primary beam, the directivity of the main lobe
is given through that expression and as the directivity of the
secondary beam tends to be similar to that of the primary, then
it is appropriate to use this expression as a model for both
beams. Starting from expression (71) [57], where J1 is the
first order Bessel function, k is the wavenumber, and r is the
piston radius. The adjustment is made taking the transducer
radius of 1.65 cm and varying the frequency, a fit with an
equivalent frequency for each beam is obtained.

D(θ, ϕ) =

(
2 · J1(k · r · sin θ )

k · r · sin θ

)2

(71)

It can be observed that the directivities are similar despite
the spectral differences. A beamwidth of ±6◦ is obtained
for the primary beam and ±9◦ for the secondary beam.
In addition, it can be observed that one of the characteristics
of parametric generation is that the sidelobes are mostly null
or minimal, as they are for these results.

VII. APPLICATIONS TO UNDERWATER COMMUNICATION
The parametric effect described in Section VI can be
effectively utilized in communication applications. To this
end, we propose a modulation technique for underwater
acoustic communications based on the concatenation of sev-
eral broadband sine-sweep type signals. In this modulation,
the bit ‘1’ is defined by an upward sine-sweep as a modulated
signal (Euss(t), ωm1 to ωm2, expression (72)), and the bit ‘0’
is defined by a downward sine-sweep (Edss(t), ωm2 to ωm1,
expression (73)). Fig. 13 illustrates examples of modulated
signals for bits ‘1’ and ‘0’ for better visual comprehension.
Nevertheless, these signals are transmitted concatenated to
form the desired message:

Euss(t) = sin
[(

ωm1 − ωm2

τss
t + ωm1

)
t
]

, 0 ≤ t ≤ τss,

(72)

Edss(t) = sin
[(

ωm2 − ωm1

τss
(t − τss) + ωm1

)
(t − τss)

]
,

0 ≤ t ≤ τss, (73)

where τss is the bit duration.

FIGURE 13. Modulated sine-sweep signal at the transmitter.

In the experiments, the sine-sweep envelope for a bit ‘1’
ranged from 5 kHz to 15 kHz, and for a bit ‘0’ ranged from
15 kHz to 5 kHz. Both signals have a duration of τss = 0.6ms,
modulated with a sine of frequency carrier fc = 200 kHz. This
produces a parametric signal according to the analytical at the
receiver similar to the one in the example of Fig. 14. This is
the combination of harmonic signals with variable frequency
and increasing amplitude as a function of the modulating
frequency.

A. SIGNAL PROCESSING
The amplitude of the low-frequency signal due to the
parametric effect is lower than the emitted signal, making
it difficult to detect, or distinguish from background noise.
To demonstrate this empirically, an encoding consisting of a
16-bit string as follows (‘‘0110111101101011’’) was sent at
an emitter-receiver distance of 42 cm. The transmitting and
receiving system operates at a sampling frequency of 20MHz
and the bits are emitted continuously.

A good way to check the occurrence of the parametric
effect is to analyze it by means of the cross-correlation
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FIGURE 14. Parametric sine-sweep signal at the receiver.

method [58]. It consists of correlating a filter with an impulse
response matching the searched signal with the recorded
signal. Thus, if a coincidence occurs a peakwill appear. In this
case, the recorded signal was correlated with parametric bit
signals ‘1’ and ‘0’ [18].

Figure 15 illustrates the received signal and the corre-
sponding correlation for both ‘1’ and ‘0’ bits. It clearly
demonstrates the distinguishability between the two bits
and the ease of detection achieved through this parametric
effect. Moreover, upon receiving the message, only receivers
familiar with the bit coding can successfully decode it,
thereby facilitating the design of more secure underwater
communication systems.

B. DISCUSSION
The exploration of parametric acoustic sources traces back
to Westervelt, whose theory hinges on the concept of sound
by sound scattering. Through his research, it was deduced
that these parametric sources yield finely focused beams
at lower frequencies, boasting minimal side lobes. This
impressive outcome is achieved with a compact array of
transducers.

For the realm of high-performance underwater acoustic
communications, the prerequisites are broad bandwidths to
facilitate high data rates and a slender beam profile tomitigate
the repercussions of multipath reflections. These demands

FIGURE 15. Received signal (top), the cross-correlation between the
received signal and the expected parametric signal for bit ‘1’ (middle),
and the cross-correlation between the received signal and the expected
parametric signal for bit ‘0’ (bottom).

find a harmonious solution in parametric acoustic arrays,
which can be seamlessly integrated with various existing
modulation techniques to yield robust system performance.
A concrete illustration of this synergy is showcased in
Table 2, where diverse communication systems tailored
for seabed penetration and object detection are delineated.
Moreover, the advantage of cultivating a narrow, directive
beamwidth transcends mere technical merits. It bears the
potential to elevate the information-handling capacity of a
network, allowing for targeted message dissemination to
specific nodes devoid of interception risks. This facet gains
heightened significance within the military domain, as it
paves the way for covert communication strategies.

The findings underscore the viability of employing
parametric sine-sweep modulation as a compelling

TABLE 2. Commercial parametric systems.

VOLUME 11, 2023 97235



M. Campo-Valera et al.: Exploring the Parametric Effect in Nonlinear Acoustic Waves

alternative for nonlinear underwater acoustic communi-
cations. This modulation technique emerges as highly
promising, primarily attributed to its capacity to generate
a substantial bit correlation. This advantageous attribute
is largely attributed to the extensive frequency bandwidth
harnessed by the modulation process.

VIII. CONCLUSION
This paper presented a comprehensive study of the main
equations for nonlinear waves, specifically focusing on
the Westervelt and Burgers equations derived from the
hydrodynamic model of continuity, as well as the Euler
equation. We explored both linear and nonlinear acoustic
approximations, including first and second-order effects, and
investigated various boundary problems involving mono-
frequency, bi-frequency, and modulated harmonic excitation
in a viscous medium.

An important aspect discussed in this study is the
parametric effect, that arises from nonlinear acoustics and
can be achieved through modulated signals. It is important
to highlight the significance of this technique in underwater
communications and sonar applications, attributing it to
the high directivity of the low frequency obtained in the
experiments around ±9◦. Additionally, it can be observed a
decrease in sidelobes, further validating the potential utility
of the parametric effect.

Furthermore, the experimental results aligned with theo-
retical predictions. This contributes to a better understanding
of nonlinear acoustics and reinforces the feasibility and
effectiveness of employing parametric signals in practical
applications.

Overall, this study sheds light on the behavior of nonlinear
waves in the context of acoustic phenomena and provides
valuable insights into the potential applications and benefits
of the parametric effect in underwater communications and
sonar systems.
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